人脸表情识别文献
赞颂老师的名言-一年级教学反思
JournalofDonghuaUniversity(Eng.Ed.)Vol.29,N
o.1(2012)
71
FacialExpressionRecognitionBase
donthe
Q-
shiftDT-
CWT
andRotation
InvariantLBP
CHENLei(
陈蕾
)
*
School
ofElectronics&InformationEngineering,SoochowUniver
sity,Suzhou215021,China
Abstract:Inthispaper,an
ovelmethodbasedondual-
treecomplex
wavelettransform(DT-CWT)androtation
invariantlocalbinary
pattern(LBP)forfacialexpre
ssionrecognitionisproposed.The
quartersampleshi
ft(Q-shift)DT-CWTcanprovideagroupdelay
of14ofas
ampleperiod,andsatisfytheusual2-bandfilterbank
constraintsofnoaliasingandperfectreconstruction.To
resolve
illuminationvariationinexpressionverifi
cation,low-frequency
coefficientsproducedbyDT-
CWTaresetzeroes,high-frequency
coefficientsareu
sedforreconstructingtheimage,andbasicLBP
histog
ramismappedonthereconstructedimagebymeansof
his
togramspecification.LBPiscapableofencodingtexturea
nd
shapeinformationofthepreprocessedimages.Theh
istogramgraphs
builtfrommulti-scalerotationinva
riantLBPsarecombinedtoserve
asfeatureforfurther
recognition.Templatematchingisadoptedto
classif
yfacialexpressionsforitssimplicity.Theexperimental
results
showthattheproposedapproachhasgoodperfo
rmanceinefficiency
andaccuracy.
Keywords:fac
ialexpressionrecognition;dual-
treecomplexwavelet
transform(DT-CWT);localbinar
ypattern(LBP);histogram;
similaritymeasure
C
LCnumber:TP391Documentcode:A
ArticleID:1672-522
0(2012)
01-0071-05
,WANGJia-jun(
王加俊
)
,SUNBing(
孙兵
)
Introduction
Facialexpr
essionrecognitionistoanalyzeanddetectthe
specia
lexpressionstatefromgivenexpressionimagesorvideoframesandthentoascertainthesubject'sspecificinbo
rn
emotion,achievingsmarterandmorenaturalintera
ction
betweenhumanbeingsandcomputers.Inhumantoh
uman
interaction,Mehrabiandiscoveredthatverbalc
uesprovided7%
ofthemeaningofthemessage;vocalcue
s,38%;andfacial
expressions,55%
[1]
.Thus
facialexpressionprovidesmore
informationaboutth
einteractionthanthespokenwords.
Automaticfacial
expressionrecognitionplaysanimportantrole
inthe
developmentofpatternrecognition,computervision,
computergraphics,artificialintelligence,physiolog
y,
psychologyandsoon.Thestudyoffacialexpression
recognitionhasfounditsvaluesineconomyandsociet
y.
Duetoitsapplicationsonsociologyandcomputervi
sion,
automaticfacialexpressionrecognitionhasat
tractedmoreand
moreattention.In1978,onthebasiso
ftheanatomy,Ekman
andFriesenbuiltthefaceactionc
odingsystem(FACS)that
associatedfacialexpressio
nwithmusclemovement
[2]
.By
FACS,encoding
allpossiblefaceexpressionsbecameareality.
Theni
n1984,EkmanandFriesenputforwardthatthe
combinat
ionofspecificFACSactionunitscouldindicatefacial
expressionofemotions
[3]
.Accordingtodiffer
entemotions,
facialexpressionscanbedividedintos
ixtypes:happy,sad,
surprise,fear,anger,anddisgu
st
[4,5]
.Thesixbasictypesare
agreedwidel
ybyresearchersandtreatedasthefacialexpression
c
ategories.Facialexpressionrecognitiongenerallyincl
udes
threestages:facedetectionandlocalization,t
hefacialfeature
extraction,andexpressionrecogni
tion.Facialexpressionisvery
complex,forexample,
iftheopeningmouthdoesnotrepresent
smilenecessar
ily,itmaybecryorsurprise,andthesamekind
ofexpre
ssionsmayhavealotofdifferentways,suchashappy,
s
omeareopenmouthcachinnation,someareclosedmouth
smile.Therefore,thefacialexpressionanalysisisadiff
icult
taskthatmainlyreflectsintheaccuracyexpres
sionfeature
extractionandvalidityofexpressionfe
atureextraction.
Researchershavemadesomeachieve
mentsinfacialexpression
analysis.Therearethefol
lowingmethods:principalcomponent
analysis(PCA),
independentcomponentanalysis(ICA),linear
discri
minantanalysis(LDA),fisherlinearjudgingmethod,
clusteringdiscriminantanalysis,elasticchartmatchin
gmethod,
gaborwaveletmethod,andlocalprincipalco
mponentanalysis,
etc.Everyalgorithmmentionedhas
someeffects,butisnot
verysatisfactoryandneedsto
beimproved.
Inthispaper,abriefreviewofDT-CWTand
localbinary
patterns(LBPs)isintroducedandanovel
methodforfacial
expressionfeatureextractionispr
oposed.Bythismethod,the
approximationcoefficien
tsderivedfromDT-CWTareresetand
detailscoefficie
ntsarepreserved.InverseofDT-DWTis
employedbyusi
ngmodifiedcoefficients,andthereconstructed
imag
eisreferredasI
dt
.ThebasicLBPhistogramofori
ginal
imageIismappedontoI
dt
bymeansofhis
togramspecification,
andtheresultedimageisdenot
edasI
LBP
.Thefusionimageof
I
dt
an
dI
LBP
isI
pro
.Multi-scalespecialdeco
mpositionisapplied
toI
pro
.Thecombinatio
nofeachscalerotationinvariantLBP
histogramsisus
edasfeatureforrecognition.Experimentsshow
thatt
hemethodpresentedinthispaperhashigherrecognitionrateandefficiency.
1TheQuarterSampleShift(Q-s
hift)
DT-CWT
Thediscretewavelettransform(DWT
)ismostcommonly
usedinitsmaximallydecimatedform
.Thisworkswellfor
compressionbutitsusesforother
signalanalysisand
reconstructiontaskshavebeenha
mperedbytwomain
disadvantages:lackofshiftinvari
anceandpoordirectional
selectivity.InRefs.[6,7]
,Kingsburyintroducedanewform
ofDWT,whichgenerat
edcomplexcoefficientsbyusingadual-
treeofwavele
tfilterstoobtaintheirrealandimaginaryparts.
Thi
sintroduceslimitedredundancyandallowsthetransformt
o
provideapproximateshiftinvarianceanddirection
allyselective
filterswhilepreservingtheusualpro
pertiesofperfect
reconstructionandcomputational
efficiencywithgoodwell-
balancedfrequencyrespon
ses.TheDT-CWThasreducedover
completenesscompare
dwiththeshiftinvariantDWT(SIDWT),
anincreaseddi
rectionalsensitivityovertheDWTthatisableto
dist
inguishbetweenpositiveandnegativeorientationsgivin
gsix
distinctsub-bandsateachlevel,theorientatio
nsofwhichare
±15°,±45°,±75°.TheDT-CWTgivesperfe
ct
reconstructionasthefiltersarechosenfromaperf
ect
reconstructionbi-orthogonalset.TheQ-
shiftDT-CWTisa
variantoftheearlierform,inordert
ogivethedual-tree
improvedorthogonalityandsymme
tryproperties.TheQ-shift
versionoftheDT-CWTissh
owninFig.1,inwhichallthe
filtersbeyondlevel1are
evenlength,buttheyarenolonger
strictlylinearpha
se.Insteadtheyaredesignedtohaveagroup
Receivedd
ate:2011-09-28
*Correspondenceshouldbeaddressed
toCHENLei,E-mail:chenlei@suda.edu.cn
72<
br>JournalofDonghuaUniversity(Eng.Ed.)Vol.29,No.1(
2012)
delayofapproximately14sample(+q).Therequi
reddelay
differenceof12sample(2q)isthenachieved
byusingthetime
reverseofthetreeafiltersintreebs
othatthedelaybecomes
3q.Furthermore,thefilterco
efficientsarenolonger
symmetric,anditisnowpossi
bletodesigntheperfect-
reconstructionfiltersets
tobeorthonormal,sothatthe
reconstructionfilters
arejustthetimereverseoftheequivalent
analysisfi
ltersinbothtrees.Henceallfiltersbeyondlevel1are
derivedfromthesameorthonormalprototypeset.
Fig
.2Q-shiftDT-CWTonafacialexpressionimage:(a)origina
l
image;(b)realpart;(c)imaginarypart;(d)magnitu
de
2
2.1
RotationInvariantLBPsandFacialExpressionFeatureExtraction
LBPs
TheLBPope
ratorwasfirstintroducedbyOjalaetal.
[8]
andw
asprovedapowerfulmeansoftexturedescription.The
operatorlabelsthepixelsofanimagebythresholdinga3×3
neighborhoodofeachpixelwiththecentervalueandconsideringtheresultsasabinarynumber(seeFig.3for
an
illustration).Bydefinition,LBPoperatordiscar
dsthe
illuminationchanges,sinceitdependsonthegr
ay-scale.This
makesitattractivesincedealingwith
varyingillumination
whereinitisthemainconcernin
ourresearch.
Fig.1TheQ-shiftDT-CWT,givingrealan
dimaginarypartsof
complexcoefficientsfromtreeaa
ndtreebrespectively
(q=14sampleperiod)
Notet
hatfortheQ-shiftCWTeachcomplexwaveletbasis
isce
nteredontheequivalentcomplexscalingfunctionbasis,<
br>andeachoftheseiscenteredbetweenapairofadjacentc
omplex
basesfromtheprevious(finer)level.Inthisw
ay,each
complexwaveletcoefficientatlevelkhastwo
complexchildren
locatedsymmetricallyaboveitatle
velk-1.Fortheoddeven
DT-CWT,suchsymmetriesdonot
occur.
Insummary,Q-shiftDT-CWThasthefollowingproperties:approximateshiftinvariance,gooddirect
ional
D)withgabor-likefilters(alsotrueselectivi
tyin2-dimension(2-
forhigherdimensionality,m-D)
,perfectreconstructionusing
Nshortlinear-phasef
ilters,limitedredundancy,efficientorder-
comput
ation,improvedorthogonalityandsymmetryproperties.<
br>TheQ-shiftDT-CWTonafacialexpressionimageisshown
in
Fig.2.
Fig.3ThebasicLBPoperator(LBP=1+8+3
2+128=169)
LBPisnotrotationinvariant,whichisund
esirablein
certainapplications.Itispossibletode
finerotationinvariant
versionsofLBP,andonesolut
ionisillustratedinFig.4,where
LBPROTrepresentst
hevalueofonerotationinvariantpattern.
Thebinary
valuesofthethresholdedneighborhoodaremapped
int
oan8-bitwordinclockwiseorcounter-clockwiseorder.An
arbitrarynumberofbinaryshiftsisthenmade,untilt
heword
matchesoneofthe36differentpatternsof“0”a
nd“1”an8-bit
wordcanformunderrotation.Theindexo
fthematching
patternisusedasthefeaturevalue,des
cribingtherotation
invariantLBPofthisparticular
neighborhood
[9]
.
Fig.4Rotation-invarian
tversionofLBP
Thederivedbinarynumberscodifyloca
lprimitives
includingdifferenttypesofcurvededge
s,spots,flatareas,etc.
(asshowninFig.5),soeachL
BPcodecanberegardedasa
micro-pattern.Thelimitat
ionofthebasicLBPoperatorisits
small3×3neighborh
oodwhichcannotcapturedominant
featureswithlarge
scalestructures.Hencetheoperatorwaslater
extend
edtouseneighborhoodofdifferentsizes
[10]
.Us
ing
circularneighborhoodsandbilinearlyinterpola
tingthepixel
valuesallowanyradiusandnumberofpix
elsinthe
neighborhood.Figure6illustratessomeexa
mplesofthe
extendedLBPoperator,wherethenotation
(P,R)denotesa
neighborhoodofPequallyspacedsampl
ingpointsonacircleof
radiusofRthatformacircular
lysymmetricneighborset.
JournalofDonghua
University(Eng.Ed.)Vol.29,No.1(2012)
73
TheL
BPoperatorLBP
(P,R)
produces2
P
differ
entoutput
values,correspondingtothe2
P
di
fferentbinarypatternsthatcan
beformedbythePpixe
lsintheneighborset.Ithasbeenshown
thatcertainpa
tternscontainmoreinformationthanothers.
Therefo
re,itispossibletouseonlyasubsetofthe2
P
LBPs
to
describethetextureofimages.Ojalaetal.
[8]
calledthese
fundamentalpatternsasuniformpat
terns.AnLBPiscalled
uniformifitcontainsatmosttw
obitwisetransitionsfrom0to1
orviceversawhentheb
inarystringisconsideredcircular.For
example
,00000000,001110000,and11100001areuniform
patte
rns.Itisobservedthatuniformpatternsaccountfornearl
y
90%ofallpatternsinthe(8,1)neighborhoodandfora
bout
70%inthe(16,2)neighborhoodintextureimages.
Accumulatingthepatternswhichhavemorethan2trans
itions
2
intoasinglebinyieldsanLBPoperator,d
enotedLBP
riu
(P,R)
,
withlessthan2
P
bins.Superscriptriu2standsforrotation
inv
ariantuniformLBPandlabelingallremainingpatternswit
ha
singlelabel
[11,12]
.Forexample,thenum
beroflabelsfora
neighborhoodof8pixelsis256forth
estandardLBPbut59for
riu2
LBP
16,2
.Af
terlabelinganimagewiththeLBPoperator,a
histogra
mofthelabeledimagef
l
(x,y)canbedefinedas
H
i
=
andhighfrequencycomponents(cDjs),w
ithQ-shiftfilter.
(2)ZeroallthecoefficientsincA
j,andpreservethe
coefficientincDjs.Employinvers
eofDT-CWTbyusing
modifiedcAjtogetherwithcDjs,re
ferredasI
dt
.
(3)DerivethebasicLBPhistog
ramfromtheoriginal
imageI.
(4)MapthebasicLBP
histogramofIontoI
dt
,bymeans
ofhistogram
specification.Theresultedimageisdenotedas
I
LBP
.
(5)ConvertbothI
dt
andI
LBPintofrequencydomainbyQ-
shiftDT-CWTandthenfus
eapproximationanddetails
coefficientsrespective
ly.AnimageI
pro
isreconstructedbythe
fuse
dcoefficients.
(6)ThepreprocessedimageI
pro<
br>isdividedintomulti-level
sub-regions.Therota
tioninvariantLBPhistogramsarederived
fromtheses
ub-regions,normalizeddependingontheregion
sizes
,andweightedaccordingtotheregionlocation.These
histogramsbuiltfromsub-blockscaneffectivelydescrib
efacial
expressionmicro-patterns.Theyarecombine
dandservedas
featurevectorsforrecognition.
F
igure7showslowandhighfrequencydirectional
coeff
icientsofafacialexpressionimage.
Fig.7
∑
I(f
(x,y)
x,y
l
=i),i=0,1,…,n-1,(
1
)
wherenisthenumberofdifferentlabelsproducedbyt
heLBP
operatorand
(2)
I(A)=
1,Aistrue,
0,Aisfalse.
Approximationanddetailscoeffici
ents,withQ-shiftfilter:
(a)anoriginalimage;(b)a
pproximationcomponent;
(c)sixdirectionaldetails
components(magnitude)at
level2;(d)detailscompon
entsatlevel3
{
ThisLBPhistogramcontainsinfor
mationaboutthe
distributionofthelocalmicro-patt
erns,suchasedges,spotsand
flatareas,overthewhol
eimage,soitcanbeusedto
statisticallydescribeima
gecharacteristics.
Aszeroingallthelowfrequencyc
oefficientsandpreserving
thehighfrequencycoeffi
cients,wecangetthereconstructed
imageFig.8(b)by
employinginverseofDT-CWT.Figure
8(a)isthebasicL
BPhistogramofFig.7(a),whichismapped
ontoFig.8(b
),andFig.8(c)istheresultedimagebymeans
ofhistog
ramspecification.Figure8(d)isthefusionimageof
F
ig.8(b)andFig.8(c)byapplyingDT-CWTfusionmethod.
2.2Facialexpressionfeatrueextraction
Automatic
facialexpressionrecognitioninvolvestwovital
asp
ects:facialrepresentationandclassifierdesign.Facia
l
representationistoderiveasetoffeaturesfromori
ginalface
imagestoeffectivelyrepresentfaces.The
optimalfeatures
shouldminimizewithin-classvaria
tionsofexpressionswhile
maximizebetweenclassvar
iations.Ifinadequatefeaturesare
used,eventhebes
tclassifiercouldfailtoachieveaccurate
recogniti
on.Inthispaperafeatureextractionalgorithmbased
ontheDT-CWTandLBPhistogramsisproposed.Thewhole
processoffeatureextractionalgorithmiscarriedoutasf
ollows.
(1)Multi-levelDT-CWTisemployedtoconvert
thegray-
scalefacialimageIintotwocomponents,low
frequency(cAj)
74
JournalofDonghuaUni
versity(Eng.Ed.)Vol.29,No.1(2012)
recognitionpe
rformanceandfeaturevectorlength.Thusface
images
aretotallydividedinto32(1+2+4+9+16=32)
regions.
TheLBPfeaturesextractedfromeachsub-
regionare
normalizedaccordingtothesub-regionsiz
esandthen
concatenatedintoasinglefeaturehistogr
amwiththelengthof
416(32×26=416).
3
Fig.8
Imagefusion:(a)thebasicLBPhistogramofFig.7(a);
(b)theimagereconstructedbyhighfrequencycoefficient
s;
(c)resultedimagebymeansofhistogramspecificat
ion;
(d)fusedimageforfeatureextraction
Exper
imentalResults
Thecharacteristicvectorsareextra
ctedusingthemulti-level
LBPhistogramsoftheprepr
ocessedimageFig.8(d).AnLBP
histogramcomputedove
rthewholefaceimageencodesonlythe
occurrencesoft
hemicro-patternswithoutanyindicationabout
their
locations.Toalsoconsidershapeinformationoffacialexpression,faceimagesareequallydividedintosmallr
egions
R
0
,R
1
,…,R
m
toextr
actLBPhistograms(asshowninFig.9
(a)).TheLBPfeat
uresextractedfromeachsub-regionare
Forexperimen
tsweusedimagesfromoneofthepopular
databasesforf
acialexpressionrecognition,theJAFFEdatabase.
Th
eJAFFEdatabasecontains213imagesofsevenfacial
ex
pressions(6basicfacialexpressionsand1neutral)posed
by
10Japanesefemalemodels.Foreachwoman,thereare
2-4
imagesofeveryfacialexpression.EachimageisaT
IFFimage
withsize256×256and256graylevels.Allthe
imagesare
takenagainstahomogeneousbackgroundwit
hthesubjectsin
frontalposition.Someimagesof6bas
icfacialexpressions
(anger,disgust,fear,joy,sad
ness,andsurprise)areshownin
Fig.10andcorrespond
ingimagesprocessedbyQ-shiftDT-CWT
inFig.11.
Fig.9ThenormalizedLBPhistograms:(a)sub-regionsatea
chlevel,
riu2
(b)labeledimageofmicro-pattern
s,(c)LBP
24,3
normalized
histogramsof9sub
-regions,(d)concatenatedhistogramserved
asfeatu
reforrecognition
concatenatedintoasingle,spatia
llyenhancedfeature
histogram.Theextractedfeatur
ehistogramrepresentsthelocal
textureandglobalsh
apeoffaceimages.Someparameterscan
beoptimizedfo
rbetterfeatureextraction.OneistheLBP
operator,a
ndtheotheristhenumberofregionsdivided.We
riu2selecttheLBP
24,3
operator,bywhichwedefine
26rotation
invariantmicropatterns,anddividethef
aceimagesinto1,2,
4,9,16regionsrespectively,giv
ingagoodtrade-offbetween
Thecorrectlabelsofthet
rainingsamplesarevery
importantforrecognition.A
sseveralexpressionimagesare
markedwronginthedat
abase,wecorrectthembeforeour
experiment.Wedodif
ferentexperimentsusingdifferent
characteristics
andtwomatchingmethodstoanalyzetheface
recogniti
onperformances.ThecomposedLBPhistogramsof32
mul
ti-scalesub-regionsareservedasfeaturesandthose
histogramsofsub-regionsinvolvingmouthoreyesaresetb
igger
weight.Thiscanimprovetherecognitionaccura
cyeffectively.
Weadoptedtemplatematchingtoclass
ifyfacialexpressionsand
employedtwomethodsforsi
milaritymeasure.
(1)Foreachexpressionofonesubje
ct,wetestthreetimes
inturnandtaketheaveragereco
gnitionrateasthefinalresult.
Wetakeoneofthefaci
alexpressionimagesasatestsampleand
therestastra
iningoneseverytime.Thereisnooverlapbetween
thet
rainingandtestimages.WeemployEuropeandistance
m
easurementforrecognition.
JournalofDongh
uaUniversity(Eng.Ed.)Vol.29,No.1(2012)
75
(2
)Intraining,thehistogramsofexpressionimagesina
givenclassareaveragedtogenerateatemplateforthiscla
ss.A
nearest-neighborclassifierisusedasdissimil
aritymetricfor
comparingatargetfacehistogramtot
hemodelhistogram.
Resultsobtainedfromthediffere
ntexperimentsare
presentedinTable1.Inthetablewe
canseehowdifferent
featuresandsimilaritymeasure
saffectrecognitionrate.
Table1Recognitionrateso
btained
Recognitionrate
(6expressions)
65
%
84.5%
89%
100%
Features
matchingm
ethod
LBPof16same-scalesub-regionsdistance
b
etweentestingsampleandtrainingsamples
LBPof32mu
lti-scalesub-regionsdistance
betweentestingsamp
leandtrainingsamples
WeigtedLBPof32multi-
scalesub-regions
distancebetweentestandtraining
samples
WeigtedLBPof32multi-scalesub-regions
distancebetweentestsampleandclasscentre
weused
atemplatematchingtoclassifyfacialexpressionsforits
simplicity.Comparedtherecognitionresultsobtain
edwithour
facialfeaturestothoseobtainedwithPCAa
ndLDAapproaches
(76.3%and69.5%forPCAandLDA,resp
ectively),the
methodproposedinthispaperclearlys
howedthebetter
performanceinrecognitionefficien
cyandaccuracy.
References
[1]MehrabianA.Sile
ntMessages[M].WadsworthPublishing
1971.Company,
Inc.,Belmont,CA,
[2]EkmanP,FriensenW.FacialActi
onCodingSystem(FACS):a
TechniquefortheMeasureme
ntofFacialMovement[M].Palo
Alto:ConsultingPsych
ologistsPress,1978.
[3]EkmanP,FriensenW.Unmaski
ngtheFace[M].PaloAlto:
ConsultingPsychologistsP
ress,1984.
[4]PanticM,RothkrantzLJM.FacialActio
nRecognitionforFacial
.IEEEExpressionAnalysisfr
omStaticFaceImages[J]
TransactionsonSystems,Man
,andCybernetics,2004,34(3):
1449-1461.
[5]Pa
nticM,RothkrantzL.AutomaticAnalysisofFacial
Exp
ressions:theStateofArt[J].IEEETransactionsonPatter
n
2000,22(12):1424-1445.AnalysisandMachineIntel
ligence,
[6]KingsburyNG.TheDual-TreeComplexWave
letTransform:a
NewEfficientToolforImageRestorat
ionandEnhancement[C].
ProceedingsinEUSIPCO98,Rh
odes,Greece,1998:319-322.
[7]KingsburyNG.Comple
xWaveletsforShiftInvariantAnalysis
.JournalofAp
pliedandandFilteringofSignals[J]
ComputationalH
armonicAnalysis,2001,10(3):234-253.
[8]OjalaT,P
ietikinenM,HarwoodD.AComparativeStudyof
Textur
eMeasureswithClassificationBasedonFeature
Distr
ibutions[J].PatternRecognition,1996,29(1):51-59.[9]PietikinenM,OjalaT,XuZ.Rotation-InvariantTex
ture
ClassificationUsingFeatureDistributions[J]
.Pattern
Recognition,2000,33(1):43-52.
[10]O
jalaT,PietikinenM,MenpT.MultiresolutionGray-Sc
ale
andRotationInvariantTextureClassificationwi
thLocalBinary
Patterns[J].IEEETransactionsonPat
ternAnalysisandMachine
2002,24(7):971-987.Intel
ligence,
[11]AhonenT,HadidA,PietikinenM.FaceRe
cognitionwithLocal
BinaryPatterns[C].Proceeding
softhe8thEuropeanConference
onComputerVision,Pr
ague,TheCzechRepublic,2004:469-
481.
[12]Moo
reS,BowdenR.LocalBinaryPatternsforMulti-viewFacial
ExpressionRecognition[J].ComputerVisionandImag
e
Understanding,2011,115(4):541-558.
4Conclu
sions
InthispaperweanalyzedthebasicprincipleofD
T-CWT
andLBPs.AnovelmethodbasedonQ-shiftDT-CWTa
nd
rotationinvariantLBPwasproposedwhichwaseffic
ientfor
recognition.Q-shiftDT-CWTwasusedtoresol
veillumination
variationinexpressionverificatio
n.RotationinvariantLBPs
werecapableofdescribing
textureandshapeinformation.To
enhancethefacialr
epresentation,wedividedthepreprocessed
facialim
agesintoseveralsub-regionsofdifferentscales.The
LBPhistogramsofsub-regionswerenormalizeddepending
on
theregionsizesandgaveadifferentweightdependi
ngonthe
roleofthegivenregionsinrecognition.Fori
nstance,sincethe
mouthregionswereimportantforre
cognition,ahighweight
couldbeattributedtothecor
respondingLBPhistograms.The
combinedhistogramst
hatcouldeffectivelydescribefacial
expressionmic
ro-patternswereservedasfeaturesfor
recognition.
Ourmaingoalinthispaperwastoshowthehigh
discrimi
nativepoweroftheproposedfacialfeatures.Therefore,<
/p>