大学物理 刚体的定轴转动 习题及答案

萌到你眼炸
672次浏览
2020年07月31日 08:14
最佳经验
本文由作者推荐

廊坊师范-实习日志范文40篇


第4章 刚体的定轴转动 习题及答案

1.刚体绕一定轴作匀变速转动,刚 体上任一点是否有切向加速度?是否有法向加速度?切向和法
向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度

不变。刚体上任一点都作匀变速圆周运动,因此该点 速
率在均匀变化,
vl

,所以一定有切向加速度
a
t< br>l

,其大小不变。又因该点速度的方向变化,
所以一定有法向加速度
a
n
l

2
,由于角速度变化,所以法向加速度的大小也在变化 。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?
答:刚体是一个特 殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z转动时,动量
矩定理的形式为
M< br>z

dL
z

M
z
表示刚体对Z轴的合外力 矩,
L
z
表示刚体对Z轴的动量矩。
dt
L
z
< br>

m
i
l
i
2


I

,其中
I


m
i
l
i2

,代表刚体对定轴的转动惯量,所以
M
z

dL
z
dd



I


II< br>
。既
M
z
I


dtdt dt
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,
及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同 ,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布
比较均匀,试问:(1)如果它们的角动量 相同,哪个轮子转得快?(2)如果它们的角速度相同,
哪个轮子的角动量大?
答:(1)由 于
LI

,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边< br>缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;
(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无 摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问
平台如何运动?如小汽车突然刹车, 此过程角动量是否守恒?动量是否守恒?能量是否守恒?
答:玩具车相对台面由静止启动,绕轴作圆周 运动时,平台将沿相反方向转动;小汽车突然刹
车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为
1200rmin
的飞轮,因制动而均匀地减速,经10秒后停止转动,求:
(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数;
(2) 开始制动后5秒时飞轮的角速度。
解:(1)由题意飞轮的初角速度为

0
2

n40

(rads)

飞轮作均减速转动,其角加速度为





0
t

040

4

rads
2< br>
10
故从开始制动到停止转动,飞轮转过的角位移为
1
< br>


0
t

t
2
200

rad

2
因此,飞轮转过圈数为

1




2


100圈。
(2)开始制动后5秒时飞轮的角速度为



0

t40

4

520

(rad s)

6.如图所示, 一飞轮由一直径为
d
2
(m)
,厚 度为
a(m)
的圆盘和两个直径为
d
1
(m)
,长为
L(m)

共轴圆柱体组成,设飞轮的密度为

(kgm
3
)
,求飞轮对轴的转动惯量。
d
1
L
a
d
2

解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为 圆盘与两圆柱体对同轴的转
动惯量之和。由此可得
II
1
I
2
dd
11
2m
1
(
1
)
2
 m
2
(
2
)
2
2222
d
1
2< br>d
1
2
1
d
2
2
d
2
2< br>
1
2

()L()

()a( )
222222
11
4


(Ld
1
4
ad
2
)(kgm
2
)
162
7. 如图所示 ,一半径为r,质量为m
1
的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m
2< br>的重
物,求重物下落的加速度。
解:设绳中张力为T
对于重物按牛顿第二定律有
m
2
gTm
2
a
(1)
对于滑轮按转动定律有

Tr
由角量线量关系有
1
2
mr

(2)
2
a

r
(3)
联立以上三式解得


2


8. 如图 所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r
1
、r
2
,质量为
m
1

m
2
,可绕过
盘心且与盘面垂直的光滑水平 轴转动,两轮上绕有轻绳,各挂有质量为
m
3

m
4
的重物 ,求轮的角
加速度


解:设连接
m
3
的绳子中 的张力为T1,连接
m
4
的绳子中的张力为T2。
对重物
m
3
按牛顿第二定律有
m
3
gT
1
m
3
a
3
(1)
对重物
m
4
按牛顿第二定律有
T
2
m
4
gm
4
a
4
(2)
对两个园盘,作为一个整体,按转动定律有
1

1

T
1
r
1
T
2
r
2


m
1
r
1
m
2
r
2


(3)
2

2

由角量线量之间的关系有
a
3
r
1

(4)
a
4
r
2

(5)
联立以上五式解得


m
3
r
1
m
4
r
2

11
m
1
r
1< br>2
m
2
r
2
2
m
3
r
1
2
m
4
r
2
2
22
9. 如图所示, 一半径为R,质量为m的匀质圆盘,以角速度ω绕其中心轴转动。现将它平放在一水
平板上,盘与板表面 的摩擦因数为μ。
(1)求圆盘所受的摩擦力矩;
(2)问经过多少时间后,圆盘转动才能停止?
解:分析:圆盘各部分的摩擦力的力臂不同, 为此,可将圆盘分
割成许多同心圆环,对环的摩擦力矩积分即可得总力矩。另由于
摩擦力矩是恒 力矩,由角动量定理可求得圆盘停止前所经历的时
间。
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

ω
dr
dM

(
m
22
2

rdr)g r2r

mgdrR

2

R
r
dF
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
的总摩擦力矩大小为
M

dM

R
0
2r
2
< br>mgdr2
dr

mgR

2
R3
12
mr
,由角动量定理可得圆盘停止的
2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量
I


时间为
t
0I

3

R


M4

g
10. 飞轮的质量
m
=60kg,半 径
R
=0.25m,绕其水平中心轴
O
转动,转速为900rev·min< br>-1
.现利
用一制动的闸杆,在闸杆的一端加一竖直方向的制动力
F
, 可使飞轮减速.已知闸杆的尺寸如题4-10
图所示,闸瓦与飞轮之间的摩擦系数

=0.4,飞轮的转动惯量可按匀质圆盘计算.试求:
(1)设
F
=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?
(2)如果在2s内飞轮转速减少一半,需加多大的力
F
?
解: (1)先 作闸杆和飞轮的受力分析图(如图(b)).图中
N

N

是正压力 ,
F
r

F
r

是摩擦力,
F
x

F
y
是杆在
A
点转轴处所受支承力,
R
是轮的重力,
P
是轮在
O
轴处所受
支承力.
杆处于静止状态,所以对
A
点的合力矩应为零,设闸瓦厚度不计,则有
F( l
1
l
2
)N

l
1
0N


l
1
l
2
F

l
1
对飞轮,按转动定律有

F
r
RI
,式中负号表示


角速度

方向相反.

F
r


N

NN



F
r


N



又∵
I
l
1
l
2
F

l
1
1
mR
2
,

2



F
r
R2

(l
1
l
2
)
F

ImRl
1

F100N
等代入上式,得


20.40(0.500.75)40
100rads
2

600.250.503
由此可算出自施加制动闸开始到飞轮停止转动的时间为
t
这段时间内飞轮的角位移为

0
9002

3
7.06s


6040



0
t

t
2

19002

91409


(
)
2

2604234
53.12

r ad
可知在这段时间里,飞轮转了
53.1
转.

4

< p>
(2)

0
900
2

rads
1
,要求飞轮转速在
t2
s
内减少一半,可知
60

0


2


0
t


0
2t

15

rads
2

2
用上面式(1)所示的关系,可求出所需的制动力为
F

m Rl
1

2

(l
1
l
2
)< br>600.250.5015


20.40(0.500.75)2
177N
11. 如图所示,主动轮A 半径为r
1
,转动惯量为
I
1
,绕定轴
O
1
转动;从动轮B半径为r
2
,转动惯量

I
2
,绕定轴< br>O
2
转动;两轮之间无相对滑动。若知主动轮受到的驱动力矩为M,求两个轮的角加速度

1


2


解:设两轮之间摩擦力为f
对主动轮按转动定律有:
Mfr
1
I
1

1
(1)
对从动轮按转动定律有
fr
2
I
2

2
(2)
由于两个轮边沿速率相同,有
r
1

1
r
2

2
(3)
联立以上三式解得
Mr
2
2


1

I
1
r
2
2
I
2
r
1
2


1

Mr
1
r
2
I
1
r
2
2
I
2r
1
2

12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对 称轴
OO

转动.设大小圆柱体的半径分
别为
R

r
,质量分别为
M

m
.绕在两柱体上的细绳分别与物体
m
1

m
2
相连,
m
1

m
2
则挂
在圆柱体的两侧,如题4-12(a)图所示.设
R
=0.20m,
r
=0.10m,
m
=4 kg,
M
=10 kg,
m
1

m
2
=2 kg,且开始时
m
1

m
2
离地均为
h
=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
解: 设
a1
,
a
2
和β分别为
m
1
,
m
2
和柱体的加速度及角加速度方向题4-12(b)图.

5



(1)
m
1
,
m
2
和柱体的运动方程如下:
T
2
m
2
gm
2
a
2

m
1
gT
1
m
1
a
1


T
1
RT
2
rI


式中
T
1

T
1
,T
2

T
2
,a
2
r

,a
1
 R



I
由上式求得
11
MR
2
mr
2

22



Rm
1
rm
2
g< br>Im
1
R
2
m
2
r
2
0.2 20.12
9.8

11
100.20
2
4 0.10
2
20.20
2
20.10
2
226.13rads
2
(2)由①式
T
2
m
2
r

m
2
g20.106.1329.820.8
N

由②式
T
1
m
1
gm
1
R

29.820.2.6.1317.1
N

13. 一质量为
m
、半径为R的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由 转动.另一质量

m
0
的子弹以速度
v
0
射入轮缘 (如题2-31图所示方向).
(1)开始时轮是静止的,在质点打入后的角速度为何值?
(2)用
m
,
m
0


表示系统(包括轮和质点)最后动能和初始动能之比.
解: (1)射入的过程对
O
轴的角动量守恒

6


Rs in

m
0
v
0
(mm
0
)R
2





m
0
v
0
sin


(mm
0
)R
mvsin

2
1
[(mm< br>0
)R
2
][
00
]
E
k
2(m m
0
)Rm
0
sin
2


(2)
1
E
k
0
mm
0
2
m
0
v
0
2
14. 如图所示,长为l的轻杆,两端各固定质量分别为m和2m的小球, 杆可绕水平光滑固定轴O在竖
2
l
.轻杆原来静止在竖直位置.今有一质量为m的小球 ,
3

1

以水平速度

0
与杆下端小球 m作对心碰撞,碰后以

0
的速度返回,试求碰撞后轻杆所获得的角速
2直面内转动,转轴O距两端分别为
l

度.
解:碰撞过程满足角动量守恒:
2m
1
3
212
mv< br>0
lmv
0
lI


323
21< br>2
2
2
(l)
2
2m(l)m

Im

l
333
2
2
所以
mv
0
lml


3
3v
由此得到:


0

2l

1
3
l
O
m
1
2

v
0
2
3
l


v
0
m
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J
A
=10 kg·m2 和 J
B
=20 kg·m2.开始时,A轮转速为600 revmin,B轮 静止.C为摩擦啮合器,其转动惯量可忽略不计.A、
B分别与C的左、右两个组件相连,当C的左右组 件啮合时,B轮得到加速而A轮减速,直到两轮的转
速相等为止.设轴光滑,求:
(1) 两轮啮合后的转速n;


A B
(2) 两轮各自所受的冲量矩.
C
解:(1) 两轮啮合过程满足角动量守恒:

I
A

A
(I
A
I
B
)


所以



A

I
A

A

I
A
I
B
因为

2n



n
I
A< br>n
A
10600
200rmin

I
A
I
B
1020
2

20020

rad s

603
7
(2) 两轮各自所受的冲量矩:
末角速度:

2n



A轮各 所受的冲量矩:
LI
A

I
A

0
10(
B轮各所受的冲量矩:
20

600400

2

)4.1910
2
(Nms)

3 603
20

400

0)4.1910
2(Nms)

33
LI
B

I
B< br>
0
20(
16. 有一半径为R的均匀球体,绕通过其一直径的光滑固定 轴匀速转动,转动周期为
T
0
.如它的半
径由R自动收缩为
1
R
,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J=2mR2
2
5,式中m和R分别为球体的质量和半径).
解:(1) 球体收缩过程满足角动量守恒:

I
0

0
I
2

2

2
mR
2

0
I


2

00

5
4

0

21
I
2
m(R)
2
52
所以

T
2


2

2
T
0


4

0
4
17. 一质量均匀分布的圆盘,质量为M,半径为R,放 在一粗糙水平面上(圆盘与水平面之间的摩擦
系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动 .开始时,圆盘静止,一质量为m的子弹以
水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求
(1) 子弹击中圆盘后,盘所获得的角速度.
(2) 经过多少时间后,圆盘停止转动.


解:(1) 子弹击中圆盘过程满足角动量守恒:
1
2

mRv
0
(mRMR)


2
mRv
0
mv
0
所以




11
mR
2
MR
2< br>(mM)R
22
2

v
0

m
R
O
(2)圆盘受到的摩擦力矩为
R
< br>M




2

rdrgr
MRg

0
2
3
由转动定律得


M


I
mv
0
1
(mR
2
MR
2
)(0)
1
2
(mM)R< br>


0
I(



0
) 3mv
0
2


t

2

M2

Mg


MRg
3

8


第4章 刚体的定轴转动 习题及答案

1.刚体 绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法
向加速度的大小 是否随时间变化?
答:当刚体作匀变速转动时,角加速度

不变。刚体上任一点都作 匀变速圆周运动,因此该点速
率在均匀变化,
vl

,所以一定有切向加速 度
a
t
l

,其大小不变。又因该点速度的方向变化,
所 以一定有法向加速度
a
n
l

2
,由于角速度变化,所以 法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?
答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z转动时,动量
矩 定理的形式为
M
z

dL
z

M
z
表示刚体对Z轴的合外力矩,
L
z
表示刚体对Z轴的动量矩。
dt
L
z



m
i
l
i
2


I

,其中
I


m
i
l
i
2

,代表刚体对定轴的转动惯量,所以
M
z

dL
z
dd



I

II

。既
M
z
I


dtdtdt
所以刚体定轴转动的 转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,
及质点系的动量矩定理用于刚体时 在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附 近,另一个轮子的质量分布
比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如 果它们的角速度相同,
哪个轮子的角动量大?
答:(1)由于
LI
,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边
缘附近的轮子的转动惯量大 ,故角速度小,转得慢,质量分布比较均匀的轮子转得快;
(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无 摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问
平台如何运动?如小汽车突然刹车, 此过程角动量是否守恒?动量是否守恒?能量是否守恒?
答:玩具车相对台面由静止启动,绕轴作圆周 运动时,平台将沿相反方向转动;小汽车突然刹
车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为
1200rmin
的飞轮,因制动而均匀地减速,经10秒后停止转动,求:
(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数;
(2) 开始制动后5秒时飞轮的角速度。
解:(1)由题意飞轮的初角速度为

0
2

n40

(rads)

飞轮作均减速转动,其角加速度为





0
t

040

4

rads
2< br>
10
故从开始制动到停止转动,飞轮转过的角位移为
1
< br>


0
t

t
2
200

rad

2
因此,飞轮转过圈数为

1




2


100圈。
(2)开始制动后5秒时飞轮的角速度为



0

t40

4

520

(rad s)

6.如图所示, 一飞轮由一直径为
d
2
(m)
,厚 度为
a(m)
的圆盘和两个直径为
d
1
(m)
,长为
L(m)

共轴圆柱体组成,设飞轮的密度为

(kgm
3
)
,求飞轮对轴的转动惯量。
d
1
L
a
d
2

解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为 圆盘与两圆柱体对同轴的转
动惯量之和。由此可得
II
1
I
2
dd
11
2m
1
(
1
)
2
 m
2
(
2
)
2
2222
d
1
2< br>d
1
2
1
d
2
2
d
2
2< br>
1
2

()L()

()a( )
222222
11
4


(Ld
1
4
ad
2
)(kgm
2
)
162
7. 如图所示 ,一半径为r,质量为m
1
的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m
2< br>的重
物,求重物下落的加速度。
解:设绳中张力为T
对于重物按牛顿第二定律有
m
2
gTm
2
a
(1)
对于滑轮按转动定律有

Tr
由角量线量关系有
1
2
mr

(2)
2
a

r
(3)
联立以上三式解得


2


8. 如图 所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r
1
、r
2
,质量为
m
1

m
2
,可绕过
盘心且与盘面垂直的光滑水平 轴转动,两轮上绕有轻绳,各挂有质量为
m
3

m
4
的重物 ,求轮的角
加速度


解:设连接
m
3
的绳子中 的张力为T1,连接
m
4
的绳子中的张力为T2。
对重物
m
3
按牛顿第二定律有
m
3
gT
1
m
3
a
3
(1)
对重物
m
4
按牛顿第二定律有
T
2
m
4
gm
4
a
4
(2)
对两个园盘,作为一个整体,按转动定律有
1

1

T
1
r
1
T
2
r
2


m
1
r
1
m
2
r
2


(3)
2

2

由角量线量之间的关系有
a
3
r
1

(4)
a
4
r
2

(5)
联立以上五式解得


m
3
r
1
m
4
r
2

11
m
1
r
1< br>2
m
2
r
2
2
m
3
r
1
2
m
4
r
2
2
22
9. 如图所示, 一半径为R,质量为m的匀质圆盘,以角速度ω绕其中心轴转动。现将它平放在一水
平板上,盘与板表面 的摩擦因数为μ。
(1)求圆盘所受的摩擦力矩;
(2)问经过多少时间后,圆盘转动才能停止?
解:分析:圆盘各部分的摩擦力的力臂不同, 为此,可将圆盘分
割成许多同心圆环,对环的摩擦力矩积分即可得总力矩。另由于
摩擦力矩是恒 力矩,由角动量定理可求得圆盘停止前所经历的时
间。
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

ω
dr
dM

(
m
22
2

rdr)g r2r

mgdrR

2

R
r
dF
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
的总摩擦力矩大小为
M

dM

R
0
2r
2
< br>mgdr2
dr

mgR

2
R3
12
mr
,由角动量定理可得圆盘停止的
2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量
I


时间为
t
0I

3

R


M4

g
10. 飞轮的质量
m
=60kg,半 径
R
=0.25m,绕其水平中心轴
O
转动,转速为900rev·min< br>-1
.现利
用一制动的闸杆,在闸杆的一端加一竖直方向的制动力
F
, 可使飞轮减速.已知闸杆的尺寸如题4-10
图所示,闸瓦与飞轮之间的摩擦系数

=0.4,飞轮的转动惯量可按匀质圆盘计算.试求:
(1)设
F
=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?
(2)如果在2s内飞轮转速减少一半,需加多大的力
F
?
解: (1)先 作闸杆和飞轮的受力分析图(如图(b)).图中
N

N

是正压力 ,
F
r

F
r

是摩擦力,
F
x

F
y
是杆在
A
点转轴处所受支承力,
R
是轮的重力,
P
是轮在
O
轴处所受
支承力.
杆处于静止状态,所以对
A
点的合力矩应为零,设闸瓦厚度不计,则有
F( l
1
l
2
)N

l
1
0N


l
1
l
2
F

l
1
对飞轮,按转动定律有

F
r
RI
,式中负号表示


角速度

方向相反.

F
r


N

NN



F
r


N



又∵
I
l
1
l
2
F

l
1
1
mR
2
,

2



F
r
R2

(l
1
l
2
)
F

ImRl
1

F100N
等代入上式,得


20.40(0.500.75)40
100rads
2

600.250.503
由此可算出自施加制动闸开始到飞轮停止转动的时间为
t
这段时间内飞轮的角位移为

0
9002

3
7.06s


6040



0
t

t
2

19002

91409


(
)
2

2604234
53.12

r ad
可知在这段时间里,飞轮转了
53.1
转.

4

< p>
(2)

0
900
2

rads
1
,要求飞轮转速在
t2
s
内减少一半,可知
60

0


2


0
t


0
2t

15

rads
2

2
用上面式(1)所示的关系,可求出所需的制动力为
F

m Rl
1

2

(l
1
l
2
)< br>600.250.5015


20.40(0.500.75)2
177N
11. 如图所示,主动轮A 半径为r
1
,转动惯量为
I
1
,绕定轴
O
1
转动;从动轮B半径为r
2
,转动惯量

I
2
,绕定轴< br>O
2
转动;两轮之间无相对滑动。若知主动轮受到的驱动力矩为M,求两个轮的角加速度

1


2


解:设两轮之间摩擦力为f
对主动轮按转动定律有:
Mfr
1
I
1

1
(1)
对从动轮按转动定律有
fr
2
I
2

2
(2)
由于两个轮边沿速率相同,有
r
1

1
r
2

2
(3)
联立以上三式解得
Mr
2
2


1

I
1
r
2
2
I
2
r
1
2


1

Mr
1
r
2
I
1
r
2
2
I
2r
1
2

12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对 称轴
OO

转动.设大小圆柱体的半径分
别为
R

r
,质量分别为
M

m
.绕在两柱体上的细绳分别与物体
m
1

m
2
相连,
m
1

m
2
则挂
在圆柱体的两侧,如题4-12(a)图所示.设
R
=0.20m,
r
=0.10m,
m
=4 kg,
M
=10 kg,
m
1

m
2
=2 kg,且开始时
m
1

m
2
离地均为
h
=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
解: 设
a1
,
a
2
和β分别为
m
1
,
m
2
和柱体的加速度及角加速度方向题4-12(b)图.

5



(1)
m
1
,
m
2
和柱体的运动方程如下:
T
2
m
2
gm
2
a
2

m
1
gT
1
m
1
a
1


T
1
RT
2
rI


式中
T
1

T
1
,T
2

T
2
,a
2
r

,a
1
 R



I
由上式求得
11
MR
2
mr
2

22



Rm
1
rm
2
g< br>Im
1
R
2
m
2
r
2
0.2 20.12
9.8

11
100.20
2
4 0.10
2
20.20
2
20.10
2
226.13rads
2
(2)由①式
T
2
m
2
r

m
2
g20.106.1329.820.8
N

由②式
T
1
m
1
gm
1
R

29.820.2.6.1317.1
N

13. 一质量为
m
、半径为R的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由 转动.另一质量

m
0
的子弹以速度
v
0
射入轮缘 (如题2-31图所示方向).
(1)开始时轮是静止的,在质点打入后的角速度为何值?
(2)用
m
,
m
0


表示系统(包括轮和质点)最后动能和初始动能之比.
解: (1)射入的过程对
O
轴的角动量守恒

6


Rs in

m
0
v
0
(mm
0
)R
2





m
0
v
0
sin


(mm
0
)R
mvsin

2
1
[(mm< br>0
)R
2
][
00
]
E
k
2(m m
0
)Rm
0
sin
2


(2)
1
E
k
0
mm
0
2
m
0
v
0
2
14. 如图所示,长为l的轻杆,两端各固定质量分别为m和2m的小球, 杆可绕水平光滑固定轴O在竖
2
l
.轻杆原来静止在竖直位置.今有一质量为m的小球 ,
3

1

以水平速度

0
与杆下端小球 m作对心碰撞,碰后以

0
的速度返回,试求碰撞后轻杆所获得的角速
2直面内转动,转轴O距两端分别为
l

度.
解:碰撞过程满足角动量守恒:
2m
1
3
212
mv< br>0
lmv
0
lI


323
21< br>2
2
2
(l)
2
2m(l)m

Im

l
333
2
2
所以
mv
0
lml


3
3v
由此得到:


0

2l

1
3
l
O
m
1
2

v
0
2
3
l


v
0
m
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J
A
=10 kg·m2 和 J
B
=20 kg·m2.开始时,A轮转速为600 revmin,B轮 静止.C为摩擦啮合器,其转动惯量可忽略不计.A、
B分别与C的左、右两个组件相连,当C的左右组 件啮合时,B轮得到加速而A轮减速,直到两轮的转
速相等为止.设轴光滑,求:
(1) 两轮啮合后的转速n;


A B
(2) 两轮各自所受的冲量矩.
C
解:(1) 两轮啮合过程满足角动量守恒:

I
A

A
(I
A
I
B
)


所以



A

I
A

A

I
A
I
B
因为

2n



n
I
A< br>n
A
10600
200rmin

I
A
I
B
1020
2

20020

rad s

603
7
(2) 两轮各自所受的冲量矩:
末角速度:

2n



A轮各 所受的冲量矩:
LI
A

I
A

0
10(
B轮各所受的冲量矩:
20

600400

2

)4.1910
2
(Nms)

3 603
20

400

0)4.1910
2(Nms)

33
LI
B

I
B< br>
0
20(
16. 有一半径为R的均匀球体,绕通过其一直径的光滑固定 轴匀速转动,转动周期为
T
0
.如它的半
径由R自动收缩为
1
R
,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J=2mR2
2
5,式中m和R分别为球体的质量和半径).
解:(1) 球体收缩过程满足角动量守恒:

I
0

0
I
2

2

2
mR
2

0
I


2

00

5
4

0

21
I
2
m(R)
2
52
所以

T
2


2

2
T
0


4

0
4
17. 一质量均匀分布的圆盘,质量为M,半径为R,放 在一粗糙水平面上(圆盘与水平面之间的摩擦
系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动 .开始时,圆盘静止,一质量为m的子弹以
水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求
(1) 子弹击中圆盘后,盘所获得的角速度.
(2) 经过多少时间后,圆盘停止转动.


解:(1) 子弹击中圆盘过程满足角动量守恒:
1
2

mRv
0
(mRMR)


2
mRv
0
mv
0
所以




11
mR
2
MR
2< br>(mM)R
22
2

v
0

m
R
O
(2)圆盘受到的摩擦力矩为
R
< br>M




2

rdrgr
MRg

0
2
3
由转动定律得


M


I
mv
0
1
(mR
2
MR
2
)(0)
1
2
(mM)R< br>


0
I(



0
) 3mv
0
2


t

2

M2

Mg


MRg
3

8

辞职报告格式怎么写-学习方法指导


什么是离岸公司-骑鹅旅行记读后感


雷锋在我身边-春节祝福短信


李志舆-端午节放几天假


烟台市人事局-微笑着面对生活


请假条的格式-答谢辞


小学生评语集锦-建设幸福中国


河北省招生考试院-海底两万里读后感400字