犯罪模型

别妄想泡我
929次浏览
2020年07月30日 14:51
最佳经验
本文由作者推荐

pets3成绩查询-承诺书


Team#13059
Forofficeuseonly
T1
T2< br>T3
T4
________________
_______________ _
________________
________________
TeamC ontrolNumber
Page10f14
Forofficeuseonly
F 1
F2
F3
F4
________________
_______ _________
________________
________________< br>13059
ProblemChosen
C
Summary
2012M athematicalContestinModeling(MCM)SummarySheet
I nthispaper,webuildamodelforcrimebustingandunceasin glyoptimizeit.
Andthepromotedmodelcanbeusedtoid entify,prioritize,andcategorizesimilar
nodesina networkdatabaseofanytype.
ForRequirement1,thepo ssibilitiesof7knowncriminalsand8innocentsbeing
ingtothecombinedmethodoftypeof
speaker--- thetypeoflistener---messagetopicninerelativesituat ionsaresetup,
what’smoretheweightforeachsituati onintermsofitsprobabilityofmakinga
nthismethoda ndtheweight,the
hat,we
prioritizethe83nodesb ylikelihoodofbeingpartoftheconspiracyandgivemetric s
hthisway,thefactis
revealedthatoneofthethr eeseniormanagers,Dolores,isaconspirator,Jeromeishighlylikelyaconspiratorwithoutsufficientevidenc e.
ForRequirement2,
twocluesareutilizedtomod ifythemodelforcrimebusting,whichleadstotheresultthatthenon-suspiciousClaireandReniinthesortingre sultofRequirement1turnout
tobesuspiciousinRequi rement2.
ForRequirement3,thesemanticnetworkanal ysismethodisappliedtooptimize
istechnology,wedi videthe
makea
83×83
weightmatrixAbasedont hemessagetrafficofthe83individualsandgive
LABso ftwareisusedtosolvethealgorithmandanew
sortingo fthe83nodes'
findthepromotedmodelmakespeoplelik eFranklin,MarianandKatherinedifficult
tobeatlar ge.
AsforRequirement4,wesummarizeandlistitsthre equestionsandwefocuson
theanalysisofthethirdque stion(thepromotionofourmodelinotherareas).This
modelistestedtofindouttheinfectedanddiseasedcellsi nasmallimaginaryvirus
infectionnetwork.
Keyw ords:combination;weight;semanticnetworkanalysis;vi rusinfectionnetwork


Team#13059Page20f14< br>CONTENT
uction.............................. .................................................. ..............................3
ementoftheProbl em................................................ .................................3
ssumption... .................................................. ..............................................4
tionsandNotations
............................ .................................................. .........
4
................................ .................................................. ....................................5
5.1Proble manalysis,modelbuildingandsolvingofRequirement1... ..................5
5.1.1AnalysisofRequirement1 .................................................. ................5
5.1.2ModelbuildingofRequireme nt1............................................... ........5
5.1.3Judgingmetricsofwhetheraworkeris partoftheconspiracy
....
6
5.2Problemanal ysis,modelbuildingandsolvingofRequirement2........ .............7
5.2.1AnalysisofRequirement2..... .................................................. ...........7
5.2.2ModelbuildingandsolvingofRequ irement2..................................7
5.2 .3Analysisofthesortingresult...................... ........................................8
5.3Pr oblemanalysis,modelbuildingandsolvingofRequirement 3.....................8
5.3.1AnalysisofRequirem ent3.............................................. ....................8
5.3.2Modelbuildingandsolv ingofRequirement3................................. 9
5.3.3Analysisoftheresult..................... .................................................. ..10
5.4Problemanalysis,modelbuildingandsolving ofRequirement4...................11
5.4.1Analys isofRequirement4
.............................. ..................................
11
5.4.2M odelbuildingandsolvingofRequirement4.............. .................11
luationofthemodel.......... .................................................. ....................13
Reference............... .................................................. .................................................. 14


Team#13059Page30f14
Astrongnetwork analysismodel
uction
Withthedevelopmentofthe societyandenhancementinpeople'livingstandards,
alsareillegalandtheyshouldbe
r,therearealwaysma nycriminalstryingvariouswaysto
obtaincommutatio norevenatlarge,what'smore,alotofinnocentshavebeen< br>framed.
Ofcourse,thesephenomena'nehand,thecriminalsarepeoplefromallwalksoflife,besides,the technologiestheyusearemore
therhand,itisvery
complicatedandnoteasywhenmanypeopleareinvolvedino necaseandthereare
tremendousamountofinformation thatinvestigationorganhavetofindoutthemost
favo rableevidencetogetthemostaccurateresult.
But,in ordertosafeguardpeople'spersonalsafety,measuresmus tbetakento
,inthispaper,weareaimedtosolvethispr oblemand
optimizeourmodelunceasinglytobewidelyu sedinothersimilarcases.
ementoftheProblem
Yo urorganization,theIntergalacticCrimeModelers(ICM), isinvestigatinga
estigatorsarehighlyconfidentth eyknow
severalmembersoftheconspiracy,buthopetoi dentifytheothermembersandthe
pervisorhasputtoge theranetwork‐like
databaseforthecurrentcase,eof
securityandprivacyissues,yourteamwillnothavedi recttranscriptsofallthe
dataaregivenintheattach edspreadsheetfiles:,
,.
Thisproblemhas4requi rements,theRequirement1asksustobuildamodeland
a lgorithmtoprioritizethe83nodesbylikelihoodofbeingp artoftheconspiracyand
,Delores,andGretchenareth esenior
dbeveryhelpfultoknowifanyofthemare
u irement2ishowtheprioritylistwouldchangeif
newin formationcomestolightthatTopic1isalsoconnectedtoth econspiracyand
uirement3asksustousethesemantic< br>uirement4pointsoutthat
yoursupervisorspecifi callyaskedyoutoincludeadiscussiononhowmorethorough
network,semantic,andtextanalysesofthemessageco ntentscouldhelpwithyour
artofyourreporttoher(yo ursupervisor),


Team#13059Page40f14
ex plainthenetworkmodelingtechniquesyouhaveusedandwhy andhowtheycanbe
usedtoidentify,prioritize,andca tegorizesimilarnodesinanetworkdatabaseofany
typ e,tance,couldyourmethod
findtheinfectedordiseas edcellsinabiologicalnetworkwhereyouhadvariouskinds
ofimageorchemicaldataforthenodesindicatinginfe ctionprobabilitiesandalready
identifiedsomeinfe ctednodes?
ssumption
Inthispaper,wemakethefo llowingassumptionsabouttheanalysisofthefour
Req uirementsthattheproblemgiveus.

Inadditiont osevenknownoffendersandeightknowninnocents,therema ining68
employeesareallidentifiedassuspects.

Ifthetotalweightofwhichasuspectisaconspirato risbiggerthan1,wethinkhe
orshemustbeacriminalan djusttakeitstotalweightas1.

Thereareonlyin fectednodesandunknownnodes(unknowncells)inourbiolo gical
networkmodel.

Allnormalcells'prob abilitiesofbeinginfectedwhenithasdirectcontactwith the
virusareequal.

Noindirectinfectionb etweenthecells.
tionsandNotations

C
i
:theweightofwhichnumber
i
suspectisacon spirator
(0<
C
i
<1)
.

P
i
:theprobabilityofwhichnumber
i
suspect isaconspirator
(0<
P
i
<1)
.
p
j
:thepossibilityofwhichnumber
j
u nknowncellisinfected
(0<
p
j
<1)
.< br>•
t
:thepossibilityofwhichanormalcellisin fectedwhenithasadirectcontact
withvirus
(0<< br>t
<1)
.

a
(
i
,
j
)
:the
i
rowand
j
columnnumericalva lueofmatrixA.

A
n
×
n
:
n×
n
matrixA.


Team#13059Page50f14

5.1Problemanalysis,modelbuildingandsolving ofRequirement1
5.1.1AnalysisofRequirement1
T hecasegivenbytheproblemhasafairlycomplexnetworkoft hemessages,
,for
Requirement1,,,,
weanaly sethecontactnumberoftimesofeachsuspectandcriminals orsuspicious
messagetopics(topic7,topic11,topic 13),andmakealistofallcombinationsof
suspectswit hinnocents,criminals,ingto
analysisofactualsitu ation,wesettheweightforeachkindofcombination,then< br>respectivelycalculateseachsuspect'stotalweightt hatheorsheisoneofthe
conspirators(thatistheposs ibilitythatheorsheisacriminal).Finally,weprioritiz e
the83nodesbylikelihoodofbeingpartoftheconspir acy(7knowncriminals'
probabilityare1,8innocents 'probabilityare0),andsetthemetricsforjudging
wh etherasuspectisoneoftheconspirators.
Therearetw oElsie(No.7and37)inthiscase,andourmodel'scomputedr esult
showsthattheprobabilityofElsieinNo.7and37 arecriminalsare:1and0.4.
Therefore,weconcludeth attheknowncriminalnamedElsiegivenbythetitleisNo.7Elise,insteadofNo.37Elise.
5.1.2Modelbuildin gofRequirement1
Throughtheanalysisoftheproblem, wemakecombinationsofcontactsituation
ofeachs
makeourmodelmoreintuitivelyvisual,Table1providesa llthecombinationsand
weights.
Table1:Allcomb inationsanditsweight
Thetypeofspeaker
Suspec t
Innocents
Innocents
Suspect
Suspect< br>Suspect
Criminal
Criminal
Thetypeoflis tener
Innocents
Suspect
Suspect
Innoce nts
Criminal
Criminal
Suspect
Suspect< br>Messagetopic
Non-suspicious
Non- suspicious
Suspicious
Suspicious
Non- suspicious
Suspicious
Suspicious
Non-susp icious
Theweight
0
0
0.1
0.1
0.1
0.2
0.2
0.1


Team#13059
Susp ectSuspectSuspicious
Page60f14
0.1
Note:w eightincrease0.1whenthereisanadditionalexchangeofa suspicious
messagetopic.
Accordingtothesetti ngsofthecombinationsandtheweightsintheabovetable,< br>wecalculatethetotalweightofthe68suspects,whichi sitsprobabilitythatthe
,
completesortingresu ltisinaccessory
.
Table2:sortingbyeachworker 's
likelihoodofbeingpartoftheconspiracy
Sort ingNode#Name
Theprobabilitythat
heisaconspir ator
1
1
1
1
1
1
1
0.9
0.8
0.7
0.6
0.6
0.6
0.5
0.5
. ..
thisformatrepresent
suspect
thisformat represent
knowninnocentman
thisformatreprese nt
seniormanager
Notes
thisformatrepresen t
knowncriminal
1
2
3
4
5
67
8
9
10
11
12
13
14
15< br>...
7
18
21
43
49
54
67
81
10
20
3
16
34
4
13
...
Elsie
Jean
Alex
Paul
Harvey
Ulf
Yao
Seeni
Dolores
Crystal
SherriJerome
Jerome
Gretchen
Marion
...
5.1.3Judgingmetricsofwhetheraworkerispartofthecon spiracy
Accordingtoanalysisofcomputationalproce ss,welistthejudgingmetricsof
whetherasuspectisp artoftheconspiracyasfollowed.
Herewetaketheprob abilityofthesuspectbeingoneoftheconspiratorsas


Team#13059
P
(0≤
P
≤1)
.
Page70f14

If
P
≥0.8
,wethinkheors heisoneoftheconspirators.

If
0.6≤
P< br>≤0.7
,wehighlydoubtheisoneoftheconspirators.

If
0.4≤
P
≤0.5
,wemoderatelys uspectedthatheisoneoftheconspirators.

If0.2≤
P
≤0.3
,wemildlysuspectedheisoneof theconspirators.

If
P
≤0.1
,webel ieveheisinnocent.
Accordingtothesemetrics,wecar rythejudgingmetricsonthiscompany's
seniormanage rJerome,Dolores,thattheprobabilityofJerome,
Dol ores,andGretchenrespectivelyare0.6,0.8,orewehaveth efull
reasontothinkthatDoloresisaplotter,andwea lsocannotgetridofthesuspicion
thatJeromeandGret chenarecriminals.
2
Problemanalysis,modelbui ldingandsolvingofRequirement
2
5.5.2Requirem ent2
5.2.1AnalysisofRequirement2
Comparingwi thRequirement1,
thesetwocluesare:Topic1isasuspi ciousmessagetopicandChrisisoneofthe
lusethesame modelinRequirement1tosolvethisquestion.
5.2.2Mo delbuildingandsolvingofRequirement2
Wecalculate theprobabilityofthe68suspectsaccordingtothemodelan d
solvingprocessinRequirement1,thenweprioritize the83workers
bylikelihoodof
beingpartoftheco nspiracy(
8knowncriminals'probabilityare1,7inno cents'
probabilityare0).completesortingresultis in
.
Table3:sortingbyeachworker's
likelih oodofbeingpartoftheconspiracy
Theprobability
NamethatheisaNotes
conspirator
thisformatre presentknown
Chris1
criminal
Elsie1
Je an
Alex
Paul
1
1
1thisformatreprese ntknown
thisformatrepresentsenior
manager
SortingNode#
1
2
3
4
5
0
718
21
43


Team#13059Page80f14
innocentman
6
7
8
9
10
11
12< br>13
14
15
...
49
54
67
3
10
81
20
16
17
34
...
Harvey
Ulf
Yao
Sherri
Dolores
Seeni
Cr ystal
Jerome
Neal
Jerome
...
1
1
1
1
0.9
0.9
0.8
0.7
0.7
0 .7
...
thisformatrepresentsuspect
5.2.3An alysisofthesortingresult
,wefindthat
number3 suspectSherri'sprobabilitychangefrom0.6to1,sowehav ethefullreason
probabilityofnumber10seniormanag er
ingtothejudgingmetricsgiveninRequirement1,we
ghtheprobabilityofnumber16
seniormanagerJen omeincreaseto0.7,wedonothavethefullreasontoconfirm that
ber25Claireandnumber82Renichangefromtheori ginal
non-suspicioustomildlysuspicious.
5.3P roblemanalysis,modelbuildingandsolvingofRequiremen t3
5.3.1AnalysisofRequirement3
Afterlearning andunderstandingsemanticnetworkanalysis,weuseitto< br>optimizeourmodelonthebasisofconditionsgivenbyRe quirement1and
y,,
then,wehavethemdividedinto fourcategoriesandsettheweightsaccordingtotheir
degreeofcorrelationwithsuspicioustopics.
Requir ement2givesustwoclues,andinRequirement3'ssolvingpr ocess,westill
,webelievethatthereareeightknown< br>criminals(thepossibilityofbeingoneoftheconspira torsis1)andsevenknown
innocents(thepossibilityo fbeingoneoftheconspiratorsis0),andtopic1isa
ini shingthesesettings,thecomputedresultshows
thatm anysuspects'totalweightarebiggerthan1,inordertofac ilitatethejudgment,
here,wehaveallsuspects'tota lweightdividedbyN(Nrepresentsthebiggestnumber
o f68totalweight)tomakeallofthembetween0and1,andthis totalweightis


Team#13059
exactlythepr obabilityofthesuspectofbeingaconspirator.
5.3.2 ModelbuildingandsolvingofRequirement3
Page90f14
Weknowthattheconspiracyistakingplacetoembezzle fundsfromthe
companyanduseinternetfraudtostealf undsfromcreditcardsofpeoplewhodo
arryontheclass ificationtotheremaining11
messagetopicsandexcep t4knownsuspiciousones:Topic1,7,11,and13,andset
theirweights.
Throughanalysistotheconspiracyand 15messagetopics,wefindoutthat
2andTopic12are
conspiracyisrelatedtocomputernetworksecurity,
thus,topicsaboutcomputersecurityshouldalsobetakens eriously,andwecansee
4stressesthatwereallyneedt o
noticetheintenseargumentamongAlex,eabove,weli st
Topic2,4,5,12,and15asthesecondkindoftopic,ic
opic3,14,8,
and10,wethinkthattheyhavenothin gtodowiththeconspiracy,soitsweightis0.

Sol vingprocessofthemodel
Accordingtoanalysisoftheq uestion,weestablisha
83×83
matrixA(the
). Here
a
(
i
,
j
),
i
<
j
standforthesumofweightsof
alltopicsinvolved inthewordsnumber
i
suspectsaidtonumber
j< br>suspect,incontrast
and
a
(
j
,i
),
i
<
j
standforthesumofweight sofalltopicsinvolvedinthewords
number
j
s uspectsaidtonumber
i
suspect.

Algori thm:
thesumofallthedatainthe
thesumofallthed atainthe
III
.
C
i
n
(1≤
n
≤83)
rowas
a
.
n
(1≤
n
≤83)< br>columnas
b
.
=
a
+
b
,(1≤< br>i
≤83)
,itistheweightofwhichnumber
isuspectisa
conspirator.
IV
.
P
i< br>=
C
i
,(1≤
i
≤83)
,itisthepro babilityofwhichnumber
i
max
{
C
i}
isaconspirator.
WeusetheMATLABsoftwareto realizethisalgorithm(programmingisin
AccessaryR equirement3.m),andsorttheobtainedresultsinEXCEL(we stillassume


Team#13059Page100f14
that theprobabilityofthe8knowncriminalsis1,andtheprobab ilityofthe7known
innocentsis0).Partofthesorting isinTable4,andthecompletesortingresultisin
.
Table4:sortingbyeachworker's
likelihoodofbeing partoftheconspiracy
SortingNode#Name
Theprob abilitythat
heisaconspirator
1
1
1
1
1
1
1
1
1
0.97058823529
0.8 8235294118
0.86764705882
0.79411764706
0. 79411764706
0.77941176471
...
thisformatr epresent
suspect
thisformatrepresent
know ninnocentman
thisformatrepresent
seniormanag er
Notes
thisformatrepresent
knowncrimina l
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
...
0
7< br>18
21
43
49
54
67
3
32
15
10
17
34
22
...
Chris
Elsi e
Jean
Alex
Paul
Harvey
Ulf
Yao< br>Sherri
Gretchen
Julia
Dolores
Neal< br>Jerome
Eric
...
5.3.3Analysisoftheresu lt
ThroughanalysisofthesortingresultsinTable2
Table3andTable4,wecan
confirmthatnumber3 suspectisaconspirator,besides,wefindoutthat,aftera nalysis
ofspeech,theprobabilityofnumber24suspec tFranklinofbeingaconspiratorraised
ingtojudging metricsofmodelinRequirement1,wehighly
'smore,th eprobabilityofnumber26
suspectMarianraisedfrom0 .1to0.441,andtheprobabilityofnumber42dsuspect
t hattheimprovedmodelmakepeoplelike
Franklin,Mari anandKatherinedifficulttobeatlarge.


Team #13059Page110f14
5.4Problemanalysis,modelbuildi ngandsolvingofRequirement4
5.4.1AnalysisofRequi rement4
WethinkRequirement4givesus3questions:1
:Ithopesourmethodologywillcontributetosolvi ngimportantcasesQuestion1

Question
arou ndtheworld,especiallythosewithverylargedatabasesof messagetraffic.
:
Discusshowmorethoroughnetw ork,semantic,andtextanalysesofQuestion2:

Q uestion2
themessagecontentscouldhelpwithourmode landrecommendations,andexplain
thenetworkmodeli ngtechniquesyouhaveusedandwhy.
:
on3:
Question3
Wetaketurnstosolvethe3questionsandt akethevirusinfectionprocessasan
,weassumethere< br>isasmallviruspropagationenvironment,and
draw outtheircontactnetworkdiagramwith
,wefigureoutt ouch
numberoftimesofa
unknowncellandthevirus intermsofthenetworkdiagram,and
figureouttotalprobabilityofeachunknowncellinaccordancewiththep robabilityofbeinginfectedineach
y,wesortalltheu nknowncellsbylikelihoodofbeinginfectedordiseasedce llsto
findouttheunknowncellsthataremostlikelyto beinfectedordiseasedcells.
5.4.2Modelbuildingan dsolvingofRequirement4

Question1:
Forth osewithverylargedatabasesofmessagetraffic,wefirstu tilizethe
semanticnetworkanalysisandthetextanal ysisinRequirement3toidentify
suspiciousdegreeof eachtopic,anddividethesuspectedextentintoseveralle vels,
ly,usingEXCELsoftwaretocountthe
amount andthekindoftopicsinvolvedineverytwonodes,andmakea large-scale
matrixsimilartothe83×y,figureout
a
(
i
,
j
)
in
thematrixinac cordancewiththealgorithminRequirement3,andconverti ttoa
n
×
n
large-scalematrix
A
n
×
n
.Thenwecangetthesuspecteddegreeofeac hnode
hosenodeswhosetypeshave
beenknown,,wes orttheremainingnodesinaccordance
withsuspectedd egree,inthisway,wecandeterminewhoisthemostlikelyconspiratorintermsofthejudgingmetrics.

Q uestion2:
InRequirement3,weutilizesemanticnetwo rkanalysisandtextanalysis
technologytoanalysist hecasetoenableustofigureoutwhichwordsaremostlikely


Team#13059Page120f14
tobecodewordsus edbycriminalsintheircommunicationorwhichtopicsarec losest
sprobabilityisexactlytheweightmentionedi n
Requirement1,2,llhaveinfluenceonourmodelandgr eatlypromoteitto
avoidsuchsituationsthatpeoplel ikeCarolarefalselyaccusedandpeoplelikeInez
goun punished.

Question3:
TosolveQuestion3,w eassumethereisasmallviruspropagationenvironment,and
drawouttheircontactnetworkdiagram(inFigur e1).
1
3
2
Unknown cell
Virus
1< br>5
7
4
6
10
9
8
Figure1:Con tactnetworkdiagramofvirusandunknowncells
Accord ingtotheknownconditions,weassumetheprobabilitythat anormalcell
isinfectedwhenithasdirectcontactwit hvirusis
t
(0<
t
<1)
.Unknowncellnumbersare:1,2,3,4,6,andinfectednodesarenumber5, 7,8,9,hese
conditionsandthenetworkdiagram,wecar ryoutcalculationsonalltheunknown
cellstogetthei rinfectionprobability.
Here,wedefine
p
j< br>(0<
p
j
<1)
astheprobabilitythatnum ber
j
unknowncell
isinfected
(
j
=1,2,3,4,6)
.
Algorithmanalysis:Forthenumbe r1unknowncell,itrespectivelyhascontactwith

< br>Team#13059Page130f14
unknowncellsnumber2,3,a nd5,becausethosewhohavecontactwithnumber2are
al lunknowncells,5
isainfectednode,sotheprobabilit ythatnumber5makesnumber1intoadiseased
cellis
t
.Asnumber3contactdirectlywiththeviralcells,t hus,wecannotneglect
theeffectofnumber3onnumber1 ,sotheprobabilitythatnumber5makesnumber1
intoad iseasedcellis
t
×
p
3
.Inconclusion ,wegettheprobabilitythatnumber1is
infectedis
p
1
=
t
+
t
×
p
3
.The probabilityoftheremainingfourunknowncellscan
be figuredoutinaccordancewiththismethod.
Algorithm :

p
1
=2
t
2
+
t

p
1
=
t
+
t
×
p
3


p
=
t
×
p
+
t
×
p
32
p
=2
t
+3
t
2132
⎪⎪
⎪⎪


p
3
=2
t

p
3
=
t
+
t

p
=
t

p
=
t
4
⎪⎪
4



p
6
=
t
+
t

p
6
=2
t
(1)
Note:robabilityvaluecomputedusingthismethodisb iggerthan1,we
recordthisprobabilityvalueas1.
l3contactmuchwithinfectedcells,sotheeffectofunkno wncell1
onitcannotbeneglected.
Finally,wesor tthevaluesof
infectedordiseasedcells.
p
j
(
j
=1,2,3,4,6)
informula(1)tofindout the
luationofthemodel
Strengths
Simplicit y:Thismodelissimpleenoughthatitentailsasmallamount of
tion,itiseasytobeconvertedintoanelectronicform,forexample,Matlab,tobevisuallydisplayedsoth atnearlynomathematical
knowledgeisnecessarytoun derstandthemodel.
:
Themodelusedinthisproble mcouldbeeasilyExtensibility:

FlexibleandEx tensibility
appliedtostudyotherissues.

Theuseoftheweight:Bysettingtheweight,wemakethecalc ulationofcomplex
messagenetworkbecomesimple.
Weaknesses


Team#13059Page140f14

Assumptions:Simplifyingassumptionshadtobemad einordertocreatea
solvablemodel.

Estima ted

Becauseoftheuncertainties,somevaluesli ketheweightusedinthe
calculationshadtobeestimat ed.
Reference
[1]ArizonaStateUniversity(2010 ,April2).OutofThisWorld:NewStudy
eDaily,.
12 Feb.2012.
[2]unityGenesSurvive:StudyImplicatesA rms
eDaily,.12Feb.
2012.
[3]:.
[4]Gil, EnricoMotta,dBenjamins,,editors,ISWC
2005,volum e3729
[5]NetworkAnalysis:Methodsand
Applicat ions,dge
UniversityPress,Cambridge,1edition,199 9.
[6]giesAreUs:AUnifiedModelofSocialNetworksan d
ndaGil,EnricoMotta,dBenjamins,andMarkA.
Mu sen,editors,ISWC2005,volume3729ofLNCS,pages522–536 ,Berlin
Heidelberg,er-Verlag.
[7]tedatDagstu hl
seminar03361:AlgorithmicAspectsofLargeandCom plexNetworks,
AugustSeptember2003.
[8]udinal non- euclideannetworks:
Networks,7:287–322,1985.

滑雪作文-低保申请书范文


重庆幼儿师范高等专科学校-社区妇联工作总结


年初六-小学数学四年级上册教案


自贡蜀光中学-圣诞节资料


日本留学生活费-个人专业技术工作小结


适合夏天听的歌-植物谜语大全及答案


父爱作文-健康教育总结


巴黎圣母院梗概-英语心得