犯罪模型
pets3成绩查询-承诺书
Team#13059
Forofficeuseonly
T1
T2<
br>T3
T4
________________
_______________
_
________________
________________
TeamC
ontrolNumber
Page10f14
Forofficeuseonly
F
1
F2
F3
F4
________________
_______
_________
________________
________________<
br>13059
ProblemChosen
C
Summary
2012M
athematicalContestinModeling(MCM)SummarySheet
I
nthispaper,webuildamodelforcrimebustingandunceasin
glyoptimizeit.
Andthepromotedmodelcanbeusedtoid
entify,prioritize,andcategorizesimilar
nodesina
networkdatabaseofanytype.
ForRequirement1,thepo
ssibilitiesof7knowncriminalsand8innocentsbeing
ingtothecombinedmethodoftypeof
speaker---
thetypeoflistener---messagetopicninerelativesituat
ionsaresetup,
what’smoretheweightforeachsituati
onintermsofitsprobabilityofmakinga
nthismethoda
ndtheweight,the
hat,we
prioritizethe83nodesb
ylikelihoodofbeingpartoftheconspiracyandgivemetric
s
hthisway,thefactis
revealedthatoneofthethr
eeseniormanagers,Dolores,isaconspirator,Jeromeishighlylikelyaconspiratorwithoutsufficientevidenc
e.
ForRequirement2,
twocluesareutilizedtomod
ifythemodelforcrimebusting,whichleadstotheresultthatthenon-suspiciousClaireandReniinthesortingre
sultofRequirement1turnout
tobesuspiciousinRequi
rement2.
ForRequirement3,thesemanticnetworkanal
ysismethodisappliedtooptimize
istechnology,wedi
videthe
makea
83×83
weightmatrixAbasedont
hemessagetrafficofthe83individualsandgive
LABso
ftwareisusedtosolvethealgorithmandanew
sortingo
fthe83nodes'
findthepromotedmodelmakespeoplelik
eFranklin,MarianandKatherinedifficult
tobeatlar
ge.
AsforRequirement4,wesummarizeandlistitsthre
equestionsandwefocuson
theanalysisofthethirdque
stion(thepromotionofourmodelinotherareas).This
modelistestedtofindouttheinfectedanddiseasedcellsi
nasmallimaginaryvirus
infectionnetwork.
Keyw
ords:combination;weight;semanticnetworkanalysis;vi
rusinfectionnetwork
Team#13059Page20f14<
br>CONTENT
uction..............................
..................................................
..............................3
ementoftheProbl
em................................................
.................................3
ssumption...
..................................................
..............................................4
tionsandNotations
............................
..................................................
.........
4
................................
..................................................
....................................5
5.1Proble
manalysis,modelbuildingandsolvingofRequirement1...
..................5
5.1.1AnalysisofRequirement1
..................................................
................5
5.1.2ModelbuildingofRequireme
nt1...............................................
........5
5.1.3Judgingmetricsofwhetheraworkeris
partoftheconspiracy
....
6
5.2Problemanal
ysis,modelbuildingandsolvingofRequirement2........
.............7
5.2.1AnalysisofRequirement2.....
..................................................
...........7
5.2.2ModelbuildingandsolvingofRequ
irement2..................................7
5.2
.3Analysisofthesortingresult......................
........................................8
5.3Pr
oblemanalysis,modelbuildingandsolvingofRequirement
3.....................8
5.3.1AnalysisofRequirem
ent3..............................................
....................8
5.3.2Modelbuildingandsolv
ingofRequirement3.................................
9
5.3.3Analysisoftheresult.....................
..................................................
..10
5.4Problemanalysis,modelbuildingandsolving
ofRequirement4...................11
5.4.1Analys
isofRequirement4
..............................
..................................
11
5.4.2M
odelbuildingandsolvingofRequirement4..............
.................11
luationofthemodel..........
..................................................
....................13
Reference...............
..................................................
..................................................
14
Team#13059Page30f14
Astrongnetwork
analysismodel
uction
Withthedevelopmentofthe
societyandenhancementinpeople'livingstandards,
alsareillegalandtheyshouldbe
r,therearealwaysma
nycriminalstryingvariouswaysto
obtaincommutatio
norevenatlarge,what'smore,alotofinnocentshavebeen<
br>framed.
Ofcourse,thesephenomena'nehand,thecriminalsarepeoplefromallwalksoflife,besides,the
technologiestheyusearemore
therhand,itisvery
complicatedandnoteasywhenmanypeopleareinvolvedino
necaseandthereare
tremendousamountofinformation
thatinvestigationorganhavetofindoutthemost
favo
rableevidencetogetthemostaccurateresult.
But,in
ordertosafeguardpeople'spersonalsafety,measuresmus
tbetakento
,inthispaper,weareaimedtosolvethispr
oblemand
optimizeourmodelunceasinglytobewidelyu
sedinothersimilarcases.
ementoftheProblem
Yo
urorganization,theIntergalacticCrimeModelers(ICM),
isinvestigatinga
estigatorsarehighlyconfidentth
eyknow
severalmembersoftheconspiracy,buthopetoi
dentifytheothermembersandthe
pervisorhasputtoge
theranetwork‐like
databaseforthecurrentcase,eof
securityandprivacyissues,yourteamwillnothavedi
recttranscriptsofallthe
dataaregivenintheattach
edspreadsheetfiles:,
,.
Thisproblemhas4requi
rements,theRequirement1asksustobuildamodeland
a
lgorithmtoprioritizethe83nodesbylikelihoodofbeingp
artoftheconspiracyand
,Delores,andGretchenareth
esenior
dbeveryhelpfultoknowifanyofthemare
u
irement2ishowtheprioritylistwouldchangeif
newin
formationcomestolightthatTopic1isalsoconnectedtoth
econspiracyand
uirement3asksustousethesemantic<
br>uirement4pointsoutthat
yoursupervisorspecifi
callyaskedyoutoincludeadiscussiononhowmorethorough
network,semantic,andtextanalysesofthemessageco
ntentscouldhelpwithyour
artofyourreporttoher(yo
ursupervisor),
Team#13059Page40f14
ex
plainthenetworkmodelingtechniquesyouhaveusedandwhy
andhowtheycanbe
usedtoidentify,prioritize,andca
tegorizesimilarnodesinanetworkdatabaseofany
typ
e,tance,couldyourmethod
findtheinfectedordiseas
edcellsinabiologicalnetworkwhereyouhadvariouskinds
ofimageorchemicaldataforthenodesindicatinginfe
ctionprobabilitiesandalready
identifiedsomeinfe
ctednodes?
ssumption
Inthispaper,wemakethefo
llowingassumptionsabouttheanalysisofthefour
Req
uirementsthattheproblemgiveus.
•
Inadditiont
osevenknownoffendersandeightknowninnocents,therema
ining68
employeesareallidentifiedassuspects.
•
Ifthetotalweightofwhichasuspectisaconspirato
risbiggerthan1,wethinkhe
orshemustbeacriminalan
djusttakeitstotalweightas1.
•
Thereareonlyin
fectednodesandunknownnodes(unknowncells)inourbiolo
gical
networkmodel.
•
Allnormalcells'prob
abilitiesofbeinginfectedwhenithasdirectcontactwith
the
virusareequal.
•
Noindirectinfectionb
etweenthecells.
tionsandNotations
•
C
i
:theweightofwhichnumber
i
suspectisacon
spirator
(0<
C
i
<1)
.
•
P
i
:theprobabilityofwhichnumber
i
suspect
isaconspirator
(0<
P
i
<1)
.
•p
j
:thepossibilityofwhichnumber
j
u
nknowncellisinfected
(0<
p
j
<1)
.<
br>•
t
:thepossibilityofwhichanormalcellisin
fectedwhenithasadirectcontact
withvirus
(0<<
br>t
<1)
.
•
a
(
i
,
j
)
:the
i
rowand
j
columnnumericalva
lueofmatrixA.
•
A
n
×
n
:
n×
n
matrixA.
Team#13059Page50f14
5.1Problemanalysis,modelbuildingandsolving
ofRequirement1
5.1.1AnalysisofRequirement1
T
hecasegivenbytheproblemhasafairlycomplexnetworkoft
hemessages,
,for
Requirement1,,,,
weanaly
sethecontactnumberoftimesofeachsuspectandcriminals
orsuspicious
messagetopics(topic7,topic11,topic
13),andmakealistofallcombinationsof
suspectswit
hinnocents,criminals,ingto
analysisofactualsitu
ation,wesettheweightforeachkindofcombination,then<
br>respectivelycalculateseachsuspect'stotalweightt
hatheorsheisoneofthe
conspirators(thatistheposs
ibilitythatheorsheisacriminal).Finally,weprioritiz
e
the83nodesbylikelihoodofbeingpartoftheconspir
acy(7knowncriminals'
probabilityare1,8innocents
'probabilityare0),andsetthemetricsforjudging
wh
etherasuspectisoneoftheconspirators.
Therearetw
oElsie(No.7and37)inthiscase,andourmodel'scomputedr
esult
showsthattheprobabilityofElsieinNo.7and37
arecriminalsare:1and0.4.
Therefore,weconcludeth
attheknowncriminalnamedElsiegivenbythetitleisNo.7Elise,insteadofNo.37Elise.
5.1.2Modelbuildin
gofRequirement1
Throughtheanalysisoftheproblem,
wemakecombinationsofcontactsituation
ofeachs
makeourmodelmoreintuitivelyvisual,Table1providesa
llthecombinationsand
weights.
Table1:Allcomb
inationsanditsweight
Thetypeofspeaker
Suspec
t
Innocents
Innocents
Suspect
Suspect<
br>Suspect
Criminal
Criminal
Thetypeoflis
tener
Innocents
Suspect
Suspect
Innoce
nts
Criminal
Criminal
Suspect
Suspect<
br>Messagetopic
Non-suspicious
Non-
suspicious
Suspicious
Suspicious
Non-
suspicious
Suspicious
Suspicious
Non-susp
icious
Theweight
0
0
0.1
0.1
0.1
0.2
0.2
0.1
Team#13059
Susp
ectSuspectSuspicious
Page60f14
0.1
Note:w
eightincrease0.1whenthereisanadditionalexchangeofa
suspicious
messagetopic.
Accordingtothesetti
ngsofthecombinationsandtheweightsintheabovetable,<
br>wecalculatethetotalweightofthe68suspects,whichi
sitsprobabilitythatthe
,
completesortingresu
ltisinaccessory
.
Table2:sortingbyeachworker
's
likelihoodofbeingpartoftheconspiracy
Sort
ingNode#Name
Theprobabilitythat
heisaconspir
ator
1
1
1
1
1
1
1
0.9
0.8
0.7
0.6
0.6
0.6
0.5
0.5
.
..
thisformatrepresent
suspect
thisformat
represent
knowninnocentman
thisformatreprese
nt
seniormanager
Notes
thisformatrepresen
t
knowncriminal
1
2
3
4
5
67
8
9
10
11
12
13
14
15<
br>...
7
18
21
43
49
54
67
81
10
20
3
16
34
4
13
...
Elsie
Jean
Alex
Paul
Harvey
Ulf
Yao
Seeni
Dolores
Crystal
SherriJerome
Jerome
Gretchen
Marion
...
5.1.3Judgingmetricsofwhetheraworkerispartofthecon
spiracy
Accordingtoanalysisofcomputationalproce
ss,welistthejudgingmetricsof
whetherasuspectisp
artoftheconspiracyasfollowed.
Herewetaketheprob
abilityofthesuspectbeingoneoftheconspiratorsas
Team#13059
P
(0≤
P
≤1)
.
Page70f14
•
If
P
≥0.8
,wethinkheors
heisoneoftheconspirators.
•
If
0.6≤
P<
br>≤0.7
,wehighlydoubtheisoneoftheconspirators.
•
If
0.4≤
P
≤0.5
,wemoderatelys
uspectedthatheisoneoftheconspirators.
•
If0.2≤
P
≤0.3
,wemildlysuspectedheisoneof
theconspirators.
•
If
P
≤0.1
,webel
ieveheisinnocent.
Accordingtothesemetrics,wecar
rythejudgingmetricsonthiscompany's
seniormanage
rJerome,Dolores,thattheprobabilityofJerome,
Dol
ores,andGretchenrespectivelyare0.6,0.8,orewehaveth
efull
reasontothinkthatDoloresisaplotter,andwea
lsocannotgetridofthesuspicion
thatJeromeandGret
chenarecriminals.
2
Problemanalysis,modelbui
ldingandsolvingofRequirement
2
5.5.2Requirem
ent2
5.2.1AnalysisofRequirement2
Comparingwi
thRequirement1,
thesetwocluesare:Topic1isasuspi
ciousmessagetopicandChrisisoneofthe
lusethesame
modelinRequirement1tosolvethisquestion.
5.2.2Mo
delbuildingandsolvingofRequirement2
Wecalculate
theprobabilityofthe68suspectsaccordingtothemodelan
d
solvingprocessinRequirement1,thenweprioritize
the83workers
bylikelihoodof
beingpartoftheco
nspiracy(
8knowncriminals'probabilityare1,7inno
cents'
probabilityare0).completesortingresultis
in
.
Table3:sortingbyeachworker's
likelih
oodofbeingpartoftheconspiracy
Theprobability
NamethatheisaNotes
conspirator
thisformatre
presentknown
Chris1
criminal
Elsie1
Je
an
Alex
Paul
1
1
1thisformatreprese
ntknown
thisformatrepresentsenior
manager
SortingNode#
1
2
3
4
5
0
718
21
43
Team#13059Page80f14
innocentman
6
7
8
9
10
11
12<
br>13
14
15
...
49
54
67
3
10
81
20
16
17
34
...
Harvey
Ulf
Yao
Sherri
Dolores
Seeni
Cr
ystal
Jerome
Neal
Jerome
...
1
1
1
1
0.9
0.9
0.8
0.7
0.7
0
.7
...
thisformatrepresentsuspect
5.2.3An
alysisofthesortingresult
,wefindthat
number3
suspectSherri'sprobabilitychangefrom0.6to1,sowehav
ethefullreason
probabilityofnumber10seniormanag
er
ingtothejudgingmetricsgiveninRequirement1,we
ghtheprobabilityofnumber16
seniormanagerJen
omeincreaseto0.7,wedonothavethefullreasontoconfirm
that
ber25Claireandnumber82Renichangefromtheori
ginal
non-suspicioustomildlysuspicious.
5.3P
roblemanalysis,modelbuildingandsolvingofRequiremen
t3
5.3.1AnalysisofRequirement3
Afterlearning
andunderstandingsemanticnetworkanalysis,weuseitto<
br>optimizeourmodelonthebasisofconditionsgivenbyRe
quirement1and
y,,
then,wehavethemdividedinto
fourcategoriesandsettheweightsaccordingtotheir
degreeofcorrelationwithsuspicioustopics.
Requir
ement2givesustwoclues,andinRequirement3'ssolvingpr
ocess,westill
,webelievethatthereareeightknown<
br>criminals(thepossibilityofbeingoneoftheconspira
torsis1)andsevenknown
innocents(thepossibilityo
fbeingoneoftheconspiratorsis0),andtopic1isa
ini
shingthesesettings,thecomputedresultshows
thatm
anysuspects'totalweightarebiggerthan1,inordertofac
ilitatethejudgment,
here,wehaveallsuspects'tota
lweightdividedbyN(Nrepresentsthebiggestnumber
o
f68totalweight)tomakeallofthembetween0and1,andthis
totalweightis
Team#13059
exactlythepr
obabilityofthesuspectofbeingaconspirator.
5.3.2
ModelbuildingandsolvingofRequirement3
Page90f14
Weknowthattheconspiracyistakingplacetoembezzle
fundsfromthe
companyanduseinternetfraudtostealf
undsfromcreditcardsofpeoplewhodo
arryontheclass
ificationtotheremaining11
messagetopicsandexcep
t4knownsuspiciousones:Topic1,7,11,and13,andset
theirweights.
Throughanalysistotheconspiracyand
15messagetopics,wefindoutthat
2andTopic12are
conspiracyisrelatedtocomputernetworksecurity,
thus,topicsaboutcomputersecurityshouldalsobetakens
eriously,andwecansee
4stressesthatwereallyneedt
o
noticetheintenseargumentamongAlex,eabove,weli
st
Topic2,4,5,12,and15asthesecondkindoftopic,ic
opic3,14,8,
and10,wethinkthattheyhavenothin
gtodowiththeconspiracy,soitsweightis0.
•
Sol
vingprocessofthemodel
Accordingtoanalysisoftheq
uestion,weestablisha
83×83
matrixA(the
).
Here
a
(
i
,
j
),
i
<
j
standforthesumofweightsof
alltopicsinvolved
inthewordsnumber
i
suspectsaidtonumber
j<
br>suspect,incontrast
and
a
(
j
,i
),
i
<
j
standforthesumofweight
sofalltopicsinvolvedinthewords
number
j
s
uspectsaidtonumber
i
suspect.
•
Algori
thm:
thesumofallthedatainthe
thesumofallthed
atainthe
III
.
C
i
n
(1≤
n
≤83)
rowas
a
.
n
(1≤
n
≤83)<
br>columnas
b
.
=
a
+
b
,(1≤<
br>i
≤83)
,itistheweightofwhichnumber
isuspectisa
conspirator.
IV
.
P
i<
br>=
C
i
,(1≤
i
≤83)
,itisthepro
babilityofwhichnumber
i
max
{
C
i}
isaconspirator.
WeusetheMATLABsoftwareto
realizethisalgorithm(programmingisin
AccessaryR
equirement3.m),andsorttheobtainedresultsinEXCEL(we
stillassume
Team#13059Page100f14
that
theprobabilityofthe8knowncriminalsis1,andtheprobab
ilityofthe7known
innocentsis0).Partofthesorting
isinTable4,andthecompletesortingresultisin
.
Table4:sortingbyeachworker's
likelihoodofbeing
partoftheconspiracy
SortingNode#Name
Theprob
abilitythat
heisaconspirator
1
1
1
1
1
1
1
1
1
0.97058823529
0.8
8235294118
0.86764705882
0.79411764706
0.
79411764706
0.77941176471
...
thisformatr
epresent
suspect
thisformatrepresent
know
ninnocentman
thisformatrepresent
seniormanag
er
Notes
thisformatrepresent
knowncrimina
l
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
...
0
7<
br>18
21
43
49
54
67
3
32
15
10
17
34
22
...
Chris
Elsi
e
Jean
Alex
Paul
Harvey
Ulf
Yao<
br>Sherri
Gretchen
Julia
Dolores
Neal<
br>Jerome
Eric
...
5.3.3Analysisoftheresu
lt
ThroughanalysisofthesortingresultsinTable2,
Table3andTable4,wecan
confirmthatnumber3
suspectisaconspirator,besides,wefindoutthat,aftera
nalysis
ofspeech,theprobabilityofnumber24suspec
tFranklinofbeingaconspiratorraised
ingtojudging
metricsofmodelinRequirement1,wehighly
'smore,th
eprobabilityofnumber26
suspectMarianraisedfrom0
.1to0.441,andtheprobabilityofnumber42dsuspect
t
hattheimprovedmodelmakepeoplelike
Franklin,Mari
anandKatherinedifficulttobeatlarge.
Team
#13059Page110f14
5.4Problemanalysis,modelbuildi
ngandsolvingofRequirement4
5.4.1AnalysisofRequi
rement4
WethinkRequirement4givesus3questions:1
:Ithopesourmethodologywillcontributetosolvi
ngimportantcasesQuestion1
•
Question
arou
ndtheworld,especiallythosewithverylargedatabasesof
messagetraffic.
:
Discusshowmorethoroughnetw
ork,semantic,andtextanalysesofQuestion2:
•
Q
uestion2
themessagecontentscouldhelpwithourmode
landrecommendations,andexplain
thenetworkmodeli
ngtechniquesyouhaveusedandwhy.
:
on3:
•Question3
Wetaketurnstosolvethe3questionsandt
akethevirusinfectionprocessasan
,weassumethere<
br>isasmallviruspropagationenvironment,and
draw
outtheircontactnetworkdiagramwith
,wefigureoutt
ouch
numberoftimesofa
unknowncellandthevirus
intermsofthenetworkdiagram,and
figureouttotalprobabilityofeachunknowncellinaccordancewiththep
robabilityofbeinginfectedineach
y,wesortalltheu
nknowncellsbylikelihoodofbeinginfectedordiseasedce
llsto
findouttheunknowncellsthataremostlikelyto
beinfectedordiseasedcells.
5.4.2Modelbuildingan
dsolvingofRequirement4
•
Question1:
Forth
osewithverylargedatabasesofmessagetraffic,wefirstu
tilizethe
semanticnetworkanalysisandthetextanal
ysisinRequirement3toidentify
suspiciousdegreeof
eachtopic,anddividethesuspectedextentintoseveralle
vels,
ly,usingEXCELsoftwaretocountthe
amount
andthekindoftopicsinvolvedineverytwonodes,andmakea
large-scale
matrixsimilartothe83×y,figureout
a
(
i
,
j
)
in
thematrixinac
cordancewiththealgorithminRequirement3,andconverti
ttoa
n
×
n
large-scalematrix
A
n
×
n
.Thenwecangetthesuspecteddegreeofeac
hnode
hosenodeswhosetypeshave
beenknown,,wes
orttheremainingnodesinaccordance
withsuspectedd
egree,inthisway,wecandeterminewhoisthemostlikelyconspiratorintermsofthejudgingmetrics.
•
Q
uestion2:
InRequirement3,weutilizesemanticnetwo
rkanalysisandtextanalysis
technologytoanalysist
hecasetoenableustofigureoutwhichwordsaremostlikely
Team#13059Page120f14
tobecodewordsus
edbycriminalsintheircommunicationorwhichtopicsarec
losest
sprobabilityisexactlytheweightmentionedi
n
Requirement1,2,llhaveinfluenceonourmodelandgr
eatlypromoteitto
avoidsuchsituationsthatpeoplel
ikeCarolarefalselyaccusedandpeoplelikeInez
goun
punished.
•
Question3:
TosolveQuestion3,w
eassumethereisasmallviruspropagationenvironment,and
drawouttheircontactnetworkdiagram(inFigur
e1).
1
3
2
Unknown cell
Virus
1<
br>5
7
4
6
10
9
8
Figure1:Con
tactnetworkdiagramofvirusandunknowncells
Accord
ingtotheknownconditions,weassumetheprobabilitythat
anormalcell
isinfectedwhenithasdirectcontactwit
hvirusis
t
(0<
t
<1)
.Unknowncellnumbersare:1,2,3,4,6,andinfectednodesarenumber5,
7,8,9,hese
conditionsandthenetworkdiagram,wecar
ryoutcalculationsonalltheunknown
cellstogetthei
rinfectionprobability.
Here,wedefine
p
j<
br>(0<
p
j
<1)
astheprobabilitythatnum
ber
j
unknowncell
isinfected
(
j
=1,2,3,4,6)
.
Algorithmanalysis:Forthenumbe
r1unknowncell,itrespectivelyhascontactwith
<
br>Team#13059Page130f14
unknowncellsnumber2,3,a
nd5,becausethosewhohavecontactwithnumber2are
al
lunknowncells,5
isainfectednode,sotheprobabilit
ythatnumber5makesnumber1intoadiseased
cellis
t
.Asnumber3contactdirectlywiththeviralcells,t
hus,wecannotneglect
theeffectofnumber3onnumber1
,sotheprobabilitythatnumber5makesnumber1
intoad
iseasedcellis
t
×
p
3
.Inconclusion
,wegettheprobabilitythatnumber1is
infectedis
p
1
=
t
+
t
×
p
3
.The
probabilityoftheremainingfourunknowncellscan
be
figuredoutinaccordancewiththismethod.
Algorithm
:
⎧
p
1
=2
t
2
+
t
⎧
p
1
=
t
+
t
×
p
3
⎪
⎪
p
=
t
×
p
+
t
×
p
32
p
=2
t
+3
t
2132
⎪⎪
⎪⎪
⇒
⎨
p
3
=2
t
⎨
p
3
=
t
+
t
⎪
p
=
t
⎪
p
=
t
4
⎪⎪
4
⎪
⎪
⎩
p
6
=
t
+
t
⎩
p
6
=2
t
(1)
Note:robabilityvaluecomputedusingthismethodisb
iggerthan1,we
recordthisprobabilityvalueas1.
l3contactmuchwithinfectedcells,sotheeffectofunkno
wncell1
onitcannotbeneglected.
Finally,wesor
tthevaluesof
infectedordiseasedcells.
p
j
(
j
=1,2,3,4,6)
informula(1)tofindout
the
luationofthemodel
Strengths
Simplicit
y:Thismodelissimpleenoughthatitentailsasmallamount
of
tion,itiseasytobeconvertedintoanelectronicform,forexample,Matlab,tobevisuallydisplayedsoth
atnearlynomathematical
knowledgeisnecessarytoun
derstandthemodel.
:
Themodelusedinthisproble
mcouldbeeasilyExtensibility:
•
FlexibleandEx
tensibility
appliedtostudyotherissues.
•
Theuseoftheweight:Bysettingtheweight,wemakethecalc
ulationofcomplex
messagenetworkbecomesimple.
Weaknesses
•
Team#13059Page140f14
•
Assumptions:Simplifyingassumptionshadtobemad
einordertocreatea
solvablemodel.
•
Estima
ted
:
Becauseoftheuncertainties,somevaluesli
ketheweightusedinthe
calculationshadtobeestimat
ed.
Reference
[1]ArizonaStateUniversity(2010
,April2).OutofThisWorld:NewStudy
eDaily,.
12
Feb.2012.
[2]unityGenesSurvive:StudyImplicatesA
rms
eDaily,.12Feb.
2012.
[3]:.
[4]Gil,
EnricoMotta,dBenjamins,,editors,ISWC
2005,volum
e3729
[5]NetworkAnalysis:Methodsand
Applicat
ions,dge
UniversityPress,Cambridge,1edition,199
9.
[6]giesAreUs:AUnifiedModelofSocialNetworksan
d
ndaGil,EnricoMotta,dBenjamins,andMarkA.
Mu
sen,editors,ISWC2005,volume3729ofLNCS,pages522–536
,Berlin
Heidelberg,er-Verlag.
[7]tedatDagstu
hl
seminar03361:AlgorithmicAspectsofLargeandCom
plexNetworks,
AugustSeptember2003.
[8]udinal
non-
euclideannetworks:
Networks,7:287–322,1985.