人脸表情识别文献

玛丽莲梦兔
527次浏览
2020年07月30日 14:14
最佳经验
本文由作者推荐

赞颂老师的名言-一年级教学反思


JournalofDonghuaUniversity(Eng.Ed.)Vol.29,N o.1(2012)
71
FacialExpressionRecognitionBase donthe
Q-
shiftDT-
CWT
andRotation
InvariantLBP
CHENLei(
陈蕾

*
School ofElectronics&InformationEngineering,SoochowUniver sity,Suzhou215021,China
Abstract:Inthispaper,an ovelmethodbasedondual- treecomplex
wavelettransform(DT-CWT)androtation invariantlocalbinary
pattern(LBP)forfacialexpre ssionrecognitionisproposed.The
quartersampleshi ft(Q-shift)DT-CWTcanprovideagroupdelay
of14ofas ampleperiod,andsatisfytheusual2-bandfilterbank
constraintsofnoaliasingandperfectreconstruction.To resolve
illuminationvariationinexpressionverifi cation,low-frequency
coefficientsproducedbyDT- CWTaresetzeroes,high-frequency
coefficientsareu sedforreconstructingtheimage,andbasicLBP
histog ramismappedonthereconstructedimagebymeansof
his togramspecification.LBPiscapableofencodingtexturea nd
shapeinformationofthepreprocessedimages.Theh istogramgraphs
builtfrommulti-scalerotationinva riantLBPsarecombinedtoserve
asfeatureforfurther recognition.Templatematchingisadoptedto
classif yfacialexpressionsforitssimplicity.Theexperimental results
showthattheproposedapproachhasgoodperfo rmanceinefficiency
andaccuracy.
Keywords:fac ialexpressionrecognition;dual- treecomplexwavelet
transform(DT-CWT);localbinar ypattern(LBP);histogram;
similaritymeasure
C LCnumber:TP391Documentcode:A
ArticleID:1672-522 0(2012)
01-0071-05
,WANGJia-jun(
王加俊
) ,SUNBing(
孙兵

Introduction
Facialexpr essionrecognitionistoanalyzeanddetectthe
specia lexpressionstatefromgivenexpressionimagesorvideoframesandthentoascertainthesubject'sspecificinbo rn
emotion,achievingsmarterandmorenaturalintera ction
betweenhumanbeingsandcomputers.Inhumantoh uman
interaction,Mehrabiandiscoveredthatverbalc uesprovided7%
ofthemeaningofthemessage;vocalcue s,38%;andfacial
expressions,55%
[1]
.Thus facialexpressionprovidesmore
informationaboutth einteractionthanthespokenwords.
Automaticfacial expressionrecognitionplaysanimportantrole
inthe developmentofpatternrecognition,computervision,
computergraphics,artificialintelligence,physiolog y,
psychologyandsoon.Thestudyoffacialexpression
recognitionhasfounditsvaluesineconomyandsociet y.
Duetoitsapplicationsonsociologyandcomputervi sion,
automaticfacialexpressionrecognitionhasat tractedmoreand
moreattention.In1978,onthebasiso ftheanatomy,Ekman
andFriesenbuiltthefaceactionc odingsystem(FACS)that
associatedfacialexpressio nwithmusclemovement
[2]
.By
FACS,encoding allpossiblefaceexpressionsbecameareality.
Theni n1984,EkmanandFriesenputforwardthatthe
combinat ionofspecificFACSactionunitscouldindicatefacial
expressionofemotions
[3]
.Accordingtodiffer entemotions,
facialexpressionscanbedividedintos ixtypes:happy,sad,
surprise,fear,anger,anddisgu st
[4,5]
.Thesixbasictypesare
agreedwidel ybyresearchersandtreatedasthefacialexpression
c ategories.Facialexpressionrecognitiongenerallyincl udes
threestages:facedetectionandlocalization,t hefacialfeature
extraction,andexpressionrecogni tion.Facialexpressionisvery
complex,forexample, iftheopeningmouthdoesnotrepresent
smilenecessar ily,itmaybecryorsurprise,andthesamekind
ofexpre ssionsmayhavealotofdifferentways,suchashappy,
s omeareopenmouthcachinnation,someareclosedmouth
smile.Therefore,thefacialexpressionanalysisisadiff icult
taskthatmainlyreflectsintheaccuracyexpres sionfeature
extractionandvalidityofexpressionfe atureextraction.
Researchershavemadesomeachieve mentsinfacialexpression
analysis.Therearethefol lowingmethods:principalcomponent
analysis(PCA), independentcomponentanalysis(ICA),linear
discri minantanalysis(LDA),fisherlinearjudgingmethod,
clusteringdiscriminantanalysis,elasticchartmatchin gmethod,
gaborwaveletmethod,andlocalprincipalco mponentanalysis,
etc.Everyalgorithmmentionedhas someeffects,butisnot
verysatisfactoryandneedsto beimproved.
Inthispaper,abriefreviewofDT-CWTand localbinary
patterns(LBPs)isintroducedandanovel methodforfacial
expressionfeatureextractionispr oposed.Bythismethod,the
approximationcoefficien tsderivedfromDT-CWTareresetand
detailscoefficie ntsarepreserved.InverseofDT-DWTis
employedbyusi ngmodifiedcoefficients,andthereconstructed
imag eisreferredasI
dt
.ThebasicLBPhistogramofori ginal
imageIismappedontoI
dt
bymeansofhis togramspecification,
andtheresultedimageisdenot edasI
LBP
.Thefusionimageof
I
dt
an dI
LBP
isI
pro
.Multi-scalespecialdeco mpositionisapplied
toI
pro
.Thecombinatio nofeachscalerotationinvariantLBP
histogramsisus edasfeatureforrecognition.Experimentsshow
thatt hemethodpresentedinthispaperhashigherrecognitionrateandefficiency.
1TheQuarterSampleShift(Q-s hift)
DT-CWT
Thediscretewavelettransform(DWT )ismostcommonly
usedinitsmaximallydecimatedform .Thisworkswellfor
compressionbutitsusesforother signalanalysisand
reconstructiontaskshavebeenha mperedbytwomain
disadvantages:lackofshiftinvari anceandpoordirectional
selectivity.InRefs.[6,7] ,Kingsburyintroducedanewform
ofDWT,whichgenerat edcomplexcoefficientsbyusingadual-
treeofwavele tfilterstoobtaintheirrealandimaginaryparts.
Thi sintroduceslimitedredundancyandallowsthetransformt o
provideapproximateshiftinvarianceanddirection allyselective
filterswhilepreservingtheusualpro pertiesofperfect
reconstructionandcomputational efficiencywithgoodwell-
balancedfrequencyrespon ses.TheDT-CWThasreducedover
completenesscompare dwiththeshiftinvariantDWT(SIDWT),
anincreaseddi rectionalsensitivityovertheDWTthatisableto
dist inguishbetweenpositiveandnegativeorientationsgivin gsix
distinctsub-bandsateachlevel,theorientatio nsofwhichare
±15°,±45°,±75°.TheDT-CWTgivesperfe ct
reconstructionasthefiltersarechosenfromaperf ect
reconstructionbi-orthogonalset.TheQ- shiftDT-CWTisa
variantoftheearlierform,inordert ogivethedual-tree
improvedorthogonalityandsymme tryproperties.TheQ-shift
versionoftheDT-CWTissh owninFig.1,inwhichallthe
filtersbeyondlevel1are evenlength,buttheyarenolonger
strictlylinearpha se.Insteadtheyaredesignedtohaveagroup
Receivedd ate:2011-09-28
*Correspondenceshouldbeaddressed toCHENLei,E-mail:chenlei@suda.edu.cn


72< br>JournalofDonghuaUniversity(Eng.Ed.)Vol.29,No.1( 2012)
delayofapproximately14sample(+q).Therequi reddelay
differenceof12sample(2q)isthenachieved byusingthetime
reverseofthetreeafiltersintreebs othatthedelaybecomes
3q.Furthermore,thefilterco efficientsarenolonger
symmetric,anditisnowpossi bletodesigntheperfect-
reconstructionfiltersets tobeorthonormal,sothatthe
reconstructionfilters arejustthetimereverseoftheequivalent
analysisfi ltersinbothtrees.Henceallfiltersbeyondlevel1are
derivedfromthesameorthonormalprototypeset.
Fig .2Q-shiftDT-CWTonafacialexpressionimage:(a)origina l
image;(b)realpart;(c)imaginarypart;(d)magnitu de
2
2.1
RotationInvariantLBPsandFacialExpressionFeatureExtraction
LBPs
TheLBPope ratorwasfirstintroducedbyOjalaetal.
[8]
andw asprovedapowerfulmeansoftexturedescription.The
operatorlabelsthepixelsofanimagebythresholdinga3×3
neighborhoodofeachpixelwiththecentervalueandconsideringtheresultsasabinarynumber(seeFig.3for an
illustration).Bydefinition,LBPoperatordiscar dsthe
illuminationchanges,sinceitdependsonthegr ay-scale.This
makesitattractivesincedealingwith varyingillumination
whereinitisthemainconcernin ourresearch.
Fig.1TheQ-shiftDT-CWT,givingrealan dimaginarypartsof
complexcoefficientsfromtreeaa ndtreebrespectively
(q=14sampleperiod)
Notet hatfortheQ-shiftCWTeachcomplexwaveletbasis
isce nteredontheequivalentcomplexscalingfunctionbasis,< br>andeachoftheseiscenteredbetweenapairofadjacentc omplex
basesfromtheprevious(finer)level.Inthisw ay,each
complexwaveletcoefficientatlevelkhastwo complexchildren
locatedsymmetricallyaboveitatle velk-1.Fortheoddeven
DT-CWT,suchsymmetriesdonot occur.
Insummary,Q-shiftDT-CWThasthefollowingproperties:approximateshiftinvariance,gooddirect ional
D)withgabor-likefilters(alsotrueselectivi tyin2-dimension(2-
forhigherdimensionality,m-D) ,perfectreconstructionusing
Nshortlinear-phasef ilters,limitedredundancy,efficientorder-
comput ation,improvedorthogonalityandsymmetryproperties.< br>TheQ-shiftDT-CWTonafacialexpressionimageisshown in
Fig.2.
Fig.3ThebasicLBPoperator(LBP=1+8+3 2+128=169)
LBPisnotrotationinvariant,whichisund esirablein
certainapplications.Itispossibletode finerotationinvariant
versionsofLBP,andonesolut ionisillustratedinFig.4,where
LBPROTrepresentst hevalueofonerotationinvariantpattern.
Thebinary valuesofthethresholdedneighborhoodaremapped
int oan8-bitwordinclockwiseorcounter-clockwiseorder.An
arbitrarynumberofbinaryshiftsisthenmade,untilt heword
matchesoneofthe36differentpatternsof“0”a nd“1”an8-bit
wordcanformunderrotation.Theindexo fthematching
patternisusedasthefeaturevalue,des cribingtherotation
invariantLBPofthisparticular neighborhood
[9]

Fig.4Rotation-invarian tversionofLBP
Thederivedbinarynumberscodifyloca lprimitives
includingdifferenttypesofcurvededge s,spots,flatareas,etc.
(asshowninFig.5),soeachL BPcodecanberegardedasa
micro-pattern.Thelimitat ionofthebasicLBPoperatorisits
small3×3neighborh oodwhichcannotcapturedominant
featureswithlarge scalestructures.Hencetheoperatorwaslater
extend edtouseneighborhoodofdifferentsizes
[10]
.Us ing
circularneighborhoodsandbilinearlyinterpola tingthepixel
valuesallowanyradiusandnumberofpix elsinthe
neighborhood.Figure6illustratessomeexa mplesofthe
extendedLBPoperator,wherethenotation (P,R)denotesa
neighborhoodofPequallyspacedsampl ingpointsonacircleof
radiusofRthatformacircular lysymmetricneighborset.


JournalofDonghua University(Eng.Ed.)Vol.29,No.1(2012)
73
TheL BPoperatorLBP
(P,R)
produces2
P
differ entoutput
values,correspondingtothe2
P
di fferentbinarypatternsthatcan
beformedbythePpixe lsintheneighborset.Ithasbeenshown
thatcertainpa tternscontainmoreinformationthanothers.
Therefo re,itispossibletouseonlyasubsetofthe2
P
LBPs to
describethetextureofimages.Ojalaetal.
[8]
calledthese
fundamentalpatternsasuniformpat terns.AnLBPiscalled
uniformifitcontainsatmosttw obitwisetransitionsfrom0to1
orviceversawhentheb inarystringisconsideredcircular.For
example
,00000000,001110000,and11100001areuniform
patte rns.Itisobservedthatuniformpatternsaccountfornearl y
90%ofallpatternsinthe(8,1)neighborhoodandfora bout
70%inthe(16,2)neighborhoodintextureimages.
Accumulatingthepatternswhichhavemorethan2trans itions
2
intoasinglebinyieldsanLBPoperator,d enotedLBP
riu
(P,R)

withlessthan2
P
bins.Superscriptriu2standsforrotation
inv ariantuniformLBPandlabelingallremainingpatternswit ha
singlelabel
[11,12]
.Forexample,thenum beroflabelsfora
neighborhoodof8pixelsis256forth estandardLBPbut59for
riu2
LBP
16,2
.Af terlabelinganimagewiththeLBPoperator,a
histogra mofthelabeledimagef
l
(x,y)canbedefinedas
H
i
=
andhighfrequencycomponents(cDjs),w ithQ-shiftfilter.
(2)ZeroallthecoefficientsincA j,andpreservethe
coefficientincDjs.Employinvers eofDT-CWTbyusing
modifiedcAjtogetherwithcDjs,re ferredasI
dt

(3)DerivethebasicLBPhistog ramfromtheoriginal
imageI.
(4)MapthebasicLBP histogramofIontoI
dt
,bymeans
ofhistogram specification.Theresultedimageisdenotedas
I
LBP

(5)ConvertbothI
dt
andI
LBPintofrequencydomainbyQ-
shiftDT-CWTandthenfus eapproximationanddetails
coefficientsrespective ly.AnimageI
pro
isreconstructedbythe
fuse dcoefficients.
(6)ThepreprocessedimageI
pro< br>isdividedintomulti-level
sub-regions.Therota tioninvariantLBPhistogramsarederived
fromtheses ub-regions,normalizeddependingontheregion
sizes ,andweightedaccordingtotheregionlocation.These
histogramsbuiltfromsub-blockscaneffectivelydescrib efacial
expressionmicro-patterns.Theyarecombine dandservedas
featurevectorsforrecognition.
F igure7showslowandhighfrequencydirectional
coeff icientsofafacialexpressionimage.
Fig.7

I(f
(x,y)
x,y
l
=i),i=0,1,…,n-1,(
1 )
wherenisthenumberofdifferentlabelsproducedbyt heLBP
operatorand
(2)
I(A)=
1,Aistrue,
0,Aisfalse.
Approximationanddetailscoeffici ents,withQ-shiftfilter:
(a)anoriginalimage;(b)a pproximationcomponent;
(c)sixdirectionaldetails components(magnitude)at
level2;(d)detailscompon entsatlevel3
{
ThisLBPhistogramcontainsinfor mationaboutthe
distributionofthelocalmicro-patt erns,suchasedges,spotsand
flatareas,overthewhol eimage,soitcanbeusedto
statisticallydescribeima gecharacteristics.
Aszeroingallthelowfrequencyc oefficientsandpreserving
thehighfrequencycoeffi cients,wecangetthereconstructed
imageFig.8(b)by employinginverseofDT-CWT.Figure
8(a)isthebasicL BPhistogramofFig.7(a),whichismapped
ontoFig.8(b ),andFig.8(c)istheresultedimagebymeans
ofhistog ramspecification.Figure8(d)isthefusionimageof
F ig.8(b)andFig.8(c)byapplyingDT-CWTfusionmethod.
2.2Facialexpressionfeatrueextraction
Automatic facialexpressionrecognitioninvolvestwovital
asp ects:facialrepresentationandclassifierdesign.Facia l
representationistoderiveasetoffeaturesfromori ginalface
imagestoeffectivelyrepresentfaces.The optimalfeatures
shouldminimizewithin-classvaria tionsofexpressionswhile
maximizebetweenclassvar iations.Ifinadequatefeaturesare
used,eventhebes tclassifiercouldfailtoachieveaccurate
recogniti on.Inthispaperafeatureextractionalgorithmbased
ontheDT-CWTandLBPhistogramsisproposed.Thewhole
processoffeatureextractionalgorithmiscarriedoutasf ollows.
(1)Multi-levelDT-CWTisemployedtoconvert thegray-
scalefacialimageIintotwocomponents,low frequency(cAj)


74
JournalofDonghuaUni versity(Eng.Ed.)Vol.29,No.1(2012)
recognitionpe rformanceandfeaturevectorlength.Thusface
images aretotallydividedinto32(1+2+4+9+16=32)
regions. TheLBPfeaturesextractedfromeachsub- regionare
normalizedaccordingtothesub-regionsiz esandthen
concatenatedintoasinglefeaturehistogr amwiththelengthof
416(32×26=416).
3
Fig.8 Imagefusion:(a)thebasicLBPhistogramofFig.7(a);
(b)theimagereconstructedbyhighfrequencycoefficient s;
(c)resultedimagebymeansofhistogramspecificat ion;
(d)fusedimageforfeatureextraction
Exper imentalResults
Thecharacteristicvectorsareextra ctedusingthemulti-level
LBPhistogramsoftheprepr ocessedimageFig.8(d).AnLBP
histogramcomputedove rthewholefaceimageencodesonlythe
occurrencesoft hemicro-patternswithoutanyindicationabout
their locations.Toalsoconsidershapeinformationoffacialexpression,faceimagesareequallydividedintosmallr egions
R
0
,R
1
,…,R
m
toextr actLBPhistograms(asshowninFig.9
(a)).TheLBPfeat uresextractedfromeachsub-regionare
Forexperimen tsweusedimagesfromoneofthepopular
databasesforf acialexpressionrecognition,theJAFFEdatabase.
Th eJAFFEdatabasecontains213imagesofsevenfacial
ex pressions(6basicfacialexpressionsand1neutral)posed by
10Japanesefemalemodels.Foreachwoman,thereare 2-4
imagesofeveryfacialexpression.EachimageisaT IFFimage
withsize256×256and256graylevels.Allthe imagesare
takenagainstahomogeneousbackgroundwit hthesubjectsin
frontalposition.Someimagesof6bas icfacialexpressions
(anger,disgust,fear,joy,sad ness,andsurprise)areshownin
Fig.10andcorrespond ingimagesprocessedbyQ-shiftDT-CWT
inFig.11.
Fig.9ThenormalizedLBPhistograms:(a)sub-regionsatea chlevel,
riu2
(b)labeledimageofmicro-pattern s,(c)LBP
24,3
normalized
histogramsof9sub -regions,(d)concatenatedhistogramserved
asfeatu reforrecognition
concatenatedintoasingle,spatia llyenhancedfeature
histogram.Theextractedfeatur ehistogramrepresentsthelocal
textureandglobalsh apeoffaceimages.Someparameterscan
beoptimizedfo rbetterfeatureextraction.OneistheLBP
operator,a ndtheotheristhenumberofregionsdivided.We
riu2selecttheLBP
24,3
operator,bywhichwedefine 26rotation
invariantmicropatterns,anddividethef aceimagesinto1,2,
4,9,16regionsrespectively,giv ingagoodtrade-offbetween
Thecorrectlabelsofthet rainingsamplesarevery
importantforrecognition.A sseveralexpressionimagesare
markedwronginthedat abase,wecorrectthembeforeour
experiment.Wedodif ferentexperimentsusingdifferent
characteristics andtwomatchingmethodstoanalyzetheface
recogniti onperformances.ThecomposedLBPhistogramsof32
mul ti-scalesub-regionsareservedasfeaturesandthose
histogramsofsub-regionsinvolvingmouthoreyesaresetb igger
weight.Thiscanimprovetherecognitionaccura cyeffectively.
Weadoptedtemplatematchingtoclass ifyfacialexpressionsand
employedtwomethodsforsi milaritymeasure.
(1)Foreachexpressionofonesubje ct,wetestthreetimes
inturnandtaketheaveragereco gnitionrateasthefinalresult.
Wetakeoneofthefaci alexpressionimagesasatestsampleand
therestastra iningoneseverytime.Thereisnooverlapbetween
thet rainingandtestimages.WeemployEuropeandistance
m easurementforrecognition.


JournalofDongh uaUniversity(Eng.Ed.)Vol.29,No.1(2012)
75
(2 )Intraining,thehistogramsofexpressionimagesina
givenclassareaveragedtogenerateatemplateforthiscla ss.A
nearest-neighborclassifierisusedasdissimil aritymetricfor
comparingatargetfacehistogramtot hemodelhistogram.
Resultsobtainedfromthediffere ntexperimentsare
presentedinTable1.Inthetablewe canseehowdifferent
featuresandsimilaritymeasure saffectrecognitionrate.
Table1Recognitionrateso btained
Recognitionrate
(6expressions)
65 %
84.5%
89%
100%
Features
matchingm ethod
LBPof16same-scalesub-regionsdistance
b etweentestingsampleandtrainingsamples
LBPof32mu lti-scalesub-regionsdistance
betweentestingsamp leandtrainingsamples
WeigtedLBPof32multi- scalesub-regions
distancebetweentestandtraining samples
WeigtedLBPof32multi-scalesub-regions
distancebetweentestsampleandclasscentre
weused atemplatematchingtoclassifyfacialexpressionsforits
simplicity.Comparedtherecognitionresultsobtain edwithour
facialfeaturestothoseobtainedwithPCAa ndLDAapproaches
(76.3%and69.5%forPCAandLDA,resp ectively),the
methodproposedinthispaperclearlys howedthebetter
performanceinrecognitionefficien cyandaccuracy.
References
[1]MehrabianA.Sile ntMessages[M].WadsworthPublishing
1971.Company, Inc.,Belmont,CA,
[2]EkmanP,FriensenW.FacialActi onCodingSystem(FACS):a
TechniquefortheMeasureme ntofFacialMovement[M].Palo
Alto:ConsultingPsych ologistsPress,1978.
[3]EkmanP,FriensenW.Unmaski ngtheFace[M].PaloAlto:
ConsultingPsychologistsP ress,1984.
[4]PanticM,RothkrantzLJM.FacialActio nRecognitionforFacial
.IEEEExpressionAnalysisfr omStaticFaceImages[J]
TransactionsonSystems,Man ,andCybernetics,2004,34(3):
1449-1461.
[5]Pa nticM,RothkrantzL.AutomaticAnalysisofFacial
Exp ressions:theStateofArt[J].IEEETransactionsonPatter n
2000,22(12):1424-1445.AnalysisandMachineIntel ligence,
[6]KingsburyNG.TheDual-TreeComplexWave letTransform:a
NewEfficientToolforImageRestorat ionandEnhancement[C].
ProceedingsinEUSIPCO98,Rh odes,Greece,1998:319-322.
[7]KingsburyNG.Comple xWaveletsforShiftInvariantAnalysis
.JournalofAp pliedandandFilteringofSignals[J]
ComputationalH armonicAnalysis,2001,10(3):234-253.
[8]OjalaT,P ietikinenM,HarwoodD.AComparativeStudyof
Textur eMeasureswithClassificationBasedonFeature
Distr ibutions[J].PatternRecognition,1996,29(1):51-59.[9]PietikinenM,OjalaT,XuZ.Rotation-InvariantTex ture
ClassificationUsingFeatureDistributions[J] .Pattern
Recognition,2000,33(1):43-52.
[10]O jalaT,PietikinenM,MenpT.MultiresolutionGray-Sc ale
andRotationInvariantTextureClassificationwi thLocalBinary
Patterns[J].IEEETransactionsonPat ternAnalysisandMachine
2002,24(7):971-987.Intel ligence,
[11]AhonenT,HadidA,PietikinenM.FaceRe cognitionwithLocal
BinaryPatterns[C].Proceeding softhe8thEuropeanConference
onComputerVision,Pr ague,TheCzechRepublic,2004:469-
481.
[12]Moo reS,BowdenR.LocalBinaryPatternsforMulti-viewFacial
ExpressionRecognition[J].ComputerVisionandImag e
Understanding,2011,115(4):541-558.
4Conclu sions
InthispaperweanalyzedthebasicprincipleofD T-CWT
andLBPs.AnovelmethodbasedonQ-shiftDT-CWTa nd
rotationinvariantLBPwasproposedwhichwaseffic ientfor
recognition.Q-shiftDT-CWTwasusedtoresol veillumination
variationinexpressionverificatio n.RotationinvariantLBPs
werecapableofdescribing textureandshapeinformation.To
enhancethefacialr epresentation,wedividedthepreprocessed
facialim agesintoseveralsub-regionsofdifferentscales.The
LBPhistogramsofsub-regionswerenormalizeddepending on
theregionsizesandgaveadifferentweightdependi ngonthe
roleofthegivenregionsinrecognition.Fori nstance,sincethe
mouthregionswereimportantforre cognition,ahighweight
couldbeattributedtothecor respondingLBPhistograms.The
combinedhistogramst hatcouldeffectivelydescribefacial
expressionmic ro-patternswereservedasfeaturesfor
recognition. Ourmaingoalinthispaperwastoshowthehigh
discrimi nativepoweroftheproposedfacialfeatures.Therefore,< /p>

母亲节图画-三年级英语教学计划


汉族的特点-话务员工作总结


广东创新科技职业学院-廉政述职报告


看新闻-gct历年真题及答案


含羞草资料-云南人事考试


车险政策-发言提纲


元旦的画-语文的重要性


国庆来历-河南注册会计师协会