基本矩阵的估计和图像矫正汇总
别妄想泡我
705次浏览
2020年07月31日 04:54
最佳经验
本文由作者推荐
安全用电原则-互文是什么意思
不幸的是,不是所有的正交矩阵都是旋转矩
1个或—1,行列式
1的正交矩阵并不是旋转矩阵。
然而,我们总是能把公式(7)中的两个正交
s。
有四种情况要考虑,根据组合两者的决定因素:
7)成为两旋转矩阵和对角
9)那样的有三个参
(10)
1s (11)
(12)
使其最小,
2约束:
(13) 图2一个原始图像变换;图像I使用TR旋转,图像'I使用TR'旋转。 Fig. 2. Transformation of an original image; the image I with homogeneous coordinates is rotated by TRand the image 'Iis transformed byTR' . 图3极线。它们被表示为变换后的图像和平面之间的交叉线,包括线x= y= 0;平面包括线x = y = 0被称为极平面。在这个图中,我们展示了两个极平面和两条极线。 Fig. 3. Epipolar lines. They are represented as intersection lines between the transformed images and planes that include the line x = y = 0; the planes including the line x = y = 0 are interpreted as epipolar planes. In this figure, we show two epipolar planes and two elipolar lines by doted lines.
图片矫正
由两个旋转矩阵和对角的参数化产生一种新
(14)
T
yxTnnnmRn,,,TzyxTnnnmRn'''''Mallon, P.F. Whelan, Projective rectification from the fundamental matrix, Image and Vision Computing 23 (2005) 643–650. [23] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics 11 (1963) 431–441. [24] A. Papadimitriou, T. Dennis, Epipolar line estimation and rectification for stereo image pairs, IEEE Transaction on Pattern Analysis and Machine Intelligence 5 (1996) 672–676. [25] M. Pollefeys, R. Koch, L.V. Gool, A simple and efficient rectification method for general motion, Proc. International Conference on Pattern Recognition, 1 (1999) 496–501. [26] S. Roy, J. Meunier, I. Cox, Cylindrical rectification to minimize epipolar distortion, Proceedings of Computer Vision and Pattern Recognition (1997) 393– 399. [27] F. Sur, N. Noury, M.-O. Berger, Computing the uncertainty of the 8 point algorithm for fundamental matrix estimation. Proc. British Machine Vision Conference, (2008). [28] R. Tsai, T. Huang, Uniqueness and estimation of three dimensional motion parameters of rigid objects with curved surfaces, IEEE Transaction on Pattern Analysis and Machine Intelligence 6 (1984) 13–27. [29] J.-L. Xiong, Q. Zhang, J. Xia, X. Xu, C. Lin, F. Luo, Estimating the fundamental matrix based on the actual distance, Proc. International Conference on Information and Autimation (2010) 1958–1963. [30] Z. Zhang, Determining the epipolar geometry and its uncertainty: a review, International Journal of Computer Vision 27 (1998) 161–195. [31] J. Zheng, W. Shi, An improved algorithm of fundamental matrix estimation based on epipolar line restriction, Proc. International Conference on Signal Processing (2008) 1350–1354. [32] H. Zhou, P.R. Green, A.M. Wallace, Estimation of epipolar geometry by linear mixed-effect modelling, Neurocomputing 72 (2009) 3881–3890.