effect sizes总结及操作指南-zhaomf

温柔似野鬼°
793次浏览
2020年07月30日 14:25
最佳经验
本文由作者推荐

阅读时间-小学六年级毕业试卷



EFFECT SIZES
效应量的选用与分析
参考文献:
Cohen J (1988)“Statistical power analysis for the behavioral sciences” . New Jersey:
Lawrenced Erlbaum Associates, Inc. Publishers. pp 283-286
Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of
pediatric psychology, jsp004.
Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and
misreporting of effect size in communication research. Human Communication
Research, 28(4), 612-625.
Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for
effect sizes. Psychology in the Schools, 44, 423–432.
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative
science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4.
郑昊敏, 温忠麟, & 吴艳. (2011). 心理学常用效应量的选用与分析.
心理科学进

, 19(012), 1868-1878
1
.
Effect Size 20141113 minfang_zhao@ ZhaoMF


What are effect sizes?

There are many different types of ESs but those
discussed here provide information about the
magnitude and direction of the difference between
two groups or the relationship between two variables.
An ES can be a difference between means, a
percentage, or a correlation (Vacha-Hasse &
Thompson, 2004).
It allows us to move beyond the simplistic ‗Does it
work or not?‘ to the far more sophisticated

How
well does it work in a range of contexts
?’

2

Effect Size 20141113 ZhaoMF


Types of Effect Sizes
Mean Differences between Groups
– Cohen‘s d
– Hedges‘ g


CorrelationRegression
–Pearson‘s r and R
2
–Cohen‘s f
2


Contingency tables
–Odds Ratio

3 Effect Size 20141113 ZhaoMF


Types of Effect Sizes
ANOVA or GLMs
–Eta-squared
–Omega squared
–Intraclass correlation (rater equality)


Chi-square tests
–Phi(2 binary variables)
–Cramer‘s Phi or V (categorical variables)

4 Effect Size 20141113 ZhaoMF


Cohen’s d
– Standardizes ES of the difference between two means
– d ranges from -∞to +∞
– interpretation: the difference between the mean values
is ―d‖ standard deviations, Cohen (1988)
5 Effect Size 20141113 ZhaoMF


Cohen’s d

d值总是作为一种标准的平均数差异的估计,与当前样
本无关。

(Cohen, 1992)
6 Effect Size 20141113 ZhaoMF


Hedge’s g & Glass’s ∆
Correction
Special Cases
positively biased
estimators of an ES when
– For small sample sizes use Hedge‘s g
sample sizes are small.

Practically speaking, the
correction amounts to a

4% reduction in effect
when the total sample

size is 20 and around 2%
when N=50

(Hedges & Olkin, 1985).
– For unequal group variances, use Glass‘s ∆
• uses sample SD of the control group only so that effect
sizes would not differ under equal means and unequal
variances(Rosenthal, 1991).

7
校正部分,不同的研究可能使用的
校正部分不一样,可以参考相关领
Effect Size 20141113 ZhaoMF
域研究的校正方式。


Pearson’s r





– used in the context of correlation…measuring association
between 2 continuous variables.
– Interpretation: For every 1-unit standard deviation change
in x, there is a ―r-unit‖ standard deviation change in y.
8 Effect Size 20141113 ZhaoMF


Odds Ratio



– Used in the context of binarycategorical outcomes
– Odds of being in one group (eg. success) relative to the
odds of being in a different group (eg. failure)
– OR ranges from 0 to ∞
– OR>1 indicates an increase in odds relative to the
reference group
– OR < 1 indicates a decrease in odds relative to the
reference group
9 Effect Size 20141113 ZhaoMF


Phi



– Used for crosstabs or for chi-square tests (equality of
proportions or tests of independence between 2 binary
variables)… = 0 indicates independence
– Phi are related to correlation and Cohen‘s d (for 2 binary
variables)
– Interpreted like Pearson‘s r and R
10 Effect Size 20141113 ZhaoMF


Cramer’s Phi or V



– Cramer‘s Phi (Cramer‘s V) can be used with categorical
variables with more than 2 categories (m >2 ) (R x C tables)
– measures the inter-correlation of the variables, but is
biased since it increases with the number of cells. Increase
in R and C will indicate a strong association, which is just an
artifact of the type of variable used.
11 Effect Size 20141113 ZhaoMF


2
Pearson’s R

– used in the context of regression…measuring how well a
regression line fits to a given data regression line fits to a
given data
– R : linear association between 2 continuous variables
– R
2
:(Coefficient of Determination) –proportion of shared
variability between 2 or more variables
– Interpretation: ―R
2
*100%‖ is percent variance of the
outcome y that can be explained by the linear regression
model (i.e. indicates how well the linear regression line fits
the data)
12 Effect Size 20141113 ZhaoMF


2
Cohen’s f



– Used in multiple linear regression,
– Standardized effect size is the proportion of explained
variance over unexplained variance
– Estimate is biased and overestimates the effect size for
ANOVA (unbiased estimate is Omega- Squared)
13 Effect Size 20141113 ZhaoMF


2
Eta Squared(η)
and partial Eta Squared(η
p
2
)




– Used with ANOVA family and GLMs
– Measures the degree of association in the sample
– Partial eta-squared is the proportion of the total variability
attributable to a given factor.
– Interpretation: ―η
2
*100%‖ is percent of the variance in y
explained by the variance in x (similar to the R
2
interpretation for
linear regression (Dattalo,2008))
– η
2
is biased and on average overestimates the variance
explained in the population, but decreases as the sample size gets
larger.
– Caution!: SPSS show ONLY η
p
2
(偏eta 方)

关于两者区别参考:Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication
research. Human Communication Research, 28(4), 612-625.

14 Effect Size 20141113 ZhaoMF



Omega Squared




– Used with ANOVA family and GLMs (small sample size)
– Estimates the proportion of variance in the population
that is explained by the treatment .
– is always smaller than η
2
or η
p
2
, since measures
the population variance and Eta measures the sample
variance.
15 Effect Size 20141113 ZhaoMF


Table of interpretation for different

effect sizes(Judging ES in Context!)




16 Effect Size 20141113 ZhaoMF
Cohen (1988)


Reporting Guidelines and Trends
What to report (APA, 2010):
– Type of effect size
– Value of the effect size
– Interpretation of the effect size
– Practical significance of the effect size

17 Effect Size 20141113 ZhaoMF



Software

Calculate effect size

– online calculator

http:

http:ct_#anova
– Statistical softwares SPSS
show a example tutorial on how calculate Cohen's d and Partial
Eta Squared using SPSS
https:ch?v=UVK1P7HthzU
— G-power(可以计算预实验后计算可能需要的样本量)
http:
— Power and Sample Size Programs
http:
18 Effect Size 20141113 ZhaoMF


常用设计的效应量使用参考指南
19 Effect Size 20141113 ZhaoMF


双因素重复测量设计





击选下的< Repeated
Measures>命令。
在< Repeated Measures Define Factor(s)>对话框中,在Subject Factor Name>右侧输入被试内因素‚A‖,在Levels>右侧输入A的水平数如,‚3‖,单击按钮;在
右侧输入被试内因素‚B‖,在
右侧 输入B的水平数如,‚2‖,单击
按钮。(两个以上被试内因素,同理,add)
单击按扭,在对话框中,将
指定为(要注意顺
序,如A1B2与其后的[1,2]一致)。(若有被试间 因素此处可以
将该因素指定为Between-subjects factors)
单击按钮,击选,其他指标根
据需要选取。单击按钮
单击按钮。
20 Effect Size 20141113 ZhaoMF


SPSS输出结果
输出为偏eta方,根据需要根据公式计算eta方
效应量参考0.01(small),0.06(med),0.14(large)
21 Effect Size 20141113 ZhaoMF


单因素多水平设计
SPSS在One way ANOVA选项中没有效应量 估计,因此如
果想计算效应量要击选Modes>下的< Univariate>命令(只一个因变量)。


因变量指定到;某因素指定到factors>(其他根据需要选取);
单击按钮,击选,其他指
标根据需要选取。单击按钮。 单击按钮。


单因素多水平设计偏eta方以及independent t test 计算cohen‘s d
参考视频教学: https:ch?v=UVK1P7HthzU



22

Effect Size 20141113 ZhaoMF


配对组内设计Paired-Samples T test


被试内的单因素双水平设计--SPSS选择Paired-Samples T
test;SPSS运行结果中找到t值;
利用t值以及样本量n计算dz效应值

Rosenthal (1991)
23 Effect Size 20141113 ZhaoMF

宋词全集-电工技术总结


介绍一件艺术品-专业学习经历怎么写


河南大专分数线-小学数学教师个人工作总结


愉快的星期天-普利茅斯大学排名


苏州市人事考试中心-客中客入画中画


莱芜一中-留学文书


瘾君子英文-川北医学院分数线


湖南炎陵县-校园小品