课程设计 脉冲激光测距仪

玛丽莲梦兔
845次浏览
2020年07月30日 17:43
最佳经验
本文由作者推荐

大城一中-班干部会议


目 录
第一章 引
言…………………………………………………………… …2
1.1激光测距技
术…………………………………………………………2
1.2激 光测距的发展状
况…………………………………………………2
第二章 脉冲测距仪的工作原
理…………………………………………4
2.1测距仪的基本工作原理…………………………… …………………
4
2.2脉冲激光测距实现的原理及光电读数的实现方
法……………… …5
第三章 部件分
析…………………………………………………………7
3.1激 光
器…………………………………………………………………7
3.2光电器
件……… ………………………………………………………7
第四章 激光测距系统性能分
析…………… ……………………………8
4.1光脉冲对测距仪的影响………………………………………………
8
4.2发散角对测距仪的影响………………………………………………
8
4.3测 距系统信噪比分析…………………………………………………
9
第五章 测距仪的精度分析………………………………………………10
5.1精度分
析……………………………… ………………………………10
5.2提高脉冲激光测距精度的措


施…………… …………………………10
第六章 激光测距仪总体设
计………………………………………… …14

结…………………………………………………………………………16














第一章 引言
1.1 激光测距技术
激光测距是指 根据激光往返待测距离的时间来测定距离的方法,激
光测距技术是随着激光技术的出现而发展起来的一种 精密测量技术,因
其良好的测距性能而广泛应用在军事和民用领域。
自1960年美国博士制成 世界上第一台红宝石激光器开
始,激光优异的单色性、方向性和高亮度性就引起了人们的普遍关注。激光的这些特性,决定着它成为理想的测距光源。国内外均大力开展了
激光测距系统的研制工作。1 961年美国就成功的研制了世界上最早的红
宝石激光测距系统,1969年美国又首次将激光测距系统 应用于坦克火控
系统。从此,激光测距技术发展迅猛,广泛的应用于战场上。
激光测距方法从原 理上分主要有相位测距法和脉冲测距法两种。由
于相位测量技术较为成熟,因此测距精度较高,目前的测 距技术大多采
用此法,但相位测距电路较为复杂,技术难度较大,测程短。脉冲式测
距方法结构 简单,信号易于处理,并且易于实现实时测量,具有测程长


的优点,因此发展潜力很大。
1.2激光测距的发展状况
激光测距技术与其它测距技术相比,具有测量距离远、抗干扰能力< br>强、非接触目标、测量速度快、测距精度高等特点。目前,脉冲激光测
距已获得了广泛的应用,如 地形测量、战术前沿测距、导弹运行轨道跟
踪、以及人造卫星、地球到月球距离的测量等。随着激光技术 、数字电
子技术、计算技术和集成电路的发展,激光脉冲测距正朝着低成本、模
块化、小型化方 向发展。
脉冲半导体激光测距技术的研究起始于20世纪60年代末,到80年代
中期陆续解决 了激光器件、光学系统以及信号处理电路中的关键技术,
80年代后期转入应用研究阶段并研制出了各种 不同样机,90年代中期各
种成熟的产品不断出现,近期半导体激光测距发展迅速,在中、近激光
测距方面有取代YAG激光的趋势。
2008年,中国计量学院余向东、张在宣、王剑锋等人研制了一 种能
有效地减少因接收信号幅度变化而引起的漂移误差和晶振时钟计时误差
的小型高精度脉冲式半导体激光测距仪,当接收脉冲信号幅度在11倍范围变化时,该测
距仪可获得优于±7cm的 单次测量精度。2009年,军事交通学院李志
勇、李长安、李良洪等人基于TDC-GP2设计了一款 测量时间间隔最小可
达65ps,平均误差小于65ps的高精度时间间隔测量仪。航天科工集团第三研究院第八三五八所研制出测程200,精度0.5,分辨能力为100的激
光测距机。中科院上 海光机所研制出便携式激光测距机,无合作目标时
对漫反射水泥墙的测距达100,采用300计数方式 ,测距精度0.5,重复
频率1kHz。中国计量学院与国外合作开发了低成本、便携式半导体激光测距机,作用测距l,精度术。常州莱赛公司研制了测 量距离为200,测距精度为0. 5的半导体激光
测距机
【1】

国外有许 多大学、研究机构和公司都开展了脉冲半导体激光测距系
统的研究。Schwartz Electro-Optics公司为美国国家数据中心研制了激光
海浪测量装置,用于无人看守的海浪 测量站;为美国联邦政府高速公路
管理局研制了激光自动传感系统,用于车辆速度和高度的测量,从而提


高了交通效率;还为军方研制了直升机激光防撞告警装置。EXXON公
司研制 了脉冲半导体激光角度距离测量系统,用于海上石油勘测。1992
年美国亚特兰大激光公司为警方专门 设计的手持式人眼安全激光二极管
测距仪,用于对车辆的测距和测速。Lecia公司展出了实用的小型 LD测
距仪,测量距离0.2-30m。1995年以来国际上对人眼安全的半导体激光
测距技 术发展十分迅速,已开展了波长在800-900nm范围内、峰值功率
为10W、脉冲宽度为20-5 0ns、重复频率为1-10kHz、测量距离10m-1km
无合作目标的激光测距系统研究。
1996年下半年,美国Bushnell公司推出了测距能力约365m的400型小
型、轻便、省 电、对人眼安全、低价LD的激光测距仪Yardage400。
1997年Bushnell公司推出 测距700米的800型激光测距仪。1998年美国
Tasco公司推出测距能力为700米的摄像机 型Lasersite LD激光测距仪。美
国SACMFCSⅡ侧轻武器通用模块火控系统,具有测距 和瞄准双重功
能,据报道其测距能力大于2km。
2000年以来,各种性能极好的激光测距仪 更如雨后春笋般不断涌
现,如专为室内应用而设计徕卡手持测距仪D2,测程 0.05至60 米,典
型精度±1.5mm,不仅小巧便携,测量速度也很快且非常可靠。德国喜
利得手持激光测距仪 PD42型测量范围0.05 m- 200 m,精度为 ± 1.0mm,
不仅可以测量距离,还可以进行面积、体积及面积累加等计算。


第二章 脉冲激光测距原理
2.1测距仪的基本工作原理
激光测距广泛采用飞行时间 法,飞行时间法是根据直接或者间接获
得的激光飞行时间来得到目标物距离
【4】
。其 基本原理如图2-1所示:
即分别在A、B两点架设测距机和反射器,测距机向B处发射一束激
光,激光在被测距离A、B之间传播,到达B点后,激光被反射器反射。
反射回的激光被测距机接收,如 果激光测距机能测出激光从发射到接收
这一段时间间隔,那么,在A、B之间的距离就可以计算出来【5】
。根
据光速c,则距离D为:
(2. 1)
图2-1 激光测距基本原理


图2-2 测距仪光学原理框图

D——测站点A、B两点间距离; ——光往返A、B一次所需的时
间。
2.2脉冲激光测距实现的原理及光电读数的实现方法
脉冲激光测距是利用激光脉冲持续时间短,能量在时 间上相对集
中,瞬时功率很大(一般可达兆瓦)的特点进行测距,在有合作目标的
情况下脉冲激 光测距可达到极远的测程。脉冲激光测距以其测程远、测
距精度高等优点获得了广泛的应用
【6 】

脉冲激光测距原理如图2-3所示。


图2- 3 脉冲激光测距原 理
激光器对目标发射一个或一列很窄的光脉冲(脉冲宽度一般小于
50ns),经取样棱镜,光 脉冲接收器输出一个电脉冲信号, 打开电子门
让时标脉冲通过,计数电路开始进行计数。光脉冲被目标 反射后回到接
收器,接收器同样产生一个电脉冲,关闭电子门终止时标脉冲通过。通
过测量光脉 冲到达目标并由目标漫反射返回到接收系统的脉冲数就能计
算出相应的时间间隔,从而计算出目标距离。
设目标距离为D,光脉冲往返时间为t,光在真空中的传播速度为
c(c ≈2.99 ×m s,光速c在空气中传输受介质、气压、温度、湿度的影
响可忽略),则有下列公式成立:
(2. 2)
在脉冲激光测距中,t通常是通过测距计数器对从发射脉冲到目标并
从目标返回到 接收系统期间进入计数器的时钟脉冲个数的累计来测量
的,具体如图2-3所示。
图2-3 计 时波形图
设在t时间内,有N个时钟脉冲进入计数器,时钟脉冲周期为T,振
荡频率为。
(2. 3)

式中,,表示每一个时钟脉冲所代表的距离增量。如计数器计 数N
个时钟脉冲,则由公式(2.3)可得到目标距离R 。L的大小决定了脉冲测
距的测量计数精度。即:
(2. 4)
若要距离分辨率≤30cm,则要求≤2×10
-9
s,即要求时标脉冲的频率最
低为500MHz。距离测量的精度主要取决于发射激光脉冲的上升沿、接
收通道的带宽、探测器的信噪 比、时间间隔测量的分辨率等因素有关。
TOF(飞行时间)测距系统构成相对简单,因而获得了普遍的 应
用。军用的作用距离大于1km的测距机基本上全都是基于TOF的。当
前,采用精密的时间 间隔测量方法,脉冲飞行时间激光测距的单次测量
精度可以达到厘米量级。为获得更高精度,可以采取多 次测量平均的方
法,但是这需要更长的测量时间,从而限制了它的应用范围。自触发脉
冲飞行时 间激光测距法,其原理利用激光接收单元的输出信号自行控制
激光发射单元,进而触发激光脉冲向测距目 标发射,即激光接收单元接
收到激光脉冲之后,去触发激光发射单元产生下一个激光脉冲。激光脉


冲的发射和接收是循环相关的。经过多个脉冲后,接收的这一周期信号
经过周期测量再 除以接收的周期数,从单个周期得到距离。实际上是对
测量结果进行多次平均,从而提高精度。分析其原 理可知,这种方法仅
对静止目标有效,而且为了获得由距离而产生的测距周期信号,激光器
会长 时间的处于发射状态,就效率而言是相对较低的。
第三章 部件分析

3.1激光器 (一般采用激光二极管)
半导体激光二极管(LD)是实用中最重要的一类激光器,它体积
小、 寿命长、并可以采用简单的电流注入的方式来泵浦。因此,半导体
激光二极管在激光通信、光存储、激光 测距以及激光雷达等都有广泛的
应用。
半导体激光器工作原理和其他激光器一样,即都是基于受 激发射。
要使得激光器得到相干的受激光输出,须满足三个条件:
1.粒子数反转分布,即高能 级导带底的电子数比处于低能级的价带
顶的空穴数多得多。
2.有光学谐振腔,使受激辐射在谐 振腔内多次反射形成激光震荡。
3.为了形成稳定的震荡,增益介质必须提供足够大的增益,以弥补谐振腔引起的光损耗,达到激光器的阈值条件,即
(3.1)
其中:g
th
为阈值增益,为增益介质的内部损耗,为激光器的输出损耗< br>3.2光电器件(采用雪崩光电二极管 APD)
光电探测器是一种把光信号转换成电信号的器件, 是系统接收部分
的核心组成部分。
雪崩二极管是借助反向偏执的强电场作用而产生载流子倍增效应的
一种高速光电子器件。这种管 子的灵敏度高,响应速度快,响应时间
短,噪声等效功率低。它的工作原理:在光电二极管的 PN 结上加一反
相高电压, 使结区产生一个很强的电场, 当光激发载流子进入结区
后,在强电场 的加速下获得很大的能量,与晶格原子碰撞而使晶格原子
发生电离,产生新的电子-空穴对,新的电子- 空穴对再次被加速,又与
晶格原子碰撞,产生新的电子-空穴对,这一过程不断重复,使 PN 结内
的电流急剧增加,这种现象称为雪崩倍增效应,这样外电路的光电流就
被放大了。








第四章 激光测距 系统性能分析
4.1光脉冲对测距仪的影响
为了扩大测量范围,提高测量精度,测距仪对光脉冲 应有以下要
求:
(1)光脉冲应有足够的强度
无论怎样改善光束的方向性,它总不可避 免地要有一定的发散,
再加上空气对光线的吸收和散射,所以目标越远,反射回来的光线就越
弱 ,甚至根本接收不到。为了测出较远的距离,就要使光源能发射出较
高功率密度的光强。
(2) 光脉冲的方向性要好
这有两个作用,一方面可把光的能量集中在较小的立体角内,在
保证射得更 远的同时提高保密性;另一方面可以准确的判断目标的方
位。
(3)光脉冲的单色性要好
因为无论是白天还是黑夜,空中总会存在着各种杂散光线,这些
光线往往会比反射回来的光信号要强得 多。假如这些杂散光的光信号一
起进入接收系统,那就根本无法进行测量了。因此,加入一个滤光片,< br>只允许光信号中的单色光通过而不让其他频率的杂散光通过。显然,光
脉冲的单色性越好,滤光片 的滤光效果也就越好,这样就越能有效地提
高接收系统的信噪比,保证测量的精确性。
(4)光 脉冲的宽度要窄
所谓光脉冲的宽度,是指闪光从“发生”到“熄灭”之间的时间间隔。
光脉冲的 宽度窄一点,可以避免反射回来的光和发射出去的光产生重
叠。
4.2发散角对测距仪的影响< br>激光测距性能分析是激光测距系统设计的理论基础, 在脉冲激光测
距系统中,待测物的距离越远 ,回波强度越小,当回波强度小到和噪声相当,
系统无法分辨时的最远距离,此距离为最大探测距离。影 响脉冲激光测
距仪最大测程的主要因素有 脉冲激光的峰值功率、大气对光波的影


响、待测物体的反射率、发射接收系统的光通过率以及系统的噪声等因
素。下面给出了最大可探测距离 的计算公式:
(4.1)

式中:ρ为目标物的反射率; P
L
为激光器发出的峰值光功率;
T
E
为发射透镜的透过率; T
R
为接收透镜的透过率;
T
α
为单程大气衰减率; T
F
为窄带滤光片的透过率;
A
R
为接收单元的面积; β为目标 反射表面法线与光轴之间
的夹角;
P
Rmin
为最小可探测功率。
其 中激光的远场发散角β为:
(4 .2)
r(s)-离激光器s处的激光束的光斑半径。
由公式(1.3)可以看出:
( 1) 脉冲激光测距仪要想获得最大的测程,在设计过程中要尽量提高
激光发射单元的峰值光功率,增 大激光接收单元的接收面积,增大发射与
接收单元光学系统的透过率,减少发射光束的发散角,提高接收 灵敏度。
因此,选择合适的高峰值功率输出的激光二极管和灵敏度较高的接收光
电二极管,对提 高系统的测程有非常重要的意义。
(2) 激光测距系统的最大测程还与外部测距条件密切相关,大气 透过
率越高,漫反射率越大,激光测距系统的最大测程会相应增大。在某些场
合可以选用高反射 率的发射镜配合测量以提高测量距离 。
4.3测距系统信噪比分析
光子测距系统的信噪比SNR为:
(4.3)
式(1.5)中M为雪崩光电二极管APD的增益,通常在10~100左右,与波长有关; η为A0D的光量子效率; Δf为接收等效带宽;i
d
为APD暗电流;k为玻< br>尔兹曼常数;
T
e
为绝对温度,工作温度在233~343K;R
L< br>为等效电阻;P为探测信号
功率;P
B
背景噪声功率;v为激光光波功率。其中 分子是信号项,分母中
有三项,一项和第二项为发射噪声,第三项为热噪声。一般对雪崩二极
管 而言,发射噪声是主要的。通常情况下,控制发射噪声为热噪声的两
倍,当SNR=1可得到最小可探测 的光功率为
(4.4)


以所选用的EG&G公司的硅光电二极管APD C30724P为分析对象,
η=0.75, 增益范围为10~20,典型值M=15,C
d
=1pF,hv=2.106×10
-
19
J,T=1493K,接收带宽Δ f由探测器的频响特性和前放的带宽
e
12πR
L
C
i
(与 测距精度无关)决定,对单级滤波的前放电路来说,接收
器的最佳信号带宽Δf=0.189Δt, Δ t为激光脉冲宽度,一般在ns量级,
在此,用到的激光二极管脉冲宽度为30ns,由此可得Δf=6 .3MHz,则
P
min
=8.17×10
-20
W。说明APD C30724P具有较强的探测能力。




第五章 测距仪的精度分析
5.1精度分析
脉冲测距的精度可由下表示

(5.1)
由于光在大气中的传播速度C受大气折射率变化的影响,误差大约
为1×1 0
-6
,可忽略不计。因此脉冲测距的精度基本上只取决于测距系
统总的时间分辨率Δ t。而时间分辨率主要与以下因素有关:激光器的
脉冲宽度(持续时间);大气传输引起的衰变和畸变; 反射器(或反射目
标)和光接收系统对脉冲的展宽;计数器的频率上限或者计时电路的精
确度。 在短距离测距时,选用窄脉宽激光和合适的脉冲时刻鉴别单元以
达到消除或减小漂移误差和时间抖动,基 于边沿鉴别的测距误差取决于
信噪比以及信号前沿上升时间。
(5.2)
由此可得测距误差可表示为:
(5.3)
由此可得:如果取信噪比SNR=8,i
r
=4ns,带入上式可得:最大 测距误差
为7.5cm。
由此可知,脉冲前沿越小,信噪比越高,测量精度就越高,如何获得更
窄的脉冲
前沿是获得较高精度的关键之一。影响系统误差的另一个方面是计数器
的频率 上限或计时电路的分辨率,选用高精度的计时电路在很大程度上
影响着测距精度,为此选用了一款性价比 极高的TDC-GP2芯片,其典型


的分辨率为65ps,它的时间测量范围是O~1. 89s,则系统距离测量范
围在0~270m,测距误差为:
(5.4)
所以整个系统的系统误差的计算公式为:
(5.5)

5.2提高脉冲激光测距精度的措施
5.2.1时间间隔扩展法
时间间隔扩展法是在待测的部分时间范围中,对电容器做恒定电流
充电,让电容器的端电压随着待测时间 的长短做线性的增减,但是在待
测时间结束时,则利用另外一个比充电电流要小得多的恒流源使电容器< br>开始线性放电,直到电容器的端电压回到充电的起始值为止。在放电的
过程中,利用计数器对较长 的放电时间做一计数。在得到放电时间之
后,就可以反推得到充电时间(即待测部分时间)的大小。图3-1 时间扩展法原理图
设充电电流为,放电电流,己知与之间的比例系数,就可以得到扩展后的时间与实际输入间隔之间的关系如下:
(5.6)
其中:
时间间隔扩展法也可以得到很高的分辨率,受充电电流与放电电流
的比值影响较大。由于它把待测时间放 大了,因此两次测量之间的时间
间隔长。

5.2.2时间振幅转换法
时间振 幅转换法是在待测时间范围内,利用一个恒流源对一个电容
充电,于是该电容的端电压就会随着待测时间 的长短,即充电时间的长
短而改变。在待测时间结束的同时,停止充电,并利用一个模数转换器
(AD)来测量此时的电容电压,则电压的大小将正比于待测时间的长
短。利用两组充电电路与两个模数 转换器,可以求得待测时间。
时间振幅转换法克服了时间间隔扩展法转换时间过长、非线性难以
控制等问题,可以得到很高的插补分辨率。但在实际中,线性度的问题
极大地限制了该方法的应用。若要 使电容器的端电压随待测时间的长短
做线性变化,则必须以稳定的电流充电。先不考虑电流源本身的不稳 定
度,在开始充电的瞬间,必定会有充电非线性现象出现。这种非线性现
象的原因是作为控制充 电开关的快速开关管,在由完全截止状态到完全


导通状态需要一点时间,通常为微秒量级 ,在这段时间里,通过的充电
电流也由小变大,结果就造成了电压变化的非线性,使得其在测量很短的时间时出现较大的误差。

5.2.3传递延迟法
传递延时法利用了当信号传输 经过电子元件与连接导线时,必定产
生时间延迟作用的现象作为测量短暂时间的手段。图5-2是传递延 时电
路的基本结构示意图:
传递延迟法原理图(a)
图5-2 传递延迟法原理图 (b)
图a中一个延时单元由一个缓冲门及一个D触发器组成,它是一串传
递延时链的基本单位 。逻辑缓冲门的输出逻辑状态随着输入改变,D触
发器用来记录改变了状态的逻辑门数目。一个延时单元 有两个输入端与
两个输出端:逻辑缓冲门的输入端与输出端分别为延时单元的“串联输
入端”与 “串联输出端”;D触发器的时钟输入端与输出端Q则为延时单元
的“并联输入端”与“状态输出端”。 每一个串联输出端,均在同一个延时
单元内连接到相对应的D触发器输入端,以便该触发器可以及时获得 该
逻辑缓冲门的输出状态。
图b中延时单元的串联输出端连接到下一个延时单元的串联输入端而
成为链状。整个传递延时链的所有并联输入端均以并联的方式接在一
起,接收同一个停止信号作 为触发器的时钟信号。触发器的状态输出端
并联式的顺序连接到编码电路的输入端口。信号经过一个逻辑 缓冲门与
其输入端前的一段连接路径所需要的传输时间,就是一个延时单元所造
成的延迟时间。 如果在待测部分时间开始的同时,将起始脉冲信号输入
第一个延时单元的串联输入端,由于信号经过各逻 辑门与连接导线都需
要时间,所以这个信号将依次传输过每一个逻辑缓冲门,使各缓冲门的
输出 以的延迟时间为间隔,依次地改变其输出状态。当停止信号来临
时,各U触发器记录下到此时为止有多少 逻辑缓冲门的状态改变了,然
后经过编码电路将状态改变的延时单元数目转换成数字信号输出。接着待测部分时间就马上可以经由此数码乘以一个延时单元的传递时间而获
得:
(5.7)
其中为任一个待测部分时间;为改变了状态的延时单元个数;
j(0差。


延时单元的延迟时间 即为此传递延时链可以解析的最小时间。使用
第(5.7)式来计算时间,必须要求每一个延时单元所提 供的延迟时间均完
全相同,然而实际上这是不可能的。各个延时单元的延迟时间之差异越
小,则 制成插补器的线性度越好,测量误差也越小。













第六章 激光测距仪总体设计
激光测距仪总体设计如图6-1所示:
图6-1 实验系统总体设计图该系统主要由脉冲激光发射系统、光电接收系统、脉冲输入信号整
形电路、测量电路、单片机、电源 电路、时钟电路组成。
如上图所示,假设激光器产生的激光脉冲脉宽是32ns,频率是
1kH z。激光产生后通过分光镜分成两束,一束光直接射到APD1上,另
一束光射向目标并反射回来经滤光 片打到APD2上,两者产生的电信号
分别都通过电路处理,区别是APD1上产生的信号是作为高速时 间测量
单元的开始信号,而APD2上产生的信号是作为高速时间测量单元的停
止信号,开始信 号和停止信号都是以上升沿为触发。这样可以有效地消
除在分光镜之前的时间误差,同时也有效地抵消光 电传感器和信号处理
的时间延时。
APD1出来的电信号有两条路径可走,一条是直接送入放大 电路,另
一条是通一个延时后再进送入放大电路。而选择哪一条路径就由CPU来
控制,测量短 距离时用第一条路径,测量长距离时用第二条路径。
该系统的测距过程为:激光器发出一个激光脉冲,经 过近红外半导
体激光用准直透镜06GLC得到发散角为4.56mrad的激光束。由于激光器
发出的激光并不是平行的,到达远处测距目标光斑很大,故本系统在此
加入了光束整形。光束整形部分 采用焦距为2mm的目镜和焦距为3.84cm


物镜组成。光束经过分束镜后,约1%的 能量直接送到APD1,约99%的能
量射向目标。1%能量的激光脉冲经过APD1后被转换为电脉冲 ,然后经前
置放大器和后续放大器逐级进行放大,最后经过定比鉴别器进行整形处
理,得到理想 的电脉冲,送给TDC-GP2作为计时起点的触发脉冲,起始
时刻用表示;射向目标的能量经目标漫反 射回来后变的较微弱,经接收
光学系统,接光学口径=0.0254m,光学系统透过率=0.9,窄带 光学滤波
器的透过率=0.7。被APD2雪崩光电探测器接收,接收电路将接收到的光
信号转 换为幅值约1mV频率约1 KHz的电脉冲,然后经前置放大器和后续
放大器分别进行放大,最后经过 定比鉴别器进行整形处理,得到理想的
电脉冲,送给时间数字转换器TDC-GP2作为计时终点的触发 脉冲,终了
时刻用表示。由公式即可算出被测目标距离。
在长时间工作过程中激光器内部温度升 高,这将导致输出功率和输
出波长发生变化,为了保证系统性能的高度稳定必须对激光器进行温度
控制。
由于APD的内增益及反向击穿电压具有很大的温度系数,在正常
工作时必须配置一个 高精度温度采集单元和恒温控制电路单元来提供合
适的偏置电压。恒温控制电路单元由单片机通过调节半 导体制冷器
(TEC)的工作电压来实现精确温度控制。



















总结
脉冲式激光测距系统具有结构简单 ,信号易于处理,易于实现实时


测量等优点,具有巨大的发展潜力,但是由于受到时间间 隔测量技术的
限制,使其在短距离测量方面很难达到较高的测量精度。

我和动物交朋友-水浒传读书笔记大全


好段摘抄100字-山西省忻州市教育局


明信片祝福语-2015北京高考英语


李敖北大演讲稿-总务工作总结


十八届五中全会-商铺租赁合同模板


建党伟业观后感-琼台书院


言论-健康祝福语


校园安全教育-山西一本分数线