三角函数角度公式

巡山小妖精
654次浏览
2020年07月28日 21:34
最佳经验
本文由作者推荐

粤是哪个省的简称-栖拼音

三角函数角度公式是什么?

可以用余弦公式! a2=b2+c2-2bc*cosA b2=a2+c2-2bc*cosB c2=a2+b2-2bc*cosC

你要是知道的正弦值,则可以通过计算转化就行了.


两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB ue718

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA) ue117

cot(A-B) = (cotAcotB+1)/(cotB-cotA)


倍角公式
tan2A = 2tanA/(1-tan^2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin^2 A

=2Cos^2 A—1

=1—2sin^2 A


三倍角公式
sin3A = 3sinA-4(sinA)^3;

cos3A = 4(cosA)^3 -3cosA

tan3a = tan a · tan(π/3+a)· tan(π/3-a)


半角公式
sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √{(1+cosA)/2}

tan(A/2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)} ue657

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)



和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB



积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]



诱导公式
sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tgA=tanA = sinA/cosA



万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}



其它公式
a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]

a·sin(a)-b·cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]

1+sin(a) = [sin(a/2)+cos(a/2)]^2;

1-sin(a) = [sin(a/2)-cos(a/2)]^2;;



其他非重点三角函数
csc(a) = 1/sin(a)

sec(a) = 1/cos(a)



双曲函数
sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)
= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)




A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容



三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ue718
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) ue117
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ue657
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin
(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)



反三角函数公式
一.一若sinx=a (-1≤a≤1 -∏/2≤x≤∏/2)
x=arcsina
二①sin(arcsina)=a (-1≤a≤1)
②arcsin(sina)=a (-∏/2≤a≤∏/2)
二.一若cosx=a (-1≤a≤1 0≤x≤∏)
x=arccosa
二①cos(arccosa)=a (-1≤a≤1)
②arccos(cosa)=a (0≤a≤∏)
三.一若tanx=a (-∏/2x=arctana
二①arctan(-a)=-arctana a∈R
②arctan(tana)=a (-∏/2③tan(arctana)=a a∈R




等比数列

(1)等比数列:An+1/An=q, n为自然数。

(2)通项公式:An=A1*q^(n-1);

推广式: An=Am·q^(n-m);

(3)求和公式:Sn=nA1(q=1)

Sn=[A1(1-q)^n]/(1-q)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.

(6)在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

等差数列

(1)等差数列:An+1=An+d, n为自然数。

(2)通项公式:An=A1+(n-1)d;

推广式: An=Am+(n-m)d;

(3)求和公式:Sn= n(A1+An)/2

Sn=nA1+n(n-1)d/2
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则Am+An=Ap+Aq;

②在等差数列中,序号成等差的项又组成一个等差数列,即A1,A1+k,A1+2k,…,A1+(m-i)k,…是等差数列,公差为kd。

(5)“G是a、b的等差中项”“2G=a+b(G≠0)”.


陶侃尝出游-虹霓


分号是什么意思-生机盎然的近义词


硫磺吧-踏花


业开头的成语-义愤填膺的读音


天人合一是谁提出的-亲族


精心近义词-践祚


physics是什么意思-静谧读音


and组合-强笑的拼音