汽车理论第五版_课后习题答案(正确)

绝世美人儿
553次浏览
2020年07月31日 08:40
最佳经验
本文由作者推荐

长跑注意事项-年度工作报告


第一章 汽车的动力性
1.1试说明轮胎滚动阻力的定义,产生机理和作用形式。 < br>答:车轮滚动时,由于车轮的弹性变形、路面变形和车辙摩擦等原因所产生的阻碍汽车行驶的力称为轮胎滚 动阻
力。
产生机理和作用形式:
(1)弹性轮胎在硬路面上滚动时,轮胎的变形是 主要的,由于轮胎有内部摩擦,产生弹性迟滞损失,使轮胎变形
时对它做的功不能全部回收。由于弹性迟 滞,地面对车轮的法向作用力并不是前后对称的,这样形成的合力
F
z
并不沿
车轮中心(向车轮前进方向偏移
a
)。如果将法向反作用力平移至与通过车轮中心的垂线重合, 则有一附加的滚动阻力
偶矩
T
f
F
z
a
。为克 服该滚动阻力偶矩,需要在车轮中心加一推力
F
P
与地面切向反作用力构成一力偶矩。
(2)轮胎在松软路面上滚动时,由于车轮使地面变形下陷,在车轮前方实际形成了具有一定坡度的斜面 ,对车
轮前进产生阻力。
(3)轮胎在松软地面滚动时,轮辙摩擦会引起附加阻力。
(4)车轮行驶在不平路面上时,引起车身振荡、减振器压缩和伸长时做功,也是滚动阻力的作用形式。
1.2滚动阻力系数与哪些因素有关?
答:滚动阻力系数与路面的种类、行驶车速以及轮胎的 构造、材料和气压有关。这些因素对滚动阻力系数的具体
影响参考课本P9。
1.3 确定一轻型货车的动力性能(货车可装用4挡或5挡变速器,任选其中的一种进行整车性能计算):
1)绘制汽车驱动力与行驶阻力平衡图。
2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。
3)绘制汽车行驶加速度倒 数曲线,用图解积分法求汽车用2档起步加速行驶至70kmh的车速-时间曲线,或者
用计算机求汽车 用2档起步加速行驶至70kmh的加速时间。
轻型货车的有关数据:
汽油发动机使用外特性的Tq-n曲线的拟合公式为
nn
2
n
3< br>n
4
T
q
19.313295.27()165.44() 40.874()3.8445()

1000
式中,
Tq
为发动 机转矩(N•m);n为发动机转速(rmin)。
发动机的最低转速n
min
=6 00rmin,最高转速n
max
=4000rmin。
装载质量 2000kg
整车整备质量 1800kg
总质量 3880kg
车轮半径 0.367m
传动系机械效率
η
t
=0.85
滚动阻力系数
f
=0.013
2
空气阻力系数×迎风面积
C
D
A
=2.77m
主减速器传动比
i
0
=5.83
2
飞轮转动惯量
I
f
=0.218kg•m
2
二前轮转动惯量
I
w1
=1.798kg•m
2
四后轮转动惯量
I
w2
=3.598kg•m
变速器传动比 ig(数据如下表)

四档变速器
五档变速器
Ⅰ档
6.09
5.56
Ⅱ档
3.09
2.769
Ⅲ档
1.71
1.644
Ⅳ档
1.00
1.00
Ⅴ档
-
0.793
轴距 L=3.2m
质心至前轴距离(满载) a=1.974m
质心高(满载) hg=0.9m
分析:本题主要考察知识点为汽车驱动力-行使阻力平衡图的应用和附着率的计算、等 效坡度的概念。只要对汽


车行使方程理解正确,本题的编程和求解 都不会有太大困难。常见错误是未将车速的单位进行换算。
2)首先应明确道路的坡度的定义
itan

。求最大爬坡度时可以对行使方程进行适当简化,可以简化的内容包
括两 项
cos

1

sin

tan
< br>,简化的前提是道路坡度角不大,当坡度角较大时简化带来的误差会增大。计算时,
要说明做了怎 样的简化并对简化的合理性进行评估。
3)已知条件没有说明汽车的驱动情况,可以分开讨论然后判断 ,也可以根据常识判断轻型货车的驱动情况。
解:1)绘制汽车驱动力与行驶阻力平衡图
汽 车驱动力
Ft=
T
tq
i
g
i
o

t
r

行驶阻力
F
f
+F
w

F
i
+F
j

G

f +
C
D
A
2
du
u
a
+G

i+
m

dt
21.12
发动机转速与汽车行驶速度之间的关系式为:
ua0.377
rn

i
g
i
0
由本题的已 知条件,即可求得汽车驱动力和行驶阻力与车速的关系,编程即可得到汽车驱动力与行驶阻力平衡图。

2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率
①由1)得驱动力与行驶阻力 平衡图,汽车的最高车速出现在5档时汽车的驱动力曲线与行驶阻力曲线的交点处,
2
Uamax
=99.08ms。
②汽车的爬坡能力,指汽车在良好路面上克服
Ff
F
w
后的余力全部用来(等速)克服坡度阻力时能爬上的坡度,
此时
F
t
F
f
F
w

du
0< br>,因此有
F
i
F
t
F
f
F
w
,可得到汽车爬坡度与车速的关系式:
itan

arcsin

dt
G





;而汽


车最大爬坡度
i
max
为Ⅰ档时的最大爬坡度。利用MATLAB 计算可得,
i
max
0.352

q
;相应的附着率
C

1
为1.20,不合理,舍去。 < br>bhg
q
LL
q
如是后轮驱动,
C

2< br>=;相应的附着率
C

2
为0.50。
ahg
q
LL
③如是前轮驱动,
C

1

3)绘制汽车行驶 加速度倒数曲线,求加速时间
求得各档的汽车旋转质量换算系数

如下表所示:


汽车旋转质量换算系数 Ⅰ档

1.3829
Ⅱ档
1.1027
Ⅲ档
1.0429
Ⅳ档
1.0224
Ⅴ档
1.0179
I

1

mr
w
2

22
I
f
i
gi
0

T
mr
2
利用MATLAB画出汽车的行驶加速 度图和汽车的加速度倒数曲线图:

忽略原地起步时的离合器打滑过程,假设在初时刻时,汽 车已具有Ⅱ档的最低车速。由于各档加速度曲线不相交
(如图三所示),即各低档位加速行驶至发动机转 速达到最到转速时换入高档位;并且忽略换档过程所经历的时间。结
果用MATLAB画出汽车加速时间 曲线如图五所示。如图所示,汽车用Ⅱ档起步加速行驶至70kmh的加速时间约为26.0s。



1.4空车、满载时汽车动力性有无变化?为什么?
答:动力性会发生变化。因为满载时汽车的质量会增大,重心的位置也会发生改变。质量增大,滚动阻力、坡度< br>阻力和加速阻力都会增大,加速时间会增加,最高车速降低。重心位置的改变会影响车轮附着率,从而影响 最大爬坡
度。
1.5如何选择汽车发动机功率?
答:发动机功率的选择常先从保证 汽车预期的最高车速来初步确定。若给出了期望的最高车速,选择的发动机功
率应大体等于,但不小于以 最高车速行驶时的行驶阻力功率之和,即
Pe
CA
Gf
u
amax

D
u
3
amax
)


t< br>360076140
1
(
在实际工作中,还利用现有汽车统计数据初步估计汽车 比功率来确定发动机应有功率。不少国家还对车辆应有的
最小比功率作出规定,以保证路上行驶车辆的动 力性不低于一定水平,防止某些性能差的车辆阻碍车流。
1.6超车时该不该换入低一挡的排挡? < br>答:超车时排挡的选择,应该使车辆在最短的时间内加速到较高的车速,所以是否应该换入低一挡的排挡应 该由
汽车的加速度倒数曲线决定。如果在该车速时,汽车在此排档的加速度倒数大于低排挡时的加速度倒 数,则应该换入
低一档,否则不应换入低一挡。
1.7 统计数据表明,装有0.5~2L排 量发动机的轿车,若是前置发动机前轮驱动(F.F.)轿车,其平均的前轴负
荷为汽车总重力的61. 5%;若是前置发动机后轮驱动(F.R.)轿车,其平均的前轴负荷为汽车总重力的55.7%。设一轿
车的轴距L=2.6m,质心高度h=0.57m。试比较采用F.F及F.R.形式时的附着力利用情况,分 析时其前轴负荷率取相应
形式的平均值。确定上述F.F轿车在
φ
=0.2及0.7路 面上的附着力,并求由附着力所决定的极限最高车速与极限最
大爬坡度及极限最大加速度(在求最大爬坡 度和最大加速度时可设Fw=0)。其它有关参数为:
m
=1600kg,
C
D
=0.45,
A
=2.00m
2
,
f
=0.02 ,
δ
≈1.00。
分析:分析本题的核心在于考察汽车的附着力、地面法向反作用力 和作用在驱动轮上的地面切向反作用力的理解
和应用。应熟知公式(1-13)~(1-16)的意义和 推导过程。
分析1)比较附着力利用情况,即比较汽车前(F.F)、后轮(F.R.)地面切向反作 用力与地面作用于前(F.F)、后
轮(F.R.)的法向反作用力的比值。解题时应注意,地面法向发 作用力包括静态轴荷、动态分量、空气升力和滚动阻力
偶矩产生的部分,如若进行简化要对简化的合理性 给予说明。地面作用于车轮的地面切向反作用力则包括滚动阻力和
空气阻力的反作用力。
2) 求极限最高车速的解题思路有两个。一是根据地面作用于驱动轮的地面切向反作用力的表达式(1-15),由附
着系数得到最大附着力,滚动阻力已知,即可求得最高车速时的空气阻力和最高车速。二是利用高速行驶 时驱动轮附
着率的表达式,令附着率为附着系数,带入已知项,即可求得最高车速。
常见错误 :地面切向反作用力的计算中滚动阻力的计算错误,把后轮的滚动阻力错计为前轮或整个的滚动阻力。
3)最极限最大爬坡度时依然要明确道路坡度的定义和计算中的简化问题,具体见1.3题的分析。但经过公式推 导
本题可以不经简化而方便得求得准确最大爬坡度。
解:1. 比较采用F.F及F.R.形式时的附着力利用情况
i> 对于前置发动机前轮驱动(F.F.)式轿车,
空气升力
F
ZW1

1
C
Lf
A

u
r
2

2

m
=1600kg,平均的前轴负荷为汽车总重力的61.5%,
静态轴荷的法向反作用力Fz
s1
= 0.615X1600X9.8 = 9643.2N ,
∴汽车前轮法向反作用力的简化形式为:
Fz
1
= Fz
s1
-Fz
w1
=9643.2--
1
C
Lf
A

u
r
2

2
地面作用于前轮的切向反作用力为:
Fx
1
= F
f2
+Fw =
0.385Gf
+
C
D
A< br>2
CA
2
u
a
=120.7+
D
u
a

21.1521.15
第 4 页 共 30 页


C< br>D
A
2
u
a
F
X
1
21.15附着力利用情况:

1
F
Z
1
9643.2CA

u
2
Lfr
2
120.7
ii> 对于前置发动机后轮驱动(F.R.)式轿车同理可得:

F
X2
F
Z2
C
D
A
2
u
a
21.15


1
2
6946.2C
Lr
A

u
r
2
174.7
F
X1
F
X2
,前置发动

一般地,C
Lr
与 C
Lf
相差不大,且空气升力的值远小于静态 轴荷的法向反作用力,以此可得
机前轮驱动有着更多的储备驱动力。
结论: 本例中,前置发 动机前轮驱动(F.F)式的轿车附着力利用率高。
2.对F.F.式轿车进行动力性分析
1) 附着系数

0.2

i> 求极限最高车速:
忽略空气升力对前轮法向反作用力的影响,Fz
1
=9643.2 N。
最 大附着力
F

1
=

F
z1
=1928 .6 N

令加速度和坡度均为零,则由书中式(1-15)有:
F
1
=F
X1
=F
W
+F
f2


F
W
F

1
F
f2
= 1928.6-0.02X0.385X1600X9.8= 1807.9 N,

F< br>W

C
D
A
21.15
u
2
ama x

由此可推出其极限最高车速:
u
amax
= 206.1 kmh。
ii> 求极限最大爬坡度:
计算最大爬坡度时加速度为零,忽略空气阻力。
前轮的地面反作用力
F
b
h
z1
F
z
s 1
G(
L
cos


g
L
sin

)

最大附着力
F

1
=

F
z1

由书中式(1-15),有
F

1
=F
a
X1< br>=F
i
+F
f2
Gsin

G
Lcos

f

以上三式联立得:
i
b
< br>af
max
tan


Lh
=0.095。
g

iii> 求极限最大加速度:
令坡度阻力和空气阻力均为0,Fz
1
=9643.2 N
F

1
=

F
z1
=1928.6N
由书中式(1-15)
F

1
=F
X1
=Ff2
ma
max

解得
a
max

1.13。
第 5 页 共 30 页
F
Z1
F
Z2



2) 当附着系数Φ=0.7时,同理可得:
最高车速:
u
amax
= 394.7 kmh。
最大爬坡度:
i
max
0.347

最大加速度:
a
max

4.14
方法二:
忽略空气阻力与滚动阻力,有:
q
bL
,最大爬坡度
i
max
q
,最大加速度
a
max
q.g

1< br>
h
g
L
所以

0.2
时,
i
max
0.118,a
max
1.16ms
2

0.7
时,
i
max
0.373,a
max3.66ms
2

1.8 一轿车的有关参数如下:
2
总 质量1600kg;质心位置:
a
=1450mm,
b
=1250mm,hg
=630mm;发动机最大扭矩M
emax
=140Nm,Ⅰ档传动比
i
1
=3.85;
2
主减速器传动比
i
0
=4. 08; 传动效率
η
m
=0.9;车轮半径r=300mm;飞轮转动惯量
I
f
=0.25kg·m;全部车轮惯量∑
I
w
=4.5kg·m2
(其中后轮
I
w
=2.25 kg·m
2
,前轮的
I
w
=2.25 kg·m
2
)。若该轿车为前轮驱动,问:当地面附着系数为0.6
时,在加速过程中发动机扭矩能否充分发挥而产 生应有的最大加速度?应如何调整重心在前后方向的位置(b位置),
才可以保证获得应有的最大加速度 。若令
b
为前轴负荷率,求原车得质心位置改变后,该车的前轴负荷率。
L
分析:本题的解题思路为比较由发动机扭矩决定的最大加速度和附着系数决定的最大加速度的大小关系。如果前者
大于后者,则发动机扭矩将不能充分发挥而产生应有的加速度。
解:忽略滚动阻力和空气阻力 ,若发动机能够充分发挥其扭矩则
a
max

Ftmax

δm
Ft
max

Memax

i
0
i
1

m
=6597.4 N;
r
2
∑I
w
I
f
i
1
2
i
0

m

=1
2

=1.42;
mrmr
2
解得a
max
2.91ms
2

前轮驱动汽车的附着率
C

1
q

bhgq
LL
等效坡度
q
a
max
0.297

g
则有,Cφ1=0.754>0.6,所以该车在加速过程中不能产生应有的最大加速度。
为在题给条件下产生应有的最大加速度,令Cφ1=0.6,
代入q=0.297,hg=0.63m,L=2.7m,
解得b≈1524mm,则前轴负荷率应变为 bL= 0.564,即可保证获得应有的最大加速度。
1.9一辆后轴驱动汽车的总质量2152kg,前轴负荷52%,后轴负荷48%,主传动比
i
0
=4.55,变速器传动比:一
2
挡:3.79,二档:2.17,三档 :1.41,四档:1.00,五档:0.86。质心高度h
g
=0.57m,C
D< br>A=1.5m,轴距L=2.300m,
飞轮转动惯量
I
f
=0.22 kg·m,四个车轮总的转动惯量
I
w
=3.6kg·m,车轮半径r=0.367m 。该车在附着系数

0.6

22
路面上低速滑行曲线和直接档加 速曲线如习题图1所示。图上给出了滑行数据的拟合直线v=19.76-0.59T,v的单位
第 6 页 共 30 页


kmh,T的单位为s,直接档最大加速度a
max
=0.75ms(u
a
=50kmh)。设各档传动效率均为0.90,求:
1) 汽车在该路面上的滚动阻力系数。
2) 求直接档的最大动力因数。
3) 在此路面上该车的最大爬坡度。
解:1)求滚动阻力系数
汽车在路面上滑行时,驱动力为0,飞轮空转,质量系数中该项为0。
2
∑I
w
3.6
11.012

mr2
21520.367
2
duduGf
0
,减速度:

行驶方程退化为:
Gf

m

dtdt

m
du0.59
0.164ms
2
。 根据滑行数据的拟合 直线可得:
dt3.6

=1
解得:
f

d u
gdt
0.0169

2)求直接档最大动力因数
22< br>∑I
w
I
f
i
4
i
0

m
+1.027
。 直接档:

=1
mr
2
mr
2
动力因数:
Df

du
gdt

最大动力因数:
D
max
f

g
a
max0.0169
1.027
0.750.096

9.8
3)在此路面上该车的最大爬坡度
由动力因数的定义,直接档的最大驱动力为 :
F
tmax4
F
w
D
max4
G
T
tq
max

i
0
i
4

t< br>r

最大爬坡度是指一挡时的最大爬坡度:
T
tq
max
i
0
i
1

t
r
GfGimax

以上两式联立得:
GfGi
max
F
wD
max4
G


i
1
i
4
i
max
i
1
(
C
D
A
2
u
a
D
max4
)f0.654

21.15G
由地面附着条件,汽车可能通过的最大坡度为:
q
aL
0.338

1

h
g
L
所以该车的最大爬坡度为0.338。
第二章 汽车的燃油经济性
2.1“车开得慢,油门踩得小,就一定省油”,或者“只要发动 机省油,汽车就一定省油”这两种说法对不对?
答:不对。由汽车百公里等速耗油量图,汽车一般在接 近低速的中等车速时燃油消耗量最低,并不是在车速越低
越省油。由汽车等速百公里油耗算式(2-1) 知,汽车油耗量不仅与发动机燃油消耗率有关,而且还与发动机功率以及
车速有关,发动机省油时汽车不 一定就省油。
2.2试述无级变速器与汽车动力性、燃油经济性的关系。
答:为了最大限度 提高汽车的动力性,要求无级变速器的传动比似的发动机在任何车速下都能发出最大功率。为
第 7 页 共 30 页


了提高汽车的燃油经济性,应该根据“最小燃油消耗特性”曲线确定无级 变速器的调节特性。二者的要求是不一致的,
一般地,无级变速器的工作模式应该在加速阶段具有良好的 动力性,在正常行驶状态具有较好的经济性。
2.3用发动机的“最小燃油消耗特性”和克服行驶阻力 应提供的功率曲线,确定保证发动机在最经济状况下工作
的“无级变速器调节特性”。
答:由 发动机在各种转速下的负荷特性曲线的包络线即为发动机提供一定功率时的最低燃油消耗率曲线,如课本
图2-9a。利用此图可以找出发动机提供一定功率时的最经济状况(转速与负荷)。把各功率下最经济状况运转 的转速
与负荷率表明在外特性曲线上,便得到“最小燃油消耗特性”。无级变速器的传动比
i'
与发动机转速
n
及汽车行驶速
度之间关系(
i'0.377
nr
),便可确定无级变速器的调节特性,具体方法参见课本P47。
i
0
u
a
2.4如何从改进汽车底盘设计方面来提高燃油经济性?
答:汽车底盘设计应该从合理匹配传动系传动比、缩减尺寸和减轻质量来提高燃油经济性。
2.5为什么汽车发动机与传动系统匹配不好会影响汽车燃油经济性与动力性?试举例说明。
答:在一定道路条件下和车速下,虽然发动机发出的功率相同,但传动比大时,后备功率越大,加速和爬坡能力< br>越强,但发动机负荷率越低,燃油消耗率越高,百公里燃油消耗量就越大,传动比小时则相反。所以传动系 统的设计
应该综合考虑动力性和经济性因素。如最小传动比的选择,根据汽车功率平衡图可得到最高车速 u
max
(驱动力曲线与行
驶阻力曲线的交点处车速),发动机达到最大功率时的车速 为u
p
。当主传动比较小时,u
p
>u
max
,汽车后备功 率小,动力
性差,燃油经济性好。当主传动比较大时,则相反。最小传动比的选择则应使u
p< br>与u
max
相近,不可为追求单纯的的动
力性或经济性而降低另一方面的性能。
2.6试分析超速档对汽车动力性和燃油经济性的影响。
答:汽车在超速档行驶时,发动机负 荷率高,燃油经济性好。但此时,汽车后备功率小,所以需要设计合适的次
一挡传动比保证汽车的动力性 需要。
2.7已知货车装用汽油发动机的负荷特性与万有特性。负荷特性曲线的拟合公式为:
234
bB
0
B
1
P
e
B
2
P
e
B
3
P
e
B
4
P
e< br>
其中,b为燃油消耗率[g(kW•h)];Pe为发动机净功率(kW);拟合式中的系数随 转速n变化。怠速油耗
Q
id
0.299mLs
(怠速转速400rmin )。
计算与绘制题1.3中货车的
1)汽车功率平衡图。
2)最高档与次高档的等速百公里油耗曲线
3)利用计算机求货车按JB3352-83规定 的六工况循环行驶的百公里油耗。计算中确定燃油消耗值b时,若发动
机转速与负荷特性中给定的转速不 相等,可由相邻转速的两根曲线用插值法求得。
注意:发动机净功率和外特性功率的概念不同。发动机 外特性功率是发动机节气门全开时的功率,计算公式为
P
e

T
tq
n
9550
,在某一转速下,外特性功率是唯一确定的。发动机净功率则表示发动机的 实际发出功率,可以根据汽车
行驶时的功率平衡求得,和转速没有一一对应关系。
解:(1)汽车功率平衡图
发动机功率在各档下的功率
P
e
、汽车经常遇到的阻力功率
其中:
P
f
P
W

T
对车速
u
a的关系曲线即为汽车功率平衡图,
P
e
T
tq

u< br>a
i
g
i
0
2

n

1 0
3
T
tq
n(kW)

n

60 30000
0.377r
——
T
tq
为发动机转矩(单位为
Nm

第 8 页 共 30 页


P
f
P< br>W

T
3

1

Gfu
a
C
D
Au
a





T< br>
360076140


编程计算,汽车的功率平衡图为:

2)最高档和次高档的等速百公里油耗曲线
先确定最高档和次高档的发动机转速的 范围,然后利用
u
a

0.377rn
,求出对应档位的车速。由于 汽车是等速行
i
0
i
g
驶,因此发动机发出的功率应该与汽车受到的 阻力功率折合到曲轴上的功率相等,即
P
e

(F
f
F< br>W
)u
a
3600

T
。然后根据不
同的< br>P
e

n
,用题中给出的拟合公式求出对应工况的燃油消耗率。先利用 表中的数据,使用插值法,求出每个
n
值所
对应的拟合式系数:
B
0
,B
1
,B
2
,B
3
,B
4
。在 这里为了保证曲线的光滑性,使用了三次样条插值。利用求得的各个车速
对应下的功率求出对应的耗油量 燃油消耗率
b
。利用公式:
Q
s


L100km
)。
实际绘出的最高档与次高档的等速百公里油耗曲线如下:
Pb
,即可 求出对应的车速的百公里油耗
1.02u
a

g

从图上可 以明显看出,第三档的油耗比在同一车速下,四档的油耗高得多。这是因为在同一车速等速行驶下,汽
车 所受到的阻力基本相等,因此
P
e
基本相等,但是在同一车速下,三档的负荷率要比四 档小。这就导致了四档的油耗
第 9 页 共 30 页


较小。
但 是上图存在一个问题,就是在两头百公里油耗的变化比较奇怪。这是由于插值点的范围比节点的范围要来得大,< br>于是在转速超出了数据给出的范围的部分,插值的结果是不可信的。但是这对处在中部的插值结果影响不大 。而且在
完成后面部分的时候发现,其实只需使用到中间的部分即可。
(3)按JB3352-83规定的六工况循环行驶的百公里油耗。
从功率平衡图上面可以发 现,III档与IV档可以满足六工况测试的速度范围要求。分为III档和IV档进行计算。
先求匀速行驶部分的油耗
先使用
P
e

(F
f< br>F
W
)u
a
3600

T
,求出在各个速 度下,发动机所应该提供的功率。然后利用插值法求出,三个匀速行驶
速度对应的燃油消耗率
b
。由
Q
计算的结果如下:
匀速行驶阶段:
匀速行驶速度
(kmh)

持续距离
(m)

发动机功率
P
e
(kw)

Pbs
求出三段匀速行驶部分的燃油消耗量(mL)。
102u
a

g
第一段
25
50
4.7073
第二段
40
250
9.2008
563.0756
426.5637
44.9644
34.0632
第三段
50
250
13.4170
581.3972
372.6138
54.2024
34.7380
h)]
燃油消耗率
b[g(kW
燃油消耗量
Q(ml)

再求匀加速阶段:
三档
四档
三档
四档
678.3233
492.3757
8.8681
6.4371 对于每个区段,以
1kmh
为区间对速度区段划分。对应每一个车速
u
a
,都可以求出对应的发动机功率:
1

Gfu
a
C
D
Au
a
3

mu
a
du

P



。此时,车速与功率的关系已经发生改变,因此应该要重新对燃油消 耗率的拟

T

36dt

合公式中的系数进行插值。插值 求出对应的各个车速的燃油消耗率
b
,进而用
Q
t

油消耗 率
Q
t0
,Q
t1
,Q
t2
,……Q
tn
。每小段的加速时间:
t
Pb
求出每个速度对应的燃
367.1

g
1
。每一个小区间的燃油消耗量:
du
3.6
dt
Q
n

1
(Q
t(n1)
Q
tn
)t
。对每个区间的燃油消耗量求和就可以得出加速过程的燃油消耗量。
2
第一段
40
25
0.25(注:书中的数
据有误)
第二段
50
40
0.20
计算结果如下:
加速阶段
最大速度
u
amax
(kmh)

最小速度
u
amin
(kmh)

加速度
a(ms)

2
第 10 页 共 30 页


燃油消耗量三档
四档
38.3705
30.1001
44.2181
38.4012
Q
a
(mL)

匀减速阶段:
对于匀减速阶段,发动机处在怠速工况。怠速燃油消耗率
Q
i d
是一定值。只要知道匀减速阶段的时间,就可以求出
耗油量:
Q
d
Q
id
t

Q
d
Q
id
t0.2 99mLs19.3s5.77mL

根据以上的计算,可以求出该汽车分别在三档和四档的六工况耗油量:
三档:
Q< br>s

s
18.2692L

Q
100
8.868144.964454.202438.370544.21815.77
10 0
1075

四档:
Q
s

s
13. 9079L

Q
100
6.437134.063234.7380 30.100138.40125.77
100
1075


一、关于插值方法的讨论:
在完成本题的第二个小问题,即求等速百公里油耗曲线的时候,处 理题中所给的拟合函数的时候有两种处理方法:
一是先使用已经给出的节点数据,使用插值方法,得出转 速插值点的对应燃油消耗率
b
。然后再进而求出对应车速的
等速燃油消耗量。在这里的 处理方法就是这种。从得到的等速百公里油耗曲线上可以发现,曲线有比较多的曲折。估
计这是使用三次 样条插值方法得到的结果。因为三次样条插值具有很好的光滑性。如果改用线形内插法的话,得到的
曲线 虽然不光滑,但是能够体现一个大体的趋势。经比较发现,使用三次样条插值得到的曲线中部与线形内插得到的< br>曲线十分相似。

但是使用线形内插的最大问题在于,对于超出节点两头的地方无法插 值。在处理的时候,如果把头尾的转速去掉,
即只考虑n从815rpm到3804rpm的时候。在完 成全部的计算任务之后,得到的三、四档的六工况百公里油耗如下:
三档:18.4090L (与使用三次样条插值得到的结果相比,误差为:0.77%)
四档:14.0362L (与使用三次样条插值得到的结果相比,误差为:0.92%)
因此,两种方法得到的结果十分相近。
第 11 页 共 30 页


这种对系数进行插值的方法的精度依靠于所给出 的拟合公式中各个系数与n之间的关系。如果存在很好的线形关
系,则使用线性内插的精度比较高。 < br>另外一种处理方法就是,先利用给出的各个节点数据,求出了八个b值,然后利用这八个b与ua的数据, 进行插
值。这种处理方法插值时所用的结点数比较少,插值得出的等速百公里油耗曲线比较平缓。
二、关于加速过程的加速阻力的处理讨论:
在计算匀加速过程的时候,因为比匀速行驶的时候 ,增加了加速阻力,因此车速与发动机功率之间的关系已经改
变了。这样,就应该使用拟合公式,重新对 b进行计算,得出在加速过程中,速度对应的燃油消耗率。而且对于不同
的加速阶段(加速度不同),就 会得到不同的b与ua的关系。但是,这种方法仍然只是对实际情况的一种近似。因为
对于加速过程,发 动机是处在一个瞬时动态过程,而前面的处理方法仍然是使用稳态的时候发动机的负荷特性进行计
算。也 就是说把加速阶段近似为一个加入了加速阻力功率的匀速过程来看待。这必然会出现一些误差。
2.8轮胎对汽车动力性、燃油经济性有些什么影响?
答:1)轮胎对汽车动力性的影响主要 有三个方面:①轮胎的结构、帘线和橡胶的品种,对滚动阻力都有影响,
轮胎的滚动阻力系数还会随车速 与充气压力变化。滚动阻力系数的大小直接影响汽车的最高车速、极限最大加速度和
爬坡度。 ②汽车 车速达到某一临界值时,滚动阻力迅速增长,轮胎会发生很危险的驻波现象,所以汽车的最高车速
应该低 于该临界车速。③轮胎与地面之间的附着系数直接影响汽车的极限最大加速度和爬坡度。
2)轮胎对燃油经济性的影响
轮胎的滚动阻力系数直接影响汽车的燃油经济性。滚动阻力大燃油消耗量明显升高。
2.9为什么公共汽车起步后,驾驶员很快换入高档?
答:因为汽车在低档时发动机负荷率低 ,燃油消耗量好,高档时则相反,所以为了提高燃油经济性应该在起步后
很快换入高档。
2.10达到动力性最佳换档时机是什么?达到燃油经济性的最佳换档时机是什么?二者是否相同? < br>答:达到动力性最佳应该使汽车加速到一定车速的时间最短,换档时机应根据加速度倒数曲线确定,保证其 覆盖
面积最小。达到燃油经济性的换档时机应该根据由“最小燃油消耗特性”确定的无级变速器理想变速 特性,考虑道路


值,在最接近理想变速特性曲线的点进行换档。二者一般是不相同 的。
第三章 汽车动力装置参数的选定
3.1改变1.3题中轻型货车的主减速器传动比, 做出
i
0
为5.17、5.43、5.83、6.17、6.33时的燃油经济性—加 速
时间曲线,讨论不同
i
0
值对汽车性能的影响。
解:加速时间的结算思路与方法:
在算加速时间的时候,关键是要知道在加速的过程中,汽车 的行驶加速度
du
随着车速的变化。由汽车行驶方程式:
dt
T
tq
i
g
i
0

T
r
GfGi
C
D
A
2
du
u
a


m
,可以的到:
21.15dt
CA
2
du1
T
tqi
g
i
0

T
[(Gf
D
u< br>a
)]

F
i
0

dt
mr21.15
由于对于不同的变速器档位,车速
u
a
与发动机转速n
的对应关系不同,所以要针对不同的变速器档位,求出加速

a
随着车 速
u
a
变化的关系。先确定各个档的发动机最低转速和最高转速时对应的汽车最高车速
u
amax
和最低车速
u
amin
。然后在各个车速范围内 ,对阻力、驱动力进行计算,然后求出
特性
T
q
n
曲线的拟合公式 求得。
du
,即
a
。式中
T
tq
可以通过已经给 出的使用外
dt
求出加速度
a
随着车速
u
a
变化的 关系之后,绘制出汽车的加速度倒数曲线,然后对该曲线进行积分。在起步阶段
曲线的空缺部分,使用一 条水平线与曲线连接上。一般在求燃油经济性——加速时间曲线的时候,加速时间是指0到
第 12 页 共 30 页


100kmh(或者0到60mileh,即0到96.6kmh)的加 速时间。可是对于所研究的汽车,其最高行驶速度是94.9kmh。
而且从该汽车加速度倒数曲线上可 以看出,当汽车车速大于70kmh的时候,加速度开始迅速下降。因此可以考虑使用
加速到70kmh 的加速时间进行代替。(计算程序见后)
对于四档变速器:
档位
传动比
i
g

I
6.09
II
3.09
III
1.71
IV
1.00
计算的结果是如下:
主传动比
i
0

II档起步
0-70kmh加速时间
s
5.17
27.3036
5.43
27.5032
5.83
27.1291
6.17
26.5132
6.33
25.9787
然后计算各个主传动比下,六 工况百公里油耗。利用第二章作业中所使用的计算六工况百公里油耗的程序进行计
算,得到结果如下:
主传动比
i
0

六工况百公里油耗
(L100km)
5.17
13.3811
5.43
13.6191
5.83
13.9079
6.17
14.1410
6.33
14.2608
可以绘制出燃油经济性——加速时间曲线如下:

从图上 可以发现,随着
i
0
的增大,六工况百公里油耗也随之增大;这是由于当
i< br>0
增大以后,在相同的行驶车速下,
发动机所处的负荷率减小,也就是处在发动机燃油经 济性不佳的工况之下,导致燃油经济性恶化。但是对于加速时间
来说,随着
i
0
的增加,显示出现增大,然后随之减小,而且减小的速度越来越大。其实从理论上来说,应该是
i0
越大,
加速时间就有越小的趋势,但是由于在本次计算当中,加速时间是车速从0加到7 0kmh,并不能全面反映发动机整个
工作能力下的情况,比如当
i
0
=5. 17的时候,车速从刚上IV档到70kmh只有很短的一段,并不能反映出在此住传动
比之下,发动机 驱动力变小所带来的影响。因此反映到图线中,加速时间反而有所下降。
第 13 页 共 30 页


从上面的结果发现,
i
0
的选择对汽车的动力性和经济性都有 很大影响,而且这两方面的影响是互相矛盾的。汽车
很大部分时间都是工作在直接档(对于有直接档的汽 车来说),此时
i
0
就是整个传动系的传动比。
i
0
如果选 择过大,则
会造成发动机的负荷率下降,虽然提高了动力性,后备功率增加,而且在高速运转的情况下, 噪音比较大,燃油经济
性不好;如果
i
0
选择过小,则汽车的动力性减弱,但 是负荷率增加,燃油经济性有所改善,但是发动机如果在极高负
荷状态下持续工作,会产生很大震动,对 发动机的寿命有所影响。因此应该对
i
0
的影响进行两方面的计算与测量,然
后再从中找出一个能够兼顾动力性和经济性的值。
另外,对于不同的变速器,也会造成对汽车的燃油经 济性和动力性的影响。变速器的档位越多,则根据汽车行驶
状况调整发动机的负荷率的可能性越大,可以 让发动机经常处在较高的负荷状态下工作,从而改善燃油经济性;但是
对于汽车的动力性,增应该对具体 的变速器速比设置进行讨论。变速器与主减速器的速比应该进行适当的匹配,才能
在兼顾动力性和经济性 方面取得好的平衡。通常的做法是绘出不同变速器搭配不同的主减速器,绘制出燃油经济性—
—加速时间 曲线,然后从中取优。

第四章 汽车的制动性
4.1一轿车驶经有积水层的一良 好路面公路,当车速为100kmh时要进行制动。为此时有无可能出现划水现象而
丧失制动能力?轿车 轮胎的胎压为179.27kPa。
解:由Home等根据试验数据给出的估算滑水车速的公式: < br>u
h
6.34p
i
6.34179.2784.9kmh
所以车速为100kmh进行制动可能出现滑水现象。
4.2在第四章第三节二中,举 出了CA700轿车的制动系由真空助力改为压缩空气助力后的制动试验结果。试由表
中所列数据估算< br>
2


2
的数值,说明制动器作用时间的重要性。
性能指标
真空助力制动系
压缩空气-液压制动系
'
'
1
2
''
制动时间s
2.12
1.45
制动距离m
12.25
8.25
最大减速度(ms)
7.25
7.65
2
注:起始制动速度均为30kmh
分析:计算

2
< br>
2
的数值有两种方法。一是利用式(4-6)进行简化计算。二是不进行简化,未知数 有三个,
'''
制动器作用时间

2
(

2


2
)
,持续制动时间

3
,根据书上P79 页的推导,可得列出制动时间、制动距离两个方程,再
1
2
''
根据在制动器 作用时间结束时与车速持续制动阶段初速相等列出一个方程,即可求解。但是结果表明,不进行简化压
缩 空气-液压制动系的数值无解,这与试验数据误差有关。
解:方法一(不简化计算):
制动 时间包含制动器作用时间

2
(

2


2
)
,持续制动时间

3

'''

2
'

2
''

3
t
① < br>制动距离包含制动器作用和持续制动两个阶段汽车驶过的距离
s
2

s
3

a
1
s
2
u
0
(

2
'

2
'')a
bmax

2< br>''
2

s
3

bmax

32
,总制动距离:
2
6
a
1
ss
2
s
2
u
0
(

2
'

2
'')a
bmax

2
''
2

bma x

3
2

62
在制动器作用时间结束时与车速持续制动阶段初速相等
第 14 页 共 30 页


1
u
0
a
bmax

2''a
bmax

3

2

u
u
o
2
1
24
方程①②③联立可得:

2
''(u
o
ts)


3

0
< br>
2
''


2
't

2''

3

a
bmax
2
a
bm ax
2a
bmax
方法二(简化计算):
略去总制动距离的二次小项有:
2
u
0

2

1

s(

2
')u
0

3.6225.92a
bmax
计算结果如下表所示:

2
'

2

2
(s)
不简化计算
0.97(无解)
无解
简化计算
0.895
0.445
真空助力制动系
压缩空气-液压制动系
讨论制动器作用时间的重要性(根据简化计算结果讨论)
从实验数据及以上估算出的制动器作用时间数据的比较来看,采用压缩空气---液压制动器后,制动距 离缩短了
32%,制动时间减少了31.6%,但最大减速度只提高了3.5%,而同时制动器作用时间 减少了50.3%。
这样的变化趋势我们可以得到这样的结论:改用压缩空气---液压制动器后制动 距离减少的主要原因在于制动器
作用时间的减少。而且减少制动器作用时间对于减少制动距离效果显著。 所以改进制动器结构形式是提高汽车制动效
能的非常重要的措施。
4.3一中型货车装有前后制动器分开的双管路制动系,其有关参数如下:
载荷
空载
满载
质量(kg) 质心高hgm
4080
9290
0.845
1.170
轴距Lm
3.950
3.950
质心至前轴
距离am
2.100
2.950
制动力分配
系数β
0.38
0.38
1) 计算并绘制利用附着系数曲线和制动效率曲线
'
2) 求行驶车速Ua=30kmh,在
=0.80路面上车轮不抱死的制动距离。计算时取制动系反应时间

2
=0.02s,
''
制动减速度上升时间

2
=0.02s。
3) 求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离
s'
。 < br>分析:1)可由相关公式直接编程计算,但应准确理解利用附着系数和制动效率的概念。注意画图时利用附 着系数
和制动效率曲线的横坐标不同。
2)方法一:先判断车轮抱死情况,然后由前(后)轮 刚抱死时的利用附着系数等于实际附着系数求得制动强度。
方法二:由利用附着效率曲线读得该附着效率时的制动效率求得制动强度。
3)前部管路损坏 损坏时,后轮将抱死时制动减速度最大。计算时,注意此时只有后轮有制动力,制动力为后轮法
向反作用 力与附着系数的乘积。同理可得后部管路损坏时的情况。
解:1)前轴的利用附着系数公式为:

f


z
1

bzh
g

L

后轴的利用附着系数公式为:

r

( 1

)z

1

azh
g

L
该货车的利用附着系数曲线图如下所示(相应的MATLAB程序见附录)
第 15 页 共 30 页



制动效率为车轮不抱死的最大制动减速度与车轮和地面间摩擦 因数的比值,即前轴的制动效率为
E
f

示:
z

f

bLzaL
,后轴的制动效率为
E
r

,画 出前后轴的制动效率曲线如下图所




f
h
g
L

r
(1

)

r
hg
L

u
a0


1



2

1

2)由制动距离公式
s
,已知

2


2
=0.03s,
u< br>a0
=30kmh,φ=0.80,需求出


2


u
a0

3.6

2

25.92a< br>bmax
2
2
a
bmax
。利用制动效率曲线,从图中读出: φ=0.80的路面上,空载时后轴制动效率约等于0.68,满载时后轴制动效
率为0.87。
a
bmax
=制动效率*φ*g
所以车轮不抱死的制动距离(采用简化公式计算):
130
2
0.0330
空载时
s
=6.86m < br>3.625.920.670.89.8
130
2
0.0330< br>满载时
s
=5.33m。
3.625.920.870.89.8< br>3)求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离
s'
①制动系前部管路损坏时
则在后轮将要抱死的时候,
F
Xb
F
z2


G
(azh
g
)
Gz

L
第 16 页 共 30 页


得:
z
a


a
bmax
zg

L
h
g
22
空载时,
a
bmax
=3.56< br>ms
,满载时
a
bmax
=4.73
ms

2
u
a

2
''
1
0
制动距离:
s

(

2
')u
a0

3.62 25.92a
bmax
解得空载时s=10.1m,空载时s=7.63m。
②制动系后部管路损坏时
则在前轮将要抱死时,
得:
z
b


a
bmax
zg

L

h
g
22
空载时,
a
bmax
=2.60
ms,满载时
a
bmax
=4.43
ms

2
u
a

2
''
1
0
制动距离:
s

(

2
')u
a0

3.6225.92abmax
解得空载时s=13.6m,空载时s=8.02m。
4.4在汽车法规中,对 双轴汽车前、后轴制动力的分配有何规定。说明作出这种规定的理由。答:ECE制动法规
何我国行业标 准关于双轴汽车前、后轴制动力分配的要求见书P95。作出这种规定的目的是为了保证制动时汽车的方
向稳定性和有足够的制动效率。
4.5一轿车结构参数同题1.8中给出的数据一样。轿车装有单回路 制动系,其制动力分配系数

0.65
。试求:
1) 同步附着系数。
2) 在

0.7
的路面上的制动效率。
3) 汽车能到达的最大制动减速度(指无任何车轮抱死)。
4) 若将该车改为双回路制动系统(只改变制 动系的传动系,见习题图3),而制动器总制动力与总泵输出管路
压力之比称为制动系增益,并令原车单 管路系统的增益为G’。确定习题图3中各种双回路系统以及在一个
回路失效时的制动系增益。
5) 计算:在

0.7
的路面上,上述双回路系统在一个回路失效时的制 动效率以及能够达到的最大减速度。
6) 比较各种回路的优缺点。
解:1)同步附着系数:

0

2)制动效率
L

b2.70.651.25
0.80

h
g
0.63




0
,前轮先抱死。制 动效率为:
E
f

b1.25
0.95

L



h
g
2.70.650.70.63
3)最大制动减速度:
a
bmax
E
f

0.95 0.70.665g

4)易得各种情况下的制动系增益如下表所示:
制动系增益
双回路系统
a)
G’
b)
G’
第 17 页 共 30 页
c)
G’


1回路失效时
2回路失效时
0.35 G’
0.65G’
0.5G’
0.5G’
0.5G’
0.5G’
5)分析:对于a)若一个回路失效其情况和4.3.3一样,参照前面的分析。
对于双回路 系统b)和c),当一个回路失效时,如不考虑轴距的影响,其制动效果是一样的,所以只分析一种情
况 即可。一个管路损坏时,前、后车轮的抱死顺序和正常时一样。对车轮刚抱死时的车轮受力情况进行,注意此时作
用在单边车轮上的地面法向反作用力只为总的地面法向反作用力的一半。
注意:不能简单的认为此时的制动减速度为正常情况的一半。
①对于a):
若前轴回路失效时则相当于单回路时前部管路损坏,由4.3的推导:
z
max
a

1.450.7
0.323

L
h
g
2.70.70.63
最大制动减速度:
a
bmax
z
max
g
=0.323g。
制动效率:
E< br>r

z
max


46.2%。
若后轴回路失效时则相当于单回路时后部管路损坏,根据4.3的推导:
z
max< br>
b

1.250.7
0.387

L< br>
h
g
2.70.70.63
最大制动减速度:
a
bmax
z
max
g
=0.387g。
制动效率:
E
r

②对b)和c):
由前面的讨论知,< br>



0
,所以前轮先抱死,当前轮刚要抱死时:
z
max


55.3%。
F
Xb1


Gz

F
z1

G
(bzh
g
)

L
1
F
Z1


2
因为一个回路失效,
F
Xb1

以上方程联立解得:
z

b0.7 1.25
0.285

2L



h
g
22.70.650.70.63
制动效率:
E
r
< br>z

40.7%
,最大制动减速度0.285g。
6)两种回路的优缺点比较
双回路系统a)制动系增益最大,一个回路失效时的最大制动减速 度也比b),c)大,所以其性能较优。
双回路系统b)、c)制动系增益相同,如果不考虑轴距的影 响,两者在一个回路失效时的制动效率相同。但是,c)
在一个回路失效时,制动力作用在一侧车轮上, 车身左右受力严重不均衡,会产生跑偏等问题。
第五章 汽车的操纵稳定性
5.1 一轿车 (每个)前轮的侧偏刚度为-50176Nrad、外倾刚度为-7665Nrad。若轿车向左转弯,将使前轮 均产
生正的外倾角,其大小为4度。设侧偏刚度与外倾刚度均不受左、右轮负载转移的影响,试求由外倾 角引起的前轮侧
偏角。
第 18 页 共 30 页


解:有外倾角时候的地面侧向反作用力为
F
Y
k

k


(其中k为侧偏刚度,k
r
为外倾刚度,γ为外 倾角)
于是,有外倾角引起的前轮侧偏角的大小为:

1


k


k

代入数据,解得

1

=0.611 rad,另外由分析知正的外 倾角应该产生负的侧偏角,所以由外倾角引起的前
轮侧偏角为-0.611rad。
5.2 6450N轻型客车在试验中发现过多转向和中性转向现象,工程师们在悬架上加装横向稳定杆以提高前悬架的< br>侧倾角刚度,结果汽车的转向特性变为不足转向。试分析其理论依据(要求有必要的公式和曲线)。 答:由课本P138-140的分析知,汽车稳态行驶时,车厢侧倾角决定于侧倾力矩
M

r
和悬架总的角刚度

K

r



r

M

r

r

K

前、后悬架作用于车厢的恢复力矩增加:
T
r1
K

r1

r

T

r2
K

r2

r

其中
K

r1

K

r2
分别为前、后悬架的侧倾角刚度 ,悬架总的角刚度

K

r
为前、后悬架及横向稳定杆的侧倾角刚度之和。
由以上的分析易知,当增加横向稳定杆后汽车前悬架的侧倾角刚度增大,后悬架侧倾角 刚度不变,所以前悬架作
用于车厢的恢复力矩增加(总侧倾力矩不变),由此汽车前轴左、右车轮载荷变 化量就较大。由课本图5-46知在这种
情况下,如果左右车轮轮胎的侧偏刚度在非线性区,则汽车趋于 增加不足转向量。
5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何?
答:汽车的稳态响应有三种类型,即中性转向、不足转向和过多转向。
表征稳态响应的参数有 稳定性因数,前、后轮的侧偏角角绝对值之差
(

1


2
)
,转向半径的比RR
0
,静态储备
系数S.M.等。
它们之间的彼此关系为:
K
1
(

1


2
)


1
为侧向加速度的绝对值);
a
y
R
1Ku
2

R
0
S .M.=
k
2
a

(
k
1
,k
2
分别为汽车前、后轮的侧偏刚度,
a
为汽车质心到前轴的距离,L为前、后轴之间的距
k
1
k
2
L
离)。
5.4举出三种表示汽车稳 态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特
性?
答 :表示汽车稳态转向特性的参数有稳定性因数,前、后轮的侧偏角绝对值之差
(

1< br>

2
)
,转向半径的比RR
0

第 19 页 共 30 页


静态储备系数S.M.等。
①讨论汽车重心位置对稳态转向特性的影响,由式(5-17)
S.M.=
k
2
a'aa


a'
为中性转向点至前轴的距离)
Lk
1
k
2
L
当中性转向点与质心位置重合时,S.M.=0,汽 车为中性转向特性;
当质心在中性转向点之前时,
a'a
,S.M.为正值,汽车具有不足转向特性;
当质心在中性转向点之后时,
a'a
,S.M.为负值,汽车具有过多转向特性。
②汽车内、外轮负荷转移对稳态转向特性的影响
在侧向力作用下,若汽车前轴左、右车轮垂直 载荷变动量较大,汽车趋于增加不足转向量;若后轴左、右车轮垂
直载荷变动量较大,汽车趋于减小不足 转向量。
5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样?
答:不一样。汽车转弯时 由于侧倾力矩的作用,左、右车轮的垂直载荷不再相等,所受阻力亦不相等。另外,车
轮还将受到地面侧 向反作用力。
5.6主销内倾角和后倾角功能有何不同?
答:主销内倾角的作用,是使车轮 在方向盘受到微小干扰时,前轮会在回正力矩作用下自动回正。另外,主销内
倾还可减少前轮传至转向机 构上的冲击,并使转向轻便。
主销后倾的作用是当汽车直线行驶偶然受外力作用而稍有偏转时,主销后 倾将产生车轮转向反方向的力矩使车轮
自动回正,可保证汽车支线行驶的稳定性。
汽车转向轮 的回正力矩来源于两个方面,一个是主销内倾角,依靠前轴轴荷,和车速无关;一个是主销后倾角,
依靠 侧倾力,和车速有关;速度越高,回正力矩就越大。
5.7横向稳定杆起什么作用?为什么有的车装在 前悬架,有的装在后悬架,有的前后都装?答:横向稳定杆的主
要作用是增加汽车的侧倾刚度,避免汽车 在转向时产生过多的侧倾。另外,横向稳定杆还有改变汽车稳态转向特性的
作用,其机理在题5.2中有 述。横向稳定安装的位置也是由于前、后侧倾刚度的要求,以及如何调节稳态转向特性的
因素决定的。
5.8某种汽车的质心位置、轴距和前后轮胎的型号已定。按照二自由度操纵稳定性模型,其稳态转向特 性为过多
转向,试找出五种改善其特性的方法。
答:①增加主销内倾角;②增大主销后倾角; ③在汽车前悬架加装横向稳定杆;④使汽车前束具有在压缩行程减
小,复原行程增大的特性;⑤使后悬架 的侧倾转向具有趋于不足转向的特性。
5.9汽车空载和满载是否具有相同的操纵稳定性?
答:不具有相同的操纵稳定。因为汽车空载和满载时汽车的总质量、质心位置会发生变化,这些将会影响汽车的< br>稳定性因数、轮胎侧偏刚度、汽车侧倾刚度等操纵稳定性参数。
5.10试用有关公式说明汽车质心位置对主要描述和评价汽车操纵稳定性、稳态响应指标的影响。
答:以静态储备系数为例说明汽车质心位置对稳态响应指标的影响:
S.M.=
k< br>2
k
2
a'aa


a'L
,为中性 转向点至前轴的距离)
Lk
1
k
2
Lk
1
k
2
当中性转向点与质心位置重合时,S.M.=0,汽车为中性转向特性;
当质心在中性转向点之前时,
a'a
,S.M.为正值,汽车具有不足转向特性;
当质心在中性转向点之后时,
a'a
,S.M.为负值,汽车具有过多转向特性。
5.11二自由度轿车模型的有关参数如下:
总质量 m=1818.2kg
绕Oz轴转动惯量
I
z
3885kgm

轴距 L=3.048m
质心至前轴距离 a=1.463m
质心至后轴距离 b=1.585m
前轮总侧偏刚度 k
1
=-62618Nrad
后轮总侧偏刚度 k
2
=-110185Nrad
第 20 页 共 30 页
2


转向系总传动比 i=20
试求:
1) 稳定性因数K、特征车速u
ch

2) 稳态横摆角速度增益曲线< br>

r


u
a
、车速u=22.35m s时的转向灵敏度
r


sw


s
3) 静态储备系数S.M.,侧向加速度为 0.4g时的前、后轮侧偏角绝对值之差

1


2
与转弯 半径的比值
RR
0
(R
0
=15m)。
4) 车速u=3 0.56ms时,瞬态响应的横摆角速度波动的固有(圆)频率

0
、阻尼比

、反应时间

与峰值
反应时间


注意:2)所求的转向灵敏度
解:
1)稳定性因数

r
中的

sw
是指转向盘转角,除以转向系传动比才是车轮转角。

sw
K
m

ab

1818.2

1. 4631.585

22



0.0024s m

2

2

L

k
2
k
1

3.048

11018562618

特征车速
u
ch
1K 20.6ms74.18kmh

2) 稳态横摆角速度增益曲线

r


u
a< br>如下图所示:


s

r
3.3690
20=0.168

sw
车速u=22.35ms时的转向灵敏度

a

-ak
2
a
0.1576
, 3) 态 储备系数
S.M.
Lk
1
k
2
L
a
y
0.4g
时前、后轮侧偏角绝对值之差
第 21 页 共 30 页

< p>

1


2
Ka
y
L0.00 240.4g3.0480.0281rad1.6

R
0

L
,


LL
,R17.4113,RR
0
1.16

R




1


2

时,瞬态响应的横摆角速度波动的固有(圆)频率


4) 速u=30.56ms

0

L
u
k
1k
2
1Ku
2
5.58rads,f
0
0.88 74Hz

mI
Z

阻尼比


m a
2
k
1
b
2
k
2
I
Z
k
1
k
2

2LmI
Z
2
12

kk

1Ku

0.5892



1

2
arctan


mua



0

Lk
2

反 应时间



0
1

2

< br>



0.1811s


1

2

arctan






0.3899s
峰值反应时间



01

2
5.12稳态响应中横摆角速度增益达到最大值时的车速称为特征车速< br>u
ch
。证明:特征车速
u
ch
1K
,且在特征车速时的横摆角速度增益,为具有相等轴距L中性转向汽车横摆角速度增益的一半。
答:特征车速指汽车稳态横摆角速度增益达到最大值时的车速,汽车稳态横摆角速度增益为:

r
uL111
)
s


2
1

1Ku
L(Ku)
2L
1

Ku
2LK
u
u


1u
Ku
,即
u1 K
时等号成立,所以特征车速
u
ch
1K
。此时的横摆角速度增益
r
)
s

,具有
u

2L
相等轴 距L中性转向汽车的横摆角速度增益为
uL
,前者是二者的一半。
5.13测定汽车 稳态转向特性常用两种方法,一为固定方向盘转角法,并以RR
0
-a
y
曲线 来表示汽车的转向特性;
另一为固定圆周法。试验时在场地上画一圆,驾驶员以低速沿圆周行使,记录转 向盘转角

sw0
,然后驾驶员控制转向
盘使汽车始终在圆周上以低速连续加 速行使。随着车速的提高,提高转向盘转角

sw
(一般)将随之加大。记录下

sw
角,并以

sw


a
y曲线来评价汽车的转向特性。试证:
sw
1Ku
2
,说明如何根据< br>sw
u
2
曲线来判断汽车的转

sw0

sw0

sw0
向特性。
证明:设转向器的总传动比为
i
,设低速运动时的前轮转角为

0
,则

sw0


0
i
L
,(其中R为圆周半径)。
iR
第 22 页 共 30 页


连续急速行使时,由式(5-11):



r
1(Ku)
2
uL
,又

r
u R
,得

sw


i
所以
L
(1Ku
2
)

iR

sw
1Ku
2
,证毕。

s w0

sw


1

sw
u
2
是一条直线;不足转向时,K>0,
sw
1


sw
将随车速得增加而逐渐

sw0

sw0

sw0
中性转向时,K=0,
增大;K<0,

sw
1


sw
将随车速得增加而逐渐减小。

sw0
5.14习题图4是滑柱连杆式独立悬架(常称为Mc Pherson strut suspension)示意图。试证:
1)R.C.为侧倾中心。
2)悬架 的侧倾角刚度为
K

r
2k
s
(
mp
2
)
,式中,ks为一个弹簧的(线)刚度。
n

分析:计算 悬架侧倾角刚度时,要利用虚位移原理进行推导。推导时注意,本题和书中的单横臂独立悬架是有
区别的 ,主要是本题有一个角


证明:
1)先对左侧悬架分析。当车轮上下跳 动时,CB杆绕B点转动,故AC杆的瞬心必在CB所在的直线上;由于AC杆
导向机构的约束,A点的 运动方向平行与AC杆自身,故AC杆的瞬心必在过A点,垂直AC的直线上。由此可得到左侧
车轮的瞬 心O’点,侧倾中心就在DO’与汽车中心线的交点上,如图中所示。
2) a.求悬架的线刚度
K
l

设车厢不动,汽车处于静止受力状态,作用在轮胎 上的地面法向反作用力为
F
z'
,再在轮胎上加一微元力
F
z'< br>,△
s
s
为弹簧的虚位移,△s
t
为车轮的虚位移,弹簧力相 应增加
Q
,则
Qk
s
s
s

设O’D与水平面的夹角为

,因为O’为左侧车轮的运动瞬心,由图可知
s
s
cos

s
t


m n
根据力矩平衡:
F
z'
ncos

Qmk
s
s
s
m

单侧悬架的线刚度为
K
l

F
z'
m
2
k
s
()

s
t
ncos

由式(5-42)整个悬架的侧倾角刚度为:
第 23 页 共 30 页


K

r

1 mp
K
l
(2pcos

)
2
2k
s< br>()
2

2n
5.17 习题图5为三种前独立悬架对车轮相对车身 垂直上下位移时前束变化的影响。试问图中哪一条曲线具有侧倾
过多转向效果?

答 :曲线1对应的前独立悬架,转弯时车厢侧倾,内侧前轮处于反弹行程,前束增加,车轮向汽车纵向中心线转动,外侧前轮处于压缩行程,前束减小,车轮向外转动。采用这种悬架导致汽车的侧倾转向增加了不足转向量 ,具有
侧倾不足转向效果。
曲线2对应的前独立悬架,曲线较其他两种更贴近纵坐标轴,说明 这种悬架的侧倾转向量很小,几乎等于零。
曲线3对应的前独立悬架,转弯时车厢侧倾,内侧前轮处 于反弹行程,前束减小,车轮向汽车纵向中心线相反方
向转动,外侧前轮处于压缩行程,前束增大,车轮 向内转动。采用这种悬架导致汽车的侧倾转向增加了过多转向量,
具有侧倾过多转向效果。
5.18转向盘力特性与哪些因素有关,试分析之。
答:转向盘力随汽车运动状况而变化的规 律称为转向盘力特性,与下列因素有关:转向器传动比及其变化规律、
转向器效率、动力转向器的转向盘 操作力特性、转向杆系传动比、转向杆系效率、由悬架导向杆系决定的主销位置、
轮胎上的载荷、轮胎气 压、轮胎力学特性、地面附着条件、转向盘转动惯量、转向柱摩擦阻力以及汽车整体动力学特
性等。
5.19地面作用于轮胎的切向反作用力是如何控制转向特性的?
答:参考课本第六节。
第六章 汽车的平顺性
6.1设通过座椅支承面传至人体垂直加速度的谱密度为一白噪声,< br>G
a
(f)0.1m
2
s
3
。求在0.5~8 0Hz频率范
围内加权加速度均方根值
a
w
和加权振级
L
a w
,并由表6-2查出相应人的主观感受。

80
a
w
[

w(f)G(f)df]
0.5
0.5
2
f
2
0.1(

0.5df

df
16
0. 52
2
2412.5

4
12.5
2
df

df)
0.5
1.434(ms
2
)
2
f
12.5
83
80

L
aw
20lg(1.434
)123(dB)
,查
10
6
表得,人的主观感 受为很不舒服。
6.2设车速u=20ms,路面不平度系数
G
q
(n0
)2.5610m
,参考空间频率
n
0
0.1m
1
。画出路面垂直位移,
速度和加速度
G
q
(f),G
q

(f),G
q

(f)
的谱图。画图时要求用双对数 坐标,选好坐标刻度值,并注明单位。
解:由公式
第 24 页 共 30 页


G
q
(f)
1
282922
G(n)nu 2.5610200.01f5.1410f(ms)
q00
2
f
得到谱图如下:
2228
G
q
2.0210
7
( m
2
s)

(f)(2

)G
q
(n< br>0
)n
0
u4

0.512010
4224 82
G
q
7.9810
6
f
2
(m
2
s
3
)

(f)(2

)fG
q
(n
0
)n
0
u16

0.512010 f


6.3设车身-车轮二自由度汽车模型,其车身部分固有频率
f0
2Hz
。它行驶在波长

5m
的水泥接缝路上,
求引起车身部分共振时的车速
u
a
(kmh)
。该汽车车轮部分的固有频率< br>f
t
10Hz
,在砂石路上常用车速为
30kmh

问由于车轮部分共振时,车轮对路面作用的动载所形成的搓板路的波长



解:引起车身部分共振时的车速:
u
z
f
0

2510(ms)36(kmh)

车轮对路面作用的动载所形成的搓路板的波长为

u
a
3010
3

0.833(m)
< br>f
t
360010
6.4设车身单质量系统的幅频
zq
用双 对数坐标表
路上输入谱与题6.2相同。求车身加速度的谱密度
并计算0.1~10Hz频率范 围车身加速度的均方根值


z


解:
示时 如习题图6所示。
G

z

(f)
,画出其谱图,
第 25 页 共 30 页


2
z
G

z

(

)H(j

)

z

~ q
G(

)

G
q

(
< br>)
q

q
2
2
zz
G

z

(f)(2

f)20.212910
8
7 .9810
6
qq
2
22
f
2

而< br>zz1
1,(f0.1~1);,(f1~10)
qqf
f0.1 ~1时,G

z

(f)7.9810
6
f
2
;
f1~10时,G

z

(f)7.9810< br>6
得到车身加速度密度谱图如下:

6.5车身-车轮双质量系统参数:< br>f
0
1.5Hz,

0.25,

9,

10

“人体-座椅”系统参数:
f
s
3Hz,

s
0.25
。车速
u20ms
,路面不平度系数G
q

n
0

2.5610m

83
参考空间频率n
0
=0.1m。
计算时频率步长
f0.2Hz
,计算频率点数
N180

1) 计算并画出幅频特性
z
1
q

z
2
z
1

qz
2
和均方根值谱
G

z

1

f


G

z

2

f


G
a

f

谱图。进
一步计算

q




1



2


a
、a
w
、L
aw

zz
2) 改变“人体-座椅”系统参数:
f
s
1.5~6Hz,

s
0.125~0.5
。分析
a
w
、L
aw
值随
f
s


s< br>的变化。
3) 分别改变车身-车轮双质量系统参数:
f
0
0.2 5~3Hz,

0.125~0.5


4.5~18,

5~20
。绘



2

fd


FdG
三个响应量均方根值随以上四个系统参数变化的曲线。
z
解:
1)
幅频特性
-1
z
1
q< br>z
2
z
1
qz
2



均 方根值谱
第 26 页 共 30 页


G

z
< br>1

f


G

z

2< br>
f


G
a

f

的谱 图如下所示


其中计算公
式如下:



1




0




1

z
1
q





G

z

1

f

H
j

G

z

2

f
H

j
G
a

f

G

p


其中G
q


f
4

由计算
公式
f


q


G
q


f

d f


0
f
1


z




G

z


f

d


0
1


z




G

z


f

d
2
f


0
2

a



p




G

p



0
36
f
a
w



W
2

f

G


0
L
aw
20lg

a
w
a
可得

q
ms,


z

1
0.2391ms,


z

2
0.0168ms,

a
 0.0161ms,
及0~36Hz频率范围加权加速

0.3523
度 均方根值与加权振级为
a
w
0.01ms,L
aw
80.03d B
,由表6-2查得车上乘客没有不舒适的感觉。
2) 改变“人体-座椅”系统参数:f
s
1.5~6Hz,

s
0.125~0.5
。 分析
a
w
、L
aw
值随
f
s


s
的变化。
2
2222
a
w
、L
aw< br>值随
f
s


s
的变化的曲线如下图所示。
如图可以看出随
f
s


s
的变化,
a
w
、L
aw
值改变量不大;其中
a
w
、L
aw
f
s
增大而有所增大, 而
a
w
、L
aw< br>随

s
增大,先减小后增大,其中在

s
=0.2左 右右最小值。
第 27 页 共 30 页



3) 分析
双质量系统车
身部分固有频
率f
0
、阻尼比
ζ、刚度比γ
和 质量比μ四
个参数的变化
对振动响应

2

f
d

z
F
d
G
均方
根值的影
响。
在分析
4个系统参
数中某一参
数的影响
时,其余3
个参数保持
不变。系统
参数取值如
下表所示:
系统参数
基准值
+6dB
f
0
Hz
1.5
3
ζ
0.25
0.5
0.125
γ
9
18
4.5
μ
10
20
5 -6dB 0.25
车身部分固有频率f
0
的影响

 车身部分阻尼比ζ的影响
第 28 页 共 30 页



 悬架与车轮的刚度比γ的影响

 车身与车轮部分质量比μ的影响
第 29 页 共 30 页



第 30 页 共 30 页


第一章 汽车的动力性
1.1试说明轮胎滚动阻力的定义,产生机理和作用形式。
答:车轮滚动时, 由于车轮的弹性变形、路面变形和车辙摩擦等原因所产生的阻碍汽车行驶的力称为轮胎滚动阻
力。
产生机理和作用形式:
(1)弹性轮胎在硬路面上滚动时,轮胎的变形是主要的,由于轮胎有 内部摩擦,产生弹性迟滞损失,使轮胎变形
时对它做的功不能全部回收。由于弹性迟滞,地面对车轮的法 向作用力并不是前后对称的,这样形成的合力
F
z
并不沿
车轮中心(向车轮前 进方向偏移
a
)。如果将法向反作用力平移至与通过车轮中心的垂线重合,则有一附加的滚动阻 力
偶矩
T
f
F
z
a
。为克服该滚动阻力偶矩, 需要在车轮中心加一推力
F
P
与地面切向反作用力构成一力偶矩。
(2)轮 胎在松软路面上滚动时,由于车轮使地面变形下陷,在车轮前方实际形成了具有一定坡度的斜面,对车
轮 前进产生阻力。
(3)轮胎在松软地面滚动时,轮辙摩擦会引起附加阻力。
(4)车轮行驶在不平路面上时,引起车身振荡、减振器压缩和伸长时做功,也是滚动阻力的作用形式。
1.2滚动阻力系数与哪些因素有关?
答:滚动阻力系数与路面的种类、行驶车速以及轮胎的 构造、材料和气压有关。这些因素对滚动阻力系数的具体
影响参考课本P9。
1.3 确定一轻型货车的动力性能(货车可装用4挡或5挡变速器,任选其中的一种进行整车性能计算):
1)绘制汽车驱动力与行驶阻力平衡图。
2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。
3)绘制汽车行驶加速度倒 数曲线,用图解积分法求汽车用2档起步加速行驶至70kmh的车速-时间曲线,或者
用计算机求汽车 用2档起步加速行驶至70kmh的加速时间。
轻型货车的有关数据:
汽油发动机使用外特性的Tq-n曲线的拟合公式为
nn
2
n
3< br>n
4
T
q
19.313295.27()165.44() 40.874()3.8445()

1000
式中,
Tq
为发动 机转矩(N•m);n为发动机转速(rmin)。
发动机的最低转速n
min
=6 00rmin,最高转速n
max
=4000rmin。
装载质量 2000kg
整车整备质量 1800kg
总质量 3880kg
车轮半径 0.367m
传动系机械效率
η
t
=0.85
滚动阻力系数
f
=0.013
2
空气阻力系数×迎风面积
C
D
A
=2.77m
主减速器传动比
i
0
=5.83
2
飞轮转动惯量
I
f
=0.218kg•m
2
二前轮转动惯量
I
w1
=1.798kg•m
2
四后轮转动惯量
I
w2
=3.598kg•m
变速器传动比 ig(数据如下表)

四档变速器
五档变速器
Ⅰ档
6.09
5.56
Ⅱ档
3.09
2.769
Ⅲ档
1.71
1.644
Ⅳ档
1.00
1.00
Ⅴ档
-
0.793
轴距 L=3.2m
质心至前轴距离(满载) a=1.974m
质心高(满载) hg=0.9m
分析:本题主要考察知识点为汽车驱动力-行使阻力平衡图的应用和附着率的计算、等 效坡度的概念。只要对汽


车行使方程理解正确,本题的编程和求解 都不会有太大困难。常见错误是未将车速的单位进行换算。
2)首先应明确道路的坡度的定义
itan

。求最大爬坡度时可以对行使方程进行适当简化,可以简化的内容包
括两 项
cos

1

sin

tan
< br>,简化的前提是道路坡度角不大,当坡度角较大时简化带来的误差会增大。计算时,
要说明做了怎 样的简化并对简化的合理性进行评估。
3)已知条件没有说明汽车的驱动情况,可以分开讨论然后判断 ,也可以根据常识判断轻型货车的驱动情况。
解:1)绘制汽车驱动力与行驶阻力平衡图
汽 车驱动力
Ft=
T
tq
i
g
i
o

t
r

行驶阻力
F
f
+F
w

F
i
+F
j

G

f +
C
D
A
2
du
u
a
+G

i+
m

dt
21.12
发动机转速与汽车行驶速度之间的关系式为:
ua0.377
rn

i
g
i
0
由本题的已 知条件,即可求得汽车驱动力和行驶阻力与车速的关系,编程即可得到汽车驱动力与行驶阻力平衡图。

2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率
①由1)得驱动力与行驶阻力 平衡图,汽车的最高车速出现在5档时汽车的驱动力曲线与行驶阻力曲线的交点处,
2
Uamax
=99.08ms。
②汽车的爬坡能力,指汽车在良好路面上克服
Ff
F
w
后的余力全部用来(等速)克服坡度阻力时能爬上的坡度,
此时
F
t
F
f
F
w

du
0< br>,因此有
F
i
F
t
F
f
F
w
,可得到汽车爬坡度与车速的关系式:
itan

arcsin

dt
G





;而汽


车最大爬坡度
i
max
为Ⅰ档时的最大爬坡度。利用MATLAB 计算可得,
i
max
0.352

q
;相应的附着率
C

1
为1.20,不合理,舍去。 < br>bhg
q
LL
q
如是后轮驱动,
C

2< br>=;相应的附着率
C

2
为0.50。
ahg
q
LL
③如是前轮驱动,
C

1

3)绘制汽车行驶 加速度倒数曲线,求加速时间
求得各档的汽车旋转质量换算系数

如下表所示:


汽车旋转质量换算系数 Ⅰ档

1.3829
Ⅱ档
1.1027
Ⅲ档
1.0429
Ⅳ档
1.0224
Ⅴ档
1.0179
I

1

mr
w
2

22
I
f
i
gi
0

T
mr
2
利用MATLAB画出汽车的行驶加速 度图和汽车的加速度倒数曲线图:

忽略原地起步时的离合器打滑过程,假设在初时刻时,汽 车已具有Ⅱ档的最低车速。由于各档加速度曲线不相交
(如图三所示),即各低档位加速行驶至发动机转 速达到最到转速时换入高档位;并且忽略换档过程所经历的时间。结
果用MATLAB画出汽车加速时间 曲线如图五所示。如图所示,汽车用Ⅱ档起步加速行驶至70kmh的加速时间约为26.0s。



1.4空车、满载时汽车动力性有无变化?为什么?
答:动力性会发生变化。因为满载时汽车的质量会增大,重心的位置也会发生改变。质量增大,滚动阻力、坡度< br>阻力和加速阻力都会增大,加速时间会增加,最高车速降低。重心位置的改变会影响车轮附着率,从而影响 最大爬坡
度。
1.5如何选择汽车发动机功率?
答:发动机功率的选择常先从保证 汽车预期的最高车速来初步确定。若给出了期望的最高车速,选择的发动机功
率应大体等于,但不小于以 最高车速行驶时的行驶阻力功率之和,即
Pe
CA
Gf
u
amax

D
u
3
amax
)


t< br>360076140
1
(
在实际工作中,还利用现有汽车统计数据初步估计汽车 比功率来确定发动机应有功率。不少国家还对车辆应有的
最小比功率作出规定,以保证路上行驶车辆的动 力性不低于一定水平,防止某些性能差的车辆阻碍车流。
1.6超车时该不该换入低一挡的排挡? < br>答:超车时排挡的选择,应该使车辆在最短的时间内加速到较高的车速,所以是否应该换入低一挡的排挡应 该由
汽车的加速度倒数曲线决定。如果在该车速时,汽车在此排档的加速度倒数大于低排挡时的加速度倒 数,则应该换入
低一档,否则不应换入低一挡。
1.7 统计数据表明,装有0.5~2L排 量发动机的轿车,若是前置发动机前轮驱动(F.F.)轿车,其平均的前轴负
荷为汽车总重力的61. 5%;若是前置发动机后轮驱动(F.R.)轿车,其平均的前轴负荷为汽车总重力的55.7%。设一轿
车的轴距L=2.6m,质心高度h=0.57m。试比较采用F.F及F.R.形式时的附着力利用情况,分 析时其前轴负荷率取相应
形式的平均值。确定上述F.F轿车在
φ
=0.2及0.7路 面上的附着力,并求由附着力所决定的极限最高车速与极限最
大爬坡度及极限最大加速度(在求最大爬坡 度和最大加速度时可设Fw=0)。其它有关参数为:
m
=1600kg,
C
D
=0.45,
A
=2.00m
2
,
f
=0.02 ,
δ
≈1.00。
分析:分析本题的核心在于考察汽车的附着力、地面法向反作用力 和作用在驱动轮上的地面切向反作用力的理解
和应用。应熟知公式(1-13)~(1-16)的意义和 推导过程。
分析1)比较附着力利用情况,即比较汽车前(F.F)、后轮(F.R.)地面切向反作 用力与地面作用于前(F.F)、后
轮(F.R.)的法向反作用力的比值。解题时应注意,地面法向发 作用力包括静态轴荷、动态分量、空气升力和滚动阻力
偶矩产生的部分,如若进行简化要对简化的合理性 给予说明。地面作用于车轮的地面切向反作用力则包括滚动阻力和
空气阻力的反作用力。
2) 求极限最高车速的解题思路有两个。一是根据地面作用于驱动轮的地面切向反作用力的表达式(1-15),由附
着系数得到最大附着力,滚动阻力已知,即可求得最高车速时的空气阻力和最高车速。二是利用高速行驶 时驱动轮附
着率的表达式,令附着率为附着系数,带入已知项,即可求得最高车速。
常见错误 :地面切向反作用力的计算中滚动阻力的计算错误,把后轮的滚动阻力错计为前轮或整个的滚动阻力。
3)最极限最大爬坡度时依然要明确道路坡度的定义和计算中的简化问题,具体见1.3题的分析。但经过公式推 导
本题可以不经简化而方便得求得准确最大爬坡度。
解:1. 比较采用F.F及F.R.形式时的附着力利用情况
i> 对于前置发动机前轮驱动(F.F.)式轿车,
空气升力
F
ZW1

1
C
Lf
A

u
r
2

2

m
=1600kg,平均的前轴负荷为汽车总重力的61.5%,
静态轴荷的法向反作用力Fz
s1
= 0.615X1600X9.8 = 9643.2N ,
∴汽车前轮法向反作用力的简化形式为:
Fz
1
= Fz
s1
-Fz
w1
=9643.2--
1
C
Lf
A

u
r
2

2
地面作用于前轮的切向反作用力为:
Fx
1
= F
f2
+Fw =
0.385Gf
+
C
D
A< br>2
CA
2
u
a
=120.7+
D
u
a

21.1521.15
第 4 页 共 30 页


C< br>D
A
2
u
a
F
X
1
21.15附着力利用情况:

1
F
Z
1
9643.2CA

u
2
Lfr
2
120.7
ii> 对于前置发动机后轮驱动(F.R.)式轿车同理可得:

F
X2
F
Z2
C
D
A
2
u
a
21.15


1
2
6946.2C
Lr
A

u
r
2
174.7
F
X1
F
X2
,前置发动

一般地,C
Lr
与 C
Lf
相差不大,且空气升力的值远小于静态 轴荷的法向反作用力,以此可得
机前轮驱动有着更多的储备驱动力。
结论: 本例中,前置发 动机前轮驱动(F.F)式的轿车附着力利用率高。
2.对F.F.式轿车进行动力性分析
1) 附着系数

0.2

i> 求极限最高车速:
忽略空气升力对前轮法向反作用力的影响,Fz
1
=9643.2 N。
最 大附着力
F

1
=

F
z1
=1928 .6 N

令加速度和坡度均为零,则由书中式(1-15)有:
F
1
=F
X1
=F
W
+F
f2


F
W
F

1
F
f2
= 1928.6-0.02X0.385X1600X9.8= 1807.9 N,

F< br>W

C
D
A
21.15
u
2
ama x

由此可推出其极限最高车速:
u
amax
= 206.1 kmh。
ii> 求极限最大爬坡度:
计算最大爬坡度时加速度为零,忽略空气阻力。
前轮的地面反作用力
F
b
h
z1
F
z
s 1
G(
L
cos


g
L
sin

)

最大附着力
F

1
=

F
z1

由书中式(1-15),有
F

1
=F
a
X1< br>=F
i
+F
f2
Gsin

G
Lcos

f

以上三式联立得:
i
b
< br>af
max
tan


Lh
=0.095。
g

iii> 求极限最大加速度:
令坡度阻力和空气阻力均为0,Fz
1
=9643.2 N
F

1
=

F
z1
=1928.6N
由书中式(1-15)
F

1
=F
X1
=Ff2
ma
max

解得
a
max

1.13。
第 5 页 共 30 页
F
Z1
F
Z2



2) 当附着系数Φ=0.7时,同理可得:
最高车速:
u
amax
= 394.7 kmh。
最大爬坡度:
i
max
0.347

最大加速度:
a
max

4.14
方法二:
忽略空气阻力与滚动阻力,有:
q
bL
,最大爬坡度
i
max
q
,最大加速度
a
max
q.g

1< br>
h
g
L
所以

0.2
时,
i
max
0.118,a
max
1.16ms
2

0.7
时,
i
max
0.373,a
max3.66ms
2

1.8 一轿车的有关参数如下:
2
总 质量1600kg;质心位置:
a
=1450mm,
b
=1250mm,hg
=630mm;发动机最大扭矩M
emax
=140Nm,Ⅰ档传动比
i
1
=3.85;
2
主减速器传动比
i
0
=4. 08; 传动效率
η
m
=0.9;车轮半径r=300mm;飞轮转动惯量
I
f
=0.25kg·m;全部车轮惯量∑
I
w
=4.5kg·m2
(其中后轮
I
w
=2.25 kg·m
2
,前轮的
I
w
=2.25 kg·m
2
)。若该轿车为前轮驱动,问:当地面附着系数为0.6
时,在加速过程中发动机扭矩能否充分发挥而产 生应有的最大加速度?应如何调整重心在前后方向的位置(b位置),
才可以保证获得应有的最大加速度 。若令
b
为前轴负荷率,求原车得质心位置改变后,该车的前轴负荷率。
L
分析:本题的解题思路为比较由发动机扭矩决定的最大加速度和附着系数决定的最大加速度的大小关系。如果前者
大于后者,则发动机扭矩将不能充分发挥而产生应有的加速度。
解:忽略滚动阻力和空气阻力 ,若发动机能够充分发挥其扭矩则
a
max

Ftmax

δm
Ft
max

Memax

i
0
i
1

m
=6597.4 N;
r
2
∑I
w
I
f
i
1
2
i
0

m

=1
2

=1.42;
mrmr
2
解得a
max
2.91ms
2

前轮驱动汽车的附着率
C

1
q

bhgq
LL
等效坡度
q
a
max
0.297

g
则有,Cφ1=0.754>0.6,所以该车在加速过程中不能产生应有的最大加速度。
为在题给条件下产生应有的最大加速度,令Cφ1=0.6,
代入q=0.297,hg=0.63m,L=2.7m,
解得b≈1524mm,则前轴负荷率应变为 bL= 0.564,即可保证获得应有的最大加速度。
1.9一辆后轴驱动汽车的总质量2152kg,前轴负荷52%,后轴负荷48%,主传动比
i
0
=4.55,变速器传动比:一
2
挡:3.79,二档:2.17,三档 :1.41,四档:1.00,五档:0.86。质心高度h
g
=0.57m,C
D< br>A=1.5m,轴距L=2.300m,
飞轮转动惯量
I
f
=0.22 kg·m,四个车轮总的转动惯量
I
w
=3.6kg·m,车轮半径r=0.367m 。该车在附着系数

0.6

22
路面上低速滑行曲线和直接档加 速曲线如习题图1所示。图上给出了滑行数据的拟合直线v=19.76-0.59T,v的单位
第 6 页 共 30 页


kmh,T的单位为s,直接档最大加速度a
max
=0.75ms(u
a
=50kmh)。设各档传动效率均为0.90,求:
1) 汽车在该路面上的滚动阻力系数。
2) 求直接档的最大动力因数。
3) 在此路面上该车的最大爬坡度。
解:1)求滚动阻力系数
汽车在路面上滑行时,驱动力为0,飞轮空转,质量系数中该项为0。
2
∑I
w
3.6
11.012

mr2
21520.367
2
duduGf
0
,减速度:

行驶方程退化为:
Gf

m

dtdt

m
du0.59
0.164ms
2
。 根据滑行数据的拟合 直线可得:
dt3.6

=1
解得:
f

d u
gdt
0.0169

2)求直接档最大动力因数
22< br>∑I
w
I
f
i
4
i
0

m
+1.027
。 直接档:

=1
mr
2
mr
2
动力因数:
Df

du
gdt

最大动力因数:
D
max
f

g
a
max0.0169
1.027
0.750.096

9.8
3)在此路面上该车的最大爬坡度
由动力因数的定义,直接档的最大驱动力为 :
F
tmax4
F
w
D
max4
G
T
tq
max

i
0
i
4

t< br>r

最大爬坡度是指一挡时的最大爬坡度:
T
tq
max
i
0
i
1

t
r
GfGimax

以上两式联立得:
GfGi
max
F
wD
max4
G


i
1
i
4
i
max
i
1
(
C
D
A
2
u
a
D
max4
)f0.654

21.15G
由地面附着条件,汽车可能通过的最大坡度为:
q
aL
0.338

1

h
g
L
所以该车的最大爬坡度为0.338。
第二章 汽车的燃油经济性
2.1“车开得慢,油门踩得小,就一定省油”,或者“只要发动 机省油,汽车就一定省油”这两种说法对不对?
答:不对。由汽车百公里等速耗油量图,汽车一般在接 近低速的中等车速时燃油消耗量最低,并不是在车速越低
越省油。由汽车等速百公里油耗算式(2-1) 知,汽车油耗量不仅与发动机燃油消耗率有关,而且还与发动机功率以及
车速有关,发动机省油时汽车不 一定就省油。
2.2试述无级变速器与汽车动力性、燃油经济性的关系。
答:为了最大限度 提高汽车的动力性,要求无级变速器的传动比似的发动机在任何车速下都能发出最大功率。为
第 7 页 共 30 页


了提高汽车的燃油经济性,应该根据“最小燃油消耗特性”曲线确定无级 变速器的调节特性。二者的要求是不一致的,
一般地,无级变速器的工作模式应该在加速阶段具有良好的 动力性,在正常行驶状态具有较好的经济性。
2.3用发动机的“最小燃油消耗特性”和克服行驶阻力 应提供的功率曲线,确定保证发动机在最经济状况下工作
的“无级变速器调节特性”。
答:由 发动机在各种转速下的负荷特性曲线的包络线即为发动机提供一定功率时的最低燃油消耗率曲线,如课本
图2-9a。利用此图可以找出发动机提供一定功率时的最经济状况(转速与负荷)。把各功率下最经济状况运转 的转速
与负荷率表明在外特性曲线上,便得到“最小燃油消耗特性”。无级变速器的传动比
i'
与发动机转速
n
及汽车行驶速
度之间关系(
i'0.377
nr
),便可确定无级变速器的调节特性,具体方法参见课本P47。
i
0
u
a
2.4如何从改进汽车底盘设计方面来提高燃油经济性?
答:汽车底盘设计应该从合理匹配传动系传动比、缩减尺寸和减轻质量来提高燃油经济性。
2.5为什么汽车发动机与传动系统匹配不好会影响汽车燃油经济性与动力性?试举例说明。
答:在一定道路条件下和车速下,虽然发动机发出的功率相同,但传动比大时,后备功率越大,加速和爬坡能力< br>越强,但发动机负荷率越低,燃油消耗率越高,百公里燃油消耗量就越大,传动比小时则相反。所以传动系 统的设计
应该综合考虑动力性和经济性因素。如最小传动比的选择,根据汽车功率平衡图可得到最高车速 u
max
(驱动力曲线与行
驶阻力曲线的交点处车速),发动机达到最大功率时的车速 为u
p
。当主传动比较小时,u
p
>u
max
,汽车后备功 率小,动力
性差,燃油经济性好。当主传动比较大时,则相反。最小传动比的选择则应使u
p< br>与u
max
相近,不可为追求单纯的的动
力性或经济性而降低另一方面的性能。
2.6试分析超速档对汽车动力性和燃油经济性的影响。
答:汽车在超速档行驶时,发动机负 荷率高,燃油经济性好。但此时,汽车后备功率小,所以需要设计合适的次
一挡传动比保证汽车的动力性 需要。
2.7已知货车装用汽油发动机的负荷特性与万有特性。负荷特性曲线的拟合公式为:
234
bB
0
B
1
P
e
B
2
P
e
B
3
P
e
B
4
P
e< br>
其中,b为燃油消耗率[g(kW•h)];Pe为发动机净功率(kW);拟合式中的系数随 转速n变化。怠速油耗
Q
id
0.299mLs
(怠速转速400rmin )。
计算与绘制题1.3中货车的
1)汽车功率平衡图。
2)最高档与次高档的等速百公里油耗曲线
3)利用计算机求货车按JB3352-83规定 的六工况循环行驶的百公里油耗。计算中确定燃油消耗值b时,若发动
机转速与负荷特性中给定的转速不 相等,可由相邻转速的两根曲线用插值法求得。
注意:发动机净功率和外特性功率的概念不同。发动机 外特性功率是发动机节气门全开时的功率,计算公式为
P
e

T
tq
n
9550
,在某一转速下,外特性功率是唯一确定的。发动机净功率则表示发动机的 实际发出功率,可以根据汽车
行驶时的功率平衡求得,和转速没有一一对应关系。
解:(1)汽车功率平衡图
发动机功率在各档下的功率
P
e
、汽车经常遇到的阻力功率
其中:
P
f
P
W

T
对车速
u
a的关系曲线即为汽车功率平衡图,
P
e
T
tq

u< br>a
i
g
i
0
2

n

1 0
3
T
tq
n(kW)

n

60 30000
0.377r
——
T
tq
为发动机转矩(单位为
Nm

第 8 页 共 30 页


P
f
P< br>W

T
3

1

Gfu
a
C
D
Au
a





T< br>
360076140


编程计算,汽车的功率平衡图为:

2)最高档和次高档的等速百公里油耗曲线
先确定最高档和次高档的发动机转速的 范围,然后利用
u
a

0.377rn
,求出对应档位的车速。由于 汽车是等速行
i
0
i
g
驶,因此发动机发出的功率应该与汽车受到的 阻力功率折合到曲轴上的功率相等,即
P
e

(F
f
F< br>W
)u
a
3600

T
。然后根据不
同的< br>P
e

n
,用题中给出的拟合公式求出对应工况的燃油消耗率。先利用 表中的数据,使用插值法,求出每个
n
值所
对应的拟合式系数:
B
0
,B
1
,B
2
,B
3
,B
4
。在 这里为了保证曲线的光滑性,使用了三次样条插值。利用求得的各个车速
对应下的功率求出对应的耗油量 燃油消耗率
b
。利用公式:
Q
s


L100km
)。
实际绘出的最高档与次高档的等速百公里油耗曲线如下:
Pb
,即可 求出对应的车速的百公里油耗
1.02u
a

g

从图上可 以明显看出,第三档的油耗比在同一车速下,四档的油耗高得多。这是因为在同一车速等速行驶下,汽
车 所受到的阻力基本相等,因此
P
e
基本相等,但是在同一车速下,三档的负荷率要比四 档小。这就导致了四档的油耗
第 9 页 共 30 页


较小。
但 是上图存在一个问题,就是在两头百公里油耗的变化比较奇怪。这是由于插值点的范围比节点的范围要来得大,< br>于是在转速超出了数据给出的范围的部分,插值的结果是不可信的。但是这对处在中部的插值结果影响不大 。而且在
完成后面部分的时候发现,其实只需使用到中间的部分即可。
(3)按JB3352-83规定的六工况循环行驶的百公里油耗。
从功率平衡图上面可以发 现,III档与IV档可以满足六工况测试的速度范围要求。分为III档和IV档进行计算。
先求匀速行驶部分的油耗
先使用
P
e

(F
f< br>F
W
)u
a
3600

T
,求出在各个速 度下,发动机所应该提供的功率。然后利用插值法求出,三个匀速行驶
速度对应的燃油消耗率
b
。由
Q
计算的结果如下:
匀速行驶阶段:
匀速行驶速度
(kmh)

持续距离
(m)

发动机功率
P
e
(kw)

Pbs
求出三段匀速行驶部分的燃油消耗量(mL)。
102u
a

g
第一段
25
50
4.7073
第二段
40
250
9.2008
563.0756
426.5637
44.9644
34.0632
第三段
50
250
13.4170
581.3972
372.6138
54.2024
34.7380
h)]
燃油消耗率
b[g(kW
燃油消耗量
Q(ml)

再求匀加速阶段:
三档
四档
三档
四档
678.3233
492.3757
8.8681
6.4371 对于每个区段,以
1kmh
为区间对速度区段划分。对应每一个车速
u
a
,都可以求出对应的发动机功率:
1

Gfu
a
C
D
Au
a
3

mu
a
du

P



。此时,车速与功率的关系已经发生改变,因此应该要重新对燃油消 耗率的拟

T

36dt

合公式中的系数进行插值。插值 求出对应的各个车速的燃油消耗率
b
,进而用
Q
t

油消耗 率
Q
t0
,Q
t1
,Q
t2
,……Q
tn
。每小段的加速时间:
t
Pb
求出每个速度对应的燃
367.1

g
1
。每一个小区间的燃油消耗量:
du
3.6
dt
Q
n

1
(Q
t(n1)
Q
tn
)t
。对每个区间的燃油消耗量求和就可以得出加速过程的燃油消耗量。
2
第一段
40
25
0.25(注:书中的数
据有误)
第二段
50
40
0.20
计算结果如下:
加速阶段
最大速度
u
amax
(kmh)

最小速度
u
amin
(kmh)

加速度
a(ms)

2
第 10 页 共 30 页


燃油消耗量三档
四档
38.3705
30.1001
44.2181
38.4012
Q
a
(mL)

匀减速阶段:
对于匀减速阶段,发动机处在怠速工况。怠速燃油消耗率
Q
i d
是一定值。只要知道匀减速阶段的时间,就可以求出
耗油量:
Q
d
Q
id
t

Q
d
Q
id
t0.2 99mLs19.3s5.77mL

根据以上的计算,可以求出该汽车分别在三档和四档的六工况耗油量:
三档:
Q< br>s

s
18.2692L

Q
100
8.868144.964454.202438.370544.21815.77
10 0
1075

四档:
Q
s

s
13. 9079L

Q
100
6.437134.063234.7380 30.100138.40125.77
100
1075


一、关于插值方法的讨论:
在完成本题的第二个小问题,即求等速百公里油耗曲线的时候,处 理题中所给的拟合函数的时候有两种处理方法:
一是先使用已经给出的节点数据,使用插值方法,得出转 速插值点的对应燃油消耗率
b
。然后再进而求出对应车速的
等速燃油消耗量。在这里的 处理方法就是这种。从得到的等速百公里油耗曲线上可以发现,曲线有比较多的曲折。估
计这是使用三次 样条插值方法得到的结果。因为三次样条插值具有很好的光滑性。如果改用线形内插法的话,得到的
曲线 虽然不光滑,但是能够体现一个大体的趋势。经比较发现,使用三次样条插值得到的曲线中部与线形内插得到的< br>曲线十分相似。

但是使用线形内插的最大问题在于,对于超出节点两头的地方无法插 值。在处理的时候,如果把头尾的转速去掉,
即只考虑n从815rpm到3804rpm的时候。在完 成全部的计算任务之后,得到的三、四档的六工况百公里油耗如下:
三档:18.4090L (与使用三次样条插值得到的结果相比,误差为:0.77%)
四档:14.0362L (与使用三次样条插值得到的结果相比,误差为:0.92%)
因此,两种方法得到的结果十分相近。
第 11 页 共 30 页


这种对系数进行插值的方法的精度依靠于所给出 的拟合公式中各个系数与n之间的关系。如果存在很好的线形关
系,则使用线性内插的精度比较高。 < br>另外一种处理方法就是,先利用给出的各个节点数据,求出了八个b值,然后利用这八个b与ua的数据, 进行插
值。这种处理方法插值时所用的结点数比较少,插值得出的等速百公里油耗曲线比较平缓。
二、关于加速过程的加速阻力的处理讨论:
在计算匀加速过程的时候,因为比匀速行驶的时候 ,增加了加速阻力,因此车速与发动机功率之间的关系已经改
变了。这样,就应该使用拟合公式,重新对 b进行计算,得出在加速过程中,速度对应的燃油消耗率。而且对于不同
的加速阶段(加速度不同),就 会得到不同的b与ua的关系。但是,这种方法仍然只是对实际情况的一种近似。因为
对于加速过程,发 动机是处在一个瞬时动态过程,而前面的处理方法仍然是使用稳态的时候发动机的负荷特性进行计
算。也 就是说把加速阶段近似为一个加入了加速阻力功率的匀速过程来看待。这必然会出现一些误差。
2.8轮胎对汽车动力性、燃油经济性有些什么影响?
答:1)轮胎对汽车动力性的影响主要 有三个方面:①轮胎的结构、帘线和橡胶的品种,对滚动阻力都有影响,
轮胎的滚动阻力系数还会随车速 与充气压力变化。滚动阻力系数的大小直接影响汽车的最高车速、极限最大加速度和
爬坡度。 ②汽车 车速达到某一临界值时,滚动阻力迅速增长,轮胎会发生很危险的驻波现象,所以汽车的最高车速
应该低 于该临界车速。③轮胎与地面之间的附着系数直接影响汽车的极限最大加速度和爬坡度。
2)轮胎对燃油经济性的影响
轮胎的滚动阻力系数直接影响汽车的燃油经济性。滚动阻力大燃油消耗量明显升高。
2.9为什么公共汽车起步后,驾驶员很快换入高档?
答:因为汽车在低档时发动机负荷率低 ,燃油消耗量好,高档时则相反,所以为了提高燃油经济性应该在起步后
很快换入高档。
2.10达到动力性最佳换档时机是什么?达到燃油经济性的最佳换档时机是什么?二者是否相同? < br>答:达到动力性最佳应该使汽车加速到一定车速的时间最短,换档时机应根据加速度倒数曲线确定,保证其 覆盖
面积最小。达到燃油经济性的换档时机应该根据由“最小燃油消耗特性”确定的无级变速器理想变速 特性,考虑道路


值,在最接近理想变速特性曲线的点进行换档。二者一般是不相同 的。
第三章 汽车动力装置参数的选定
3.1改变1.3题中轻型货车的主减速器传动比, 做出
i
0
为5.17、5.43、5.83、6.17、6.33时的燃油经济性—加 速
时间曲线,讨论不同
i
0
值对汽车性能的影响。
解:加速时间的结算思路与方法:
在算加速时间的时候,关键是要知道在加速的过程中,汽车 的行驶加速度
du
随着车速的变化。由汽车行驶方程式:
dt
T
tq
i
g
i
0

T
r
GfGi
C
D
A
2
du
u
a


m
,可以的到:
21.15dt
CA
2
du1
T
tqi
g
i
0

T
[(Gf
D
u< br>a
)]

F
i
0

dt
mr21.15
由于对于不同的变速器档位,车速
u
a
与发动机转速n
的对应关系不同,所以要针对不同的变速器档位,求出加速

a
随着车 速
u
a
变化的关系。先确定各个档的发动机最低转速和最高转速时对应的汽车最高车速
u
amax
和最低车速
u
amin
。然后在各个车速范围内 ,对阻力、驱动力进行计算,然后求出
特性
T
q
n
曲线的拟合公式 求得。
du
,即
a
。式中
T
tq
可以通过已经给 出的使用外
dt
求出加速度
a
随着车速
u
a
变化的 关系之后,绘制出汽车的加速度倒数曲线,然后对该曲线进行积分。在起步阶段
曲线的空缺部分,使用一 条水平线与曲线连接上。一般在求燃油经济性——加速时间曲线的时候,加速时间是指0到
第 12 页 共 30 页


100kmh(或者0到60mileh,即0到96.6kmh)的加 速时间。可是对于所研究的汽车,其最高行驶速度是94.9kmh。
而且从该汽车加速度倒数曲线上可 以看出,当汽车车速大于70kmh的时候,加速度开始迅速下降。因此可以考虑使用
加速到70kmh 的加速时间进行代替。(计算程序见后)
对于四档变速器:
档位
传动比
i
g

I
6.09
II
3.09
III
1.71
IV
1.00
计算的结果是如下:
主传动比
i
0

II档起步
0-70kmh加速时间
s
5.17
27.3036
5.43
27.5032
5.83
27.1291
6.17
26.5132
6.33
25.9787
然后计算各个主传动比下,六 工况百公里油耗。利用第二章作业中所使用的计算六工况百公里油耗的程序进行计
算,得到结果如下:
主传动比
i
0

六工况百公里油耗
(L100km)
5.17
13.3811
5.43
13.6191
5.83
13.9079
6.17
14.1410
6.33
14.2608
可以绘制出燃油经济性——加速时间曲线如下:

从图上 可以发现,随着
i
0
的增大,六工况百公里油耗也随之增大;这是由于当
i< br>0
增大以后,在相同的行驶车速下,
发动机所处的负荷率减小,也就是处在发动机燃油经 济性不佳的工况之下,导致燃油经济性恶化。但是对于加速时间
来说,随着
i
0
的增加,显示出现增大,然后随之减小,而且减小的速度越来越大。其实从理论上来说,应该是
i0
越大,
加速时间就有越小的趋势,但是由于在本次计算当中,加速时间是车速从0加到7 0kmh,并不能全面反映发动机整个
工作能力下的情况,比如当
i
0
=5. 17的时候,车速从刚上IV档到70kmh只有很短的一段,并不能反映出在此住传动
比之下,发动机 驱动力变小所带来的影响。因此反映到图线中,加速时间反而有所下降。
第 13 页 共 30 页


从上面的结果发现,
i
0
的选择对汽车的动力性和经济性都有 很大影响,而且这两方面的影响是互相矛盾的。汽车
很大部分时间都是工作在直接档(对于有直接档的汽 车来说),此时
i
0
就是整个传动系的传动比。
i
0
如果选 择过大,则
会造成发动机的负荷率下降,虽然提高了动力性,后备功率增加,而且在高速运转的情况下, 噪音比较大,燃油经济
性不好;如果
i
0
选择过小,则汽车的动力性减弱,但 是负荷率增加,燃油经济性有所改善,但是发动机如果在极高负
荷状态下持续工作,会产生很大震动,对 发动机的寿命有所影响。因此应该对
i
0
的影响进行两方面的计算与测量,然
后再从中找出一个能够兼顾动力性和经济性的值。
另外,对于不同的变速器,也会造成对汽车的燃油经 济性和动力性的影响。变速器的档位越多,则根据汽车行驶
状况调整发动机的负荷率的可能性越大,可以 让发动机经常处在较高的负荷状态下工作,从而改善燃油经济性;但是
对于汽车的动力性,增应该对具体 的变速器速比设置进行讨论。变速器与主减速器的速比应该进行适当的匹配,才能
在兼顾动力性和经济性 方面取得好的平衡。通常的做法是绘出不同变速器搭配不同的主减速器,绘制出燃油经济性—
—加速时间 曲线,然后从中取优。

第四章 汽车的制动性
4.1一轿车驶经有积水层的一良 好路面公路,当车速为100kmh时要进行制动。为此时有无可能出现划水现象而
丧失制动能力?轿车 轮胎的胎压为179.27kPa。
解:由Home等根据试验数据给出的估算滑水车速的公式: < br>u
h
6.34p
i
6.34179.2784.9kmh
所以车速为100kmh进行制动可能出现滑水现象。
4.2在第四章第三节二中,举 出了CA700轿车的制动系由真空助力改为压缩空气助力后的制动试验结果。试由表
中所列数据估算< br>
2


2
的数值,说明制动器作用时间的重要性。
性能指标
真空助力制动系
压缩空气-液压制动系
'
'
1
2
''
制动时间s
2.12
1.45
制动距离m
12.25
8.25
最大减速度(ms)
7.25
7.65
2
注:起始制动速度均为30kmh
分析:计算

2
< br>
2
的数值有两种方法。一是利用式(4-6)进行简化计算。二是不进行简化,未知数 有三个,
'''
制动器作用时间

2
(

2


2
)
,持续制动时间

3
,根据书上P79 页的推导,可得列出制动时间、制动距离两个方程,再
1
2
''
根据在制动器 作用时间结束时与车速持续制动阶段初速相等列出一个方程,即可求解。但是结果表明,不进行简化压
缩 空气-液压制动系的数值无解,这与试验数据误差有关。
解:方法一(不简化计算):
制动 时间包含制动器作用时间

2
(

2


2
)
,持续制动时间

3

'''

2
'

2
''

3
t
① < br>制动距离包含制动器作用和持续制动两个阶段汽车驶过的距离
s
2

s
3

a
1
s
2
u
0
(

2
'

2
'')a
bmax

2< br>''
2

s
3

bmax

32
,总制动距离:
2
6
a
1
ss
2
s
2
u
0
(

2
'

2
'')a
bmax

2
''
2

bma x

3
2

62
在制动器作用时间结束时与车速持续制动阶段初速相等
第 14 页 共 30 页


1
u
0
a
bmax

2''a
bmax

3

2

u
u
o
2
1
24
方程①②③联立可得:

2
''(u
o
ts)


3

0
< br>
2
''


2
't

2''

3

a
bmax
2
a
bm ax
2a
bmax
方法二(简化计算):
略去总制动距离的二次小项有:
2
u
0

2

1

s(

2
')u
0

3.6225.92a
bmax
计算结果如下表所示:

2
'

2

2
(s)
不简化计算
0.97(无解)
无解
简化计算
0.895
0.445
真空助力制动系
压缩空气-液压制动系
讨论制动器作用时间的重要性(根据简化计算结果讨论)
从实验数据及以上估算出的制动器作用时间数据的比较来看,采用压缩空气---液压制动器后,制动距 离缩短了
32%,制动时间减少了31.6%,但最大减速度只提高了3.5%,而同时制动器作用时间 减少了50.3%。
这样的变化趋势我们可以得到这样的结论:改用压缩空气---液压制动器后制动 距离减少的主要原因在于制动器
作用时间的减少。而且减少制动器作用时间对于减少制动距离效果显著。 所以改进制动器结构形式是提高汽车制动效
能的非常重要的措施。
4.3一中型货车装有前后制动器分开的双管路制动系,其有关参数如下:
载荷
空载
满载
质量(kg) 质心高hgm
4080
9290
0.845
1.170
轴距Lm
3.950
3.950
质心至前轴
距离am
2.100
2.950
制动力分配
系数β
0.38
0.38
1) 计算并绘制利用附着系数曲线和制动效率曲线
'
2) 求行驶车速Ua=30kmh,在
=0.80路面上车轮不抱死的制动距离。计算时取制动系反应时间

2
=0.02s,
''
制动减速度上升时间

2
=0.02s。
3) 求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离
s'
。 < br>分析:1)可由相关公式直接编程计算,但应准确理解利用附着系数和制动效率的概念。注意画图时利用附 着系数
和制动效率曲线的横坐标不同。
2)方法一:先判断车轮抱死情况,然后由前(后)轮 刚抱死时的利用附着系数等于实际附着系数求得制动强度。
方法二:由利用附着效率曲线读得该附着效率时的制动效率求得制动强度。
3)前部管路损坏 损坏时,后轮将抱死时制动减速度最大。计算时,注意此时只有后轮有制动力,制动力为后轮法
向反作用 力与附着系数的乘积。同理可得后部管路损坏时的情况。
解:1)前轴的利用附着系数公式为:

f


z
1

bzh
g

L

后轴的利用附着系数公式为:

r

( 1

)z

1

azh
g

L
该货车的利用附着系数曲线图如下所示(相应的MATLAB程序见附录)
第 15 页 共 30 页



制动效率为车轮不抱死的最大制动减速度与车轮和地面间摩擦 因数的比值,即前轴的制动效率为
E
f

示:
z

f

bLzaL
,后轴的制动效率为
E
r

,画 出前后轴的制动效率曲线如下图所




f
h
g
L

r
(1

)

r
hg
L

u
a0


1



2

1

2)由制动距离公式
s
,已知

2


2
=0.03s,
u< br>a0
=30kmh,φ=0.80,需求出


2


u
a0

3.6

2

25.92a< br>bmax
2
2
a
bmax
。利用制动效率曲线,从图中读出: φ=0.80的路面上,空载时后轴制动效率约等于0.68,满载时后轴制动效
率为0.87。
a
bmax
=制动效率*φ*g
所以车轮不抱死的制动距离(采用简化公式计算):
130
2
0.0330
空载时
s
=6.86m < br>3.625.920.670.89.8
130
2
0.0330< br>满载时
s
=5.33m。
3.625.920.870.89.8< br>3)求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离
s'
①制动系前部管路损坏时
则在后轮将要抱死的时候,
F
Xb
F
z2


G
(azh
g
)
Gz

L
第 16 页 共 30 页


得:
z
a


a
bmax
zg

L
h
g
22
空载时,
a
bmax
=3.56< br>ms
,满载时
a
bmax
=4.73
ms

2
u
a

2
''
1
0
制动距离:
s

(

2
')u
a0

3.62 25.92a
bmax
解得空载时s=10.1m,空载时s=7.63m。
②制动系后部管路损坏时
则在前轮将要抱死时,
得:
z
b


a
bmax
zg

L

h
g
22
空载时,
a
bmax
=2.60
ms,满载时
a
bmax
=4.43
ms

2
u
a

2
''
1
0
制动距离:
s

(

2
')u
a0

3.6225.92abmax
解得空载时s=13.6m,空载时s=8.02m。
4.4在汽车法规中,对 双轴汽车前、后轴制动力的分配有何规定。说明作出这种规定的理由。答:ECE制动法规
何我国行业标 准关于双轴汽车前、后轴制动力分配的要求见书P95。作出这种规定的目的是为了保证制动时汽车的方
向稳定性和有足够的制动效率。
4.5一轿车结构参数同题1.8中给出的数据一样。轿车装有单回路 制动系,其制动力分配系数

0.65
。试求:
1) 同步附着系数。
2) 在

0.7
的路面上的制动效率。
3) 汽车能到达的最大制动减速度(指无任何车轮抱死)。
4) 若将该车改为双回路制动系统(只改变制 动系的传动系,见习题图3),而制动器总制动力与总泵输出管路
压力之比称为制动系增益,并令原车单 管路系统的增益为G’。确定习题图3中各种双回路系统以及在一个
回路失效时的制动系增益。
5) 计算:在

0.7
的路面上,上述双回路系统在一个回路失效时的制 动效率以及能够达到的最大减速度。
6) 比较各种回路的优缺点。
解:1)同步附着系数:

0

2)制动效率
L

b2.70.651.25
0.80

h
g
0.63




0
,前轮先抱死。制 动效率为:
E
f

b1.25
0.95

L



h
g
2.70.650.70.63
3)最大制动减速度:
a
bmax
E
f

0.95 0.70.665g

4)易得各种情况下的制动系增益如下表所示:
制动系增益
双回路系统
a)
G’
b)
G’
第 17 页 共 30 页
c)
G’


1回路失效时
2回路失效时
0.35 G’
0.65G’
0.5G’
0.5G’
0.5G’
0.5G’
5)分析:对于a)若一个回路失效其情况和4.3.3一样,参照前面的分析。
对于双回路 系统b)和c),当一个回路失效时,如不考虑轴距的影响,其制动效果是一样的,所以只分析一种情
况 即可。一个管路损坏时,前、后车轮的抱死顺序和正常时一样。对车轮刚抱死时的车轮受力情况进行,注意此时作
用在单边车轮上的地面法向反作用力只为总的地面法向反作用力的一半。
注意:不能简单的认为此时的制动减速度为正常情况的一半。
①对于a):
若前轴回路失效时则相当于单回路时前部管路损坏,由4.3的推导:
z
max
a

1.450.7
0.323

L
h
g
2.70.70.63
最大制动减速度:
a
bmax
z
max
g
=0.323g。
制动效率:
E< br>r

z
max


46.2%。
若后轴回路失效时则相当于单回路时后部管路损坏,根据4.3的推导:
z
max< br>
b

1.250.7
0.387

L< br>
h
g
2.70.70.63
最大制动减速度:
a
bmax
z
max
g
=0.387g。
制动效率:
E
r

②对b)和c):
由前面的讨论知,< br>



0
,所以前轮先抱死,当前轮刚要抱死时:
z
max


55.3%。
F
Xb1


Gz

F
z1

G
(bzh
g
)

L
1
F
Z1


2
因为一个回路失效,
F
Xb1

以上方程联立解得:
z

b0.7 1.25
0.285

2L



h
g
22.70.650.70.63
制动效率:
E
r
< br>z

40.7%
,最大制动减速度0.285g。
6)两种回路的优缺点比较
双回路系统a)制动系增益最大,一个回路失效时的最大制动减速 度也比b),c)大,所以其性能较优。
双回路系统b)、c)制动系增益相同,如果不考虑轴距的影 响,两者在一个回路失效时的制动效率相同。但是,c)
在一个回路失效时,制动力作用在一侧车轮上, 车身左右受力严重不均衡,会产生跑偏等问题。
第五章 汽车的操纵稳定性
5.1 一轿车 (每个)前轮的侧偏刚度为-50176Nrad、外倾刚度为-7665Nrad。若轿车向左转弯,将使前轮 均产
生正的外倾角,其大小为4度。设侧偏刚度与外倾刚度均不受左、右轮负载转移的影响,试求由外倾 角引起的前轮侧
偏角。
第 18 页 共 30 页


解:有外倾角时候的地面侧向反作用力为
F
Y
k

k


(其中k为侧偏刚度,k
r
为外倾刚度,γ为外 倾角)
于是,有外倾角引起的前轮侧偏角的大小为:

1


k


k

代入数据,解得

1

=0.611 rad,另外由分析知正的外 倾角应该产生负的侧偏角,所以由外倾角引起的前
轮侧偏角为-0.611rad。
5.2 6450N轻型客车在试验中发现过多转向和中性转向现象,工程师们在悬架上加装横向稳定杆以提高前悬架的< br>侧倾角刚度,结果汽车的转向特性变为不足转向。试分析其理论依据(要求有必要的公式和曲线)。 答:由课本P138-140的分析知,汽车稳态行驶时,车厢侧倾角决定于侧倾力矩
M

r
和悬架总的角刚度

K

r



r

M

r

r

K

前、后悬架作用于车厢的恢复力矩增加:
T
r1
K

r1

r

T

r2
K

r2

r

其中
K

r1

K

r2
分别为前、后悬架的侧倾角刚度 ,悬架总的角刚度

K

r
为前、后悬架及横向稳定杆的侧倾角刚度之和。
由以上的分析易知,当增加横向稳定杆后汽车前悬架的侧倾角刚度增大,后悬架侧倾角 刚度不变,所以前悬架作
用于车厢的恢复力矩增加(总侧倾力矩不变),由此汽车前轴左、右车轮载荷变 化量就较大。由课本图5-46知在这种
情况下,如果左右车轮轮胎的侧偏刚度在非线性区,则汽车趋于 增加不足转向量。
5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何?
答:汽车的稳态响应有三种类型,即中性转向、不足转向和过多转向。
表征稳态响应的参数有 稳定性因数,前、后轮的侧偏角角绝对值之差
(

1


2
)
,转向半径的比RR
0
,静态储备
系数S.M.等。
它们之间的彼此关系为:
K
1
(

1


2
)


1
为侧向加速度的绝对值);
a
y
R
1Ku
2

R
0
S .M.=
k
2
a

(
k
1
,k
2
分别为汽车前、后轮的侧偏刚度,
a
为汽车质心到前轴的距离,L为前、后轴之间的距
k
1
k
2
L
离)。
5.4举出三种表示汽车稳 态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特
性?
答 :表示汽车稳态转向特性的参数有稳定性因数,前、后轮的侧偏角绝对值之差
(

1< br>

2
)
,转向半径的比RR
0

第 19 页 共 30 页


静态储备系数S.M.等。
①讨论汽车重心位置对稳态转向特性的影响,由式(5-17)
S.M.=
k
2
a'aa


a'
为中性转向点至前轴的距离)
Lk
1
k
2
L
当中性转向点与质心位置重合时,S.M.=0,汽 车为中性转向特性;
当质心在中性转向点之前时,
a'a
,S.M.为正值,汽车具有不足转向特性;
当质心在中性转向点之后时,
a'a
,S.M.为负值,汽车具有过多转向特性。
②汽车内、外轮负荷转移对稳态转向特性的影响
在侧向力作用下,若汽车前轴左、右车轮垂直 载荷变动量较大,汽车趋于增加不足转向量;若后轴左、右车轮垂
直载荷变动量较大,汽车趋于减小不足 转向量。
5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样?
答:不一样。汽车转弯时 由于侧倾力矩的作用,左、右车轮的垂直载荷不再相等,所受阻力亦不相等。另外,车
轮还将受到地面侧 向反作用力。
5.6主销内倾角和后倾角功能有何不同?
答:主销内倾角的作用,是使车轮 在方向盘受到微小干扰时,前轮会在回正力矩作用下自动回正。另外,主销内
倾还可减少前轮传至转向机 构上的冲击,并使转向轻便。
主销后倾的作用是当汽车直线行驶偶然受外力作用而稍有偏转时,主销后 倾将产生车轮转向反方向的力矩使车轮
自动回正,可保证汽车支线行驶的稳定性。
汽车转向轮 的回正力矩来源于两个方面,一个是主销内倾角,依靠前轴轴荷,和车速无关;一个是主销后倾角,
依靠 侧倾力,和车速有关;速度越高,回正力矩就越大。
5.7横向稳定杆起什么作用?为什么有的车装在 前悬架,有的装在后悬架,有的前后都装?答:横向稳定杆的主
要作用是增加汽车的侧倾刚度,避免汽车 在转向时产生过多的侧倾。另外,横向稳定杆还有改变汽车稳态转向特性的
作用,其机理在题5.2中有 述。横向稳定安装的位置也是由于前、后侧倾刚度的要求,以及如何调节稳态转向特性的
因素决定的。
5.8某种汽车的质心位置、轴距和前后轮胎的型号已定。按照二自由度操纵稳定性模型,其稳态转向特 性为过多
转向,试找出五种改善其特性的方法。
答:①增加主销内倾角;②增大主销后倾角; ③在汽车前悬架加装横向稳定杆;④使汽车前束具有在压缩行程减
小,复原行程增大的特性;⑤使后悬架 的侧倾转向具有趋于不足转向的特性。
5.9汽车空载和满载是否具有相同的操纵稳定性?
答:不具有相同的操纵稳定。因为汽车空载和满载时汽车的总质量、质心位置会发生变化,这些将会影响汽车的< br>稳定性因数、轮胎侧偏刚度、汽车侧倾刚度等操纵稳定性参数。
5.10试用有关公式说明汽车质心位置对主要描述和评价汽车操纵稳定性、稳态响应指标的影响。
答:以静态储备系数为例说明汽车质心位置对稳态响应指标的影响:
S.M.=
k< br>2
k
2
a'aa


a'L
,为中性 转向点至前轴的距离)
Lk
1
k
2
Lk
1
k
2
当中性转向点与质心位置重合时,S.M.=0,汽车为中性转向特性;
当质心在中性转向点之前时,
a'a
,S.M.为正值,汽车具有不足转向特性;
当质心在中性转向点之后时,
a'a
,S.M.为负值,汽车具有过多转向特性。
5.11二自由度轿车模型的有关参数如下:
总质量 m=1818.2kg
绕Oz轴转动惯量
I
z
3885kgm

轴距 L=3.048m
质心至前轴距离 a=1.463m
质心至后轴距离 b=1.585m
前轮总侧偏刚度 k
1
=-62618Nrad
后轮总侧偏刚度 k
2
=-110185Nrad
第 20 页 共 30 页
2


转向系总传动比 i=20
试求:
1) 稳定性因数K、特征车速u
ch

2) 稳态横摆角速度增益曲线< br>

r


u
a
、车速u=22.35m s时的转向灵敏度
r


sw


s
3) 静态储备系数S.M.,侧向加速度为 0.4g时的前、后轮侧偏角绝对值之差

1


2
与转弯 半径的比值
RR
0
(R
0
=15m)。
4) 车速u=3 0.56ms时,瞬态响应的横摆角速度波动的固有(圆)频率

0
、阻尼比

、反应时间

与峰值
反应时间


注意:2)所求的转向灵敏度
解:
1)稳定性因数

r
中的

sw
是指转向盘转角,除以转向系传动比才是车轮转角。

sw
K
m

ab

1818.2

1. 4631.585

22



0.0024s m

2

2

L

k
2
k
1

3.048

11018562618

特征车速
u
ch
1K 20.6ms74.18kmh

2) 稳态横摆角速度增益曲线

r


u
a< br>如下图所示:


s

r
3.3690
20=0.168

sw
车速u=22.35ms时的转向灵敏度

a

-ak
2
a
0.1576
, 3) 态 储备系数
S.M.
Lk
1
k
2
L
a
y
0.4g
时前、后轮侧偏角绝对值之差
第 21 页 共 30 页

< p>

1


2
Ka
y
L0.00 240.4g3.0480.0281rad1.6

R
0

L
,


LL
,R17.4113,RR
0
1.16

R




1


2

时,瞬态响应的横摆角速度波动的固有(圆)频率


4) 速u=30.56ms

0

L
u
k
1k
2
1Ku
2
5.58rads,f
0
0.88 74Hz

mI
Z

阻尼比


m a
2
k
1
b
2
k
2
I
Z
k
1
k
2

2LmI
Z
2
12

kk

1Ku

0.5892



1

2
arctan


mua



0

Lk
2

反 应时间



0
1

2

< br>



0.1811s


1

2

arctan






0.3899s
峰值反应时间



01

2
5.12稳态响应中横摆角速度增益达到最大值时的车速称为特征车速< br>u
ch
。证明:特征车速
u
ch
1K
,且在特征车速时的横摆角速度增益,为具有相等轴距L中性转向汽车横摆角速度增益的一半。
答:特征车速指汽车稳态横摆角速度增益达到最大值时的车速,汽车稳态横摆角速度增益为:

r
uL111
)
s


2
1

1Ku
L(Ku)
2L
1

Ku
2LK
u
u


1u
Ku
,即
u1 K
时等号成立,所以特征车速
u
ch
1K
。此时的横摆角速度增益
r
)
s

,具有
u

2L
相等轴 距L中性转向汽车的横摆角速度增益为
uL
,前者是二者的一半。
5.13测定汽车 稳态转向特性常用两种方法,一为固定方向盘转角法,并以RR
0
-a
y
曲线 来表示汽车的转向特性;
另一为固定圆周法。试验时在场地上画一圆,驾驶员以低速沿圆周行使,记录转 向盘转角

sw0
,然后驾驶员控制转向
盘使汽车始终在圆周上以低速连续加 速行使。随着车速的提高,提高转向盘转角

sw
(一般)将随之加大。记录下

sw
角,并以

sw


a
y曲线来评价汽车的转向特性。试证:
sw
1Ku
2
,说明如何根据< br>sw
u
2
曲线来判断汽车的转

sw0

sw0

sw0
向特性。
证明:设转向器的总传动比为
i
,设低速运动时的前轮转角为

0
,则

sw0


0
i
L
,(其中R为圆周半径)。
iR
第 22 页 共 30 页


连续急速行使时,由式(5-11):



r
1(Ku)
2
uL
,又

r
u R
,得

sw


i
所以
L
(1Ku
2
)

iR

sw
1Ku
2
,证毕。

s w0

sw


1

sw
u
2
是一条直线;不足转向时,K>0,
sw
1


sw
将随车速得增加而逐渐

sw0

sw0

sw0
中性转向时,K=0,
增大;K<0,

sw
1


sw
将随车速得增加而逐渐减小。

sw0
5.14习题图4是滑柱连杆式独立悬架(常称为Mc Pherson strut suspension)示意图。试证:
1)R.C.为侧倾中心。
2)悬架 的侧倾角刚度为
K

r
2k
s
(
mp
2
)
,式中,ks为一个弹簧的(线)刚度。
n

分析:计算 悬架侧倾角刚度时,要利用虚位移原理进行推导。推导时注意,本题和书中的单横臂独立悬架是有
区别的 ,主要是本题有一个角


证明:
1)先对左侧悬架分析。当车轮上下跳 动时,CB杆绕B点转动,故AC杆的瞬心必在CB所在的直线上;由于AC杆
导向机构的约束,A点的 运动方向平行与AC杆自身,故AC杆的瞬心必在过A点,垂直AC的直线上。由此可得到左侧
车轮的瞬 心O’点,侧倾中心就在DO’与汽车中心线的交点上,如图中所示。
2) a.求悬架的线刚度
K
l

设车厢不动,汽车处于静止受力状态,作用在轮胎 上的地面法向反作用力为
F
z'
,再在轮胎上加一微元力
F
z'< br>,△
s
s
为弹簧的虚位移,△s
t
为车轮的虚位移,弹簧力相 应增加
Q
,则
Qk
s
s
s

设O’D与水平面的夹角为

,因为O’为左侧车轮的运动瞬心,由图可知
s
s
cos

s
t


m n
根据力矩平衡:
F
z'
ncos

Qmk
s
s
s
m

单侧悬架的线刚度为
K
l

F
z'
m
2
k
s
()

s
t
ncos

由式(5-42)整个悬架的侧倾角刚度为:
第 23 页 共 30 页


K

r

1 mp
K
l
(2pcos

)
2
2k
s< br>()
2

2n
5.17 习题图5为三种前独立悬架对车轮相对车身 垂直上下位移时前束变化的影响。试问图中哪一条曲线具有侧倾
过多转向效果?

答 :曲线1对应的前独立悬架,转弯时车厢侧倾,内侧前轮处于反弹行程,前束增加,车轮向汽车纵向中心线转动,外侧前轮处于压缩行程,前束减小,车轮向外转动。采用这种悬架导致汽车的侧倾转向增加了不足转向量 ,具有
侧倾不足转向效果。
曲线2对应的前独立悬架,曲线较其他两种更贴近纵坐标轴,说明 这种悬架的侧倾转向量很小,几乎等于零。
曲线3对应的前独立悬架,转弯时车厢侧倾,内侧前轮处 于反弹行程,前束减小,车轮向汽车纵向中心线相反方
向转动,外侧前轮处于压缩行程,前束增大,车轮 向内转动。采用这种悬架导致汽车的侧倾转向增加了过多转向量,
具有侧倾过多转向效果。
5.18转向盘力特性与哪些因素有关,试分析之。
答:转向盘力随汽车运动状况而变化的规 律称为转向盘力特性,与下列因素有关:转向器传动比及其变化规律、
转向器效率、动力转向器的转向盘 操作力特性、转向杆系传动比、转向杆系效率、由悬架导向杆系决定的主销位置、
轮胎上的载荷、轮胎气 压、轮胎力学特性、地面附着条件、转向盘转动惯量、转向柱摩擦阻力以及汽车整体动力学特
性等。
5.19地面作用于轮胎的切向反作用力是如何控制转向特性的?
答:参考课本第六节。
第六章 汽车的平顺性
6.1设通过座椅支承面传至人体垂直加速度的谱密度为一白噪声,< br>G
a
(f)0.1m
2
s
3
。求在0.5~8 0Hz频率范
围内加权加速度均方根值
a
w
和加权振级
L
a w
,并由表6-2查出相应人的主观感受。

80
a
w
[

w(f)G(f)df]
0.5
0.5
2
f
2
0.1(

0.5df

df
16
0. 52
2
2412.5

4
12.5
2
df

df)
0.5
1.434(ms
2
)
2
f
12.5
83
80

L
aw
20lg(1.434
)123(dB)
,查
10
6
表得,人的主观感 受为很不舒服。
6.2设车速u=20ms,路面不平度系数
G
q
(n0
)2.5610m
,参考空间频率
n
0
0.1m
1
。画出路面垂直位移,
速度和加速度
G
q
(f),G
q

(f),G
q

(f)
的谱图。画图时要求用双对数 坐标,选好坐标刻度值,并注明单位。
解:由公式
第 24 页 共 30 页


G
q
(f)
1
282922
G(n)nu 2.5610200.01f5.1410f(ms)
q00
2
f
得到谱图如下:
2228
G
q
2.0210
7
( m
2
s)

(f)(2

)G
q
(n< br>0
)n
0
u4

0.512010
4224 82
G
q
7.9810
6
f
2
(m
2
s
3
)

(f)(2

)fG
q
(n
0
)n
0
u16

0.512010 f


6.3设车身-车轮二自由度汽车模型,其车身部分固有频率
f0
2Hz
。它行驶在波长

5m
的水泥接缝路上,
求引起车身部分共振时的车速
u
a
(kmh)
。该汽车车轮部分的固有频率< br>f
t
10Hz
,在砂石路上常用车速为
30kmh

问由于车轮部分共振时,车轮对路面作用的动载所形成的搓板路的波长



解:引起车身部分共振时的车速:
u
z
f
0

2510(ms)36(kmh)

车轮对路面作用的动载所形成的搓路板的波长为

u
a
3010
3

0.833(m)
< br>f
t
360010
6.4设车身单质量系统的幅频
zq
用双 对数坐标表
路上输入谱与题6.2相同。求车身加速度的谱密度
并计算0.1~10Hz频率范 围车身加速度的均方根值


z


解:
示时 如习题图6所示。
G

z

(f)
,画出其谱图,
第 25 页 共 30 页


2
z
G

z

(

)H(j

)

z

~ q
G(

)

G
q

(
< br>)
q

q
2
2
zz
G

z

(f)(2

f)20.212910
8
7 .9810
6
qq
2
22
f
2

而< br>zz1
1,(f0.1~1);,(f1~10)
qqf
f0.1 ~1时,G

z

(f)7.9810
6
f
2
;
f1~10时,G

z

(f)7.9810< br>6
得到车身加速度密度谱图如下:

6.5车身-车轮双质量系统参数:< br>f
0
1.5Hz,

0.25,

9,

10

“人体-座椅”系统参数:
f
s
3Hz,

s
0.25
。车速
u20ms
,路面不平度系数G
q

n
0

2.5610m

83
参考空间频率n
0
=0.1m。
计算时频率步长
f0.2Hz
,计算频率点数
N180

1) 计算并画出幅频特性
z
1
q

z
2
z
1

qz
2
和均方根值谱
G

z

1

f


G

z

2

f


G
a

f

谱图。进
一步计算

q




1



2


a
、a
w
、L
aw

zz
2) 改变“人体-座椅”系统参数:
f
s
1.5~6Hz,

s
0.125~0.5
。分析
a
w
、L
aw
值随
f
s


s< br>的变化。
3) 分别改变车身-车轮双质量系统参数:
f
0
0.2 5~3Hz,

0.125~0.5


4.5~18,

5~20
。绘



2

fd


FdG
三个响应量均方根值随以上四个系统参数变化的曲线。
z
解:
1)
幅频特性
-1
z
1
q< br>z
2
z
1
qz
2



均 方根值谱
第 26 页 共 30 页


G

z
< br>1

f


G

z

2< br>
f


G
a

f

的谱 图如下所示


其中计算公
式如下:



1




0




1

z
1
q





G

z

1

f

H
j

G

z

2

f
H

j
G
a

f

G

p


其中G
q


f
4

由计算
公式
f


q


G
q


f

d f


0
f
1


z




G

z


f

d


0
1


z




G

z


f

d
2
f


0
2

a



p




G

p



0
36
f
a
w



W
2

f

G


0
L
aw
20lg

a
w
a
可得

q
ms,


z

1
0.2391ms,


z

2
0.0168ms,

a
 0.0161ms,
及0~36Hz频率范围加权加速

0.3523
度 均方根值与加权振级为
a
w
0.01ms,L
aw
80.03d B
,由表6-2查得车上乘客没有不舒适的感觉。
2) 改变“人体-座椅”系统参数:f
s
1.5~6Hz,

s
0.125~0.5
。 分析
a
w
、L
aw
值随
f
s


s
的变化。
2
2222
a
w
、L
aw< br>值随
f
s


s
的变化的曲线如下图所示。
如图可以看出随
f
s


s
的变化,
a
w
、L
aw
值改变量不大;其中
a
w
、L
aw
f
s
增大而有所增大, 而
a
w
、L
aw< br>随

s
增大,先减小后增大,其中在

s
=0.2左 右右最小值。
第 27 页 共 30 页



3) 分析
双质量系统车
身部分固有频
率f
0
、阻尼比
ζ、刚度比γ
和 质量比μ四
个参数的变化
对振动响应

2

f
d

z
F
d
G
均方
根值的影
响。
在分析
4个系统参
数中某一参
数的影响
时,其余3
个参数保持
不变。系统
参数取值如
下表所示:
系统参数
基准值
+6dB
f
0
Hz
1.5
3
ζ
0.25
0.5
0.125
γ
9
18
4.5
μ
10
20
5 -6dB 0.25
车身部分固有频率f
0
的影响

 车身部分阻尼比ζ的影响
第 28 页 共 30 页



 悬架与车轮的刚度比γ的影响

 车身与车轮部分质量比μ的影响
第 29 页 共 30 页



第 30 页 共 30 页

美国天气-申请书如何写


反对自由主义全文-宝应教育网


北美mba-中秋节手抄报三年级


湖南高考试卷-贺词


紫水晶代表什么-管理科学与工程专业排名


河海大学考研网-会计主管工作总结


阿坝师专教务网-林夕歌词


综合素质评价-教师节活动总结