最新小学数学教师基本功考试试题及答案
学雷锋征文-浙江大学录取分数线
小学数学教师基本功考试试题及答案
A课程标准部分(35分)
一、填空题:(每空0.5分,共15分)
1、在各个学段中,《课程标准》安排了(数与代
数)、(空间与图形)、(统计与概
率)、(实践与综合应用)四个学习领域。
2、数学是人
们对客观世界(定性把握)和(定量刻画),逐渐抽象概括,形成(方法)
和(理论),并进行广泛
应用 的过程。
3、义务教育阶段的数学课程应突出体现(基础性)、(普及性)和(发展性),使数
学教育面向全体学生,实现人人学(有价值的数学);人人都能(获得必需的数学);不同
的人
在数学上(得到不同的发展)。
4、数学教学活动必须建立在学生的(认知发展水平)和已有的(知识基础之上)。
学生是数学学习的主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
5、有效
的数学学习活动不能单纯的依赖模仿与(记忆),(动手实践)、(自主探索)
与(合作交流)是学生学
习数学的重要方式。
6、对数学学习的评价要关注学生学习的(结果),更要关注他们学习的(过程)
;要
关注学习数学的(水平),更要关注他们在数学活动中所表现出来的(情感与态度),帮助
学生(认识自我),(建立信心)。
7.在数学课标中,对总体目标部分从以下四个方面提出了要求,
即(知识与技能)、(数
学思考)、(解决问题)、(情感与态度),这四个方面是一个密切联系的有机
整体,对人
的发展具有十分重要的作用,他们是在丰富多彩的数学活动中实现的。
二、简答题(每题4分 ,共20分)
1、《数学课程标准》的总体目标是什么?
通过义务教育阶段的学习,学生能够:⑴获得适应未来社会生活和进一步发展所必需的
重要数学知识以及
基本的数学思想方法和必要的应用技能。⑵初步学会运用数学的思维方式
去观察,分析现实社会,去解决
现实生活中和其他学科中的问题,增强应用数学的意识。⑶
体会数学与自然及人类社会的密切联系,了解
数学的价值,增进对数学的理解和学好数学的
信心。⑷具有初步的创新精神和实践能力,在情感态度和一
般能力方面得到充分发展。
2、“数与代数”领域第一学段主要包括哪些内容
万以内的数,简单的分数和小数、常见的量、基本运算、简单的数量关系。
3、第二学段的教学建议是什么
一.让学生在现实情境中体验和理解数学二、鼓励学生独立思
考,引导学生自主探究、
合作交流三、加强估算,鼓励解决问题的多样化
四、重视培养学生应用数学的意识和能力
4、简要说明第一学段的评价建议是什么?
一.注重对学生数学学习过程的评价二、恰当评论学生基础知识和基本技能的理解和掌
握三、重视对学
生发现问题和解决问题能力的评价四、评价方式要多样化五、评价结果以 定
性描述的方式呈现。
5、小组合作学习是数学课堂上的一种学习方式,谈谈在哪些情况下适合进行小组学习?
1
在教学内容的重点和难点处、易混淆处;在思维的交锋处、发散处;在规律的探索处;<
br>在动手操作处。
B教材知识部分(35分)
一、填空题(每空1分,共10分) <
br>1.某一天的外汇牌价所显示的汇率是:1美元兑换8.4元人民币。这天李先生用80
美元兑换
了112万越南盾,1万越南盾约合( 6 )元人民币。
2.在100克的水中加入20克的盐,盐占盐水的( 六分之一 ).
3.将两个棱长都是2分米的正方体木块,拼粘合成一个长方体,这个长方体体积应是
( 16
)。表面积应是( 40 )。
4.判断下列现象中,哪些是平移现象?哪些是旋转现象?
钟摆的运动 ( 旋转 )、
电梯的上下移动(平移 ),
跷跷板的运动( 旋转 )、
推拉抽屉 (平移 ).
5、李家湾今年水稻的总产量比去年增产一成五;
今年水稻总产量是去年的( 115 )%。
6、如果某年的四月份有5个星期六和星期日,那么四月一日是星期( 六 )。
二、解答下列各题(每题5分,共25分)
1、在一个正方体的6个面上分别标上数字,怎样能使得“2”朝上的可能性为13?
答:在两个面上标上“2”。
2、教职工篮球赛市直学校组共有5个球队,每两个队要打一场,一共要打多少场?
答:10场。
3.根据例题,运用等式的基本性质解方程。
例如: a + 5
= 6 3x =12
解: a + 5 - 5 = 6 -5 解:3x÷3 =12÷3
a =1 x =4
4、魏师傅烙饼,每次只能烙两张饼,两面都要烙,每面3分钟,怎样能
最快烙完5张
饼?最快用多少分钟?
答:15分钟。
5、小伟在期末考试中语文、数学、英语的平均成绩是90分,其中英语成绩比语文成绩
多6分
,数学成绩是98分,问小伟的语文、英语成绩各是多少?
答:语文83分,英语89分。
C教学案例分析部分(40分)
一、 案例分析(12分)
案例:“面积的含义”中比较平面图形面积的大小
教学片断如下:
教师出示面积比
较接近的一个正方形和一个长方形,让学生自己想办法比较这两个图形
谁的面积大。
学生独立思考、动手操作后,发言踊跃,纷纷说出了不同的比较方法。
2
生1:可以把长方形和正方形的一个角对齐,然后把长方形多余的部分剪掉后放在正方
形上面,
再把多余的部分剪掉,再放在上面,多余的再剪掉,直到剪拼到最后,把正方形全
盖上了,长方形还剩下
一点儿,说明长方形的面积大。
师:这个方法行不行?
生:行。
生2:我将透明
方格纸分别放在两个图形上面数方格,长方形10个方格,正方形9个方
格,所以长方形面积大。
师:你是用数方格的方法,挺好。
生3:我是用一个小正方形比着在两个图形上面画格子,长
方形里能画10个方格,正方
形里只能画9个方格,所以长方形的面积大。
生4:我在图形上
摆小方块,数一数,发现长方形上面一排摆5个,能摆2排,一共能
摆10个小方块;正方形里一排摆3
个,能摆3排,一共能摆9个小方块,所以长方形面积
大。
生5:我是用摆小圆片的方法,长
方形上能摆10个圆片,正方形上只能摆9个圆片,所
以长方形面积大。
生6:我量了它们的
长和宽,长方形的长是5厘米,宽是2厘米,面积是5×2=10(平
方厘米);正方形的长是3厘米,
宽3厘米,面积是3×3=9(平方厘米)所以长方形的面积
大。
师:你知道得真多! 生7:我也量了长方形和正方形的长与宽,发现长方形的周长比正方形的周长要长,所
以长方形的面
积大。
(生7的话音刚落,就有学生举手表示反对,其他学生也面露困惑之色)
师:大家听明白他的意思了吗?这权且也算一种方法,到底行不行,我们今后会进一步
研究。
师:同学们真爱动脑筋!一下子想出了这么多种方法,了不起!我相信今后大家会有更多
的方法
。
……
请根据以上教学片段对老师的教学行为进行分析(6分)
答:在上述案例
中,教师努力营造开放的教学环境,给学生提供探索和发现的时间与空
间,学生思维灵活,思路开阔,呈
现出了多样化的解决问题的策略。但是进一步分析,发现
教学中学生是“动”起来了,但教师却满足于学
生“自发”状态的发现,停留于不同方法的
展现上。学生在课堂中出现的许多信息,基本上教师默认的多
,回应反馈的少,缺乏通过教
师的点拨使学生思维得到进一步的提升。
只让学生畅抒己见而没
有教师精确的讲授和适时的评价指导,很难将学生的思维引向深
入。对影响后继学习的基本知识和基本方
法放任不管,就会失去教师“教”的真正意义,学
生也就失去了自我反思、比较、交流与提升的机会。因
此,当学生积极参与,纷纷说出了不
同的比较方法后,教师应“趁热打铁”,继续通过适当的评价和引导
,让学生在与同伴的交
流中不断地自行优化自己的思考方法,主动地拓展和完善自己的认知结构。
3
如果你是这位教师,针对学生的回答,你会怎么做?(6分) 答:
比如,对于其中几
位学生的发言可作如下回应反馈:
生1:我把这两个图形重叠在一起,然后
把多出来的部分剪下来,再放在一起比一比,
看最后谁露出来,谁的面积就大。
师:这是一种
剪拼的方法,这种方法虽然破坏了图形的原有形状,但也能比较出面积的
大小。这种剪拼的方法,在今后
的平面图形的学习中用处可大了。(有效的点拨和提炼)
……
生2:用尺子量长方形和正方形的周长,周长长,面积肯定就大。 师:你认为周长长的
平面图
形的面积肯定就大,是吗?这个猜想很有价值,但是否成立,还必须通过验证才行。
下课后,你可以想办
法验证一下,然后把你的验证结论告诉老师,好吗?
在学生展示了多种方法后。
师:同学们
真了不起,一下子想出了这么多的方法。生1用的是剪拼重叠的方法,生2、
生3和生4的方法很相似,
都是用数方格的方法,生5用的是摆小圆片的方法,以及我们现
在还不太明白的直接列式计算的方法。在
这几种方法中,你更喜欢哪一种?说说你的想法。(必
要的梳理和适时的引导)
生8:我喜欢摆小圆片和数方格的方法,因为我觉得这样方便。 师:在摆圆片和数方格
的这两
种方法中,你觉得哪种方法更好?(引导学生进一步深入思考,逐步逼近数学的核心)
生9:我觉得摆圆片的方法更方便。
生10:我不同意生9的意见。用摆圆片的方法,图形的
中间有空隙,容易出现误差,不
如数方格的方法科学。(这是生生之间的有效互动)
师:其他同学的看法呢?(学生大都喜欢用数方格的方法)
师:确实,用数方格的方法能铺满
整个图形,比较精确,也比较科学。下面,我们就用
这种方法来比较几组图形面积的大小。
二、 结合新课改教学理念,对下面的教学片断进行分析。(8分) 教学片段:
小明家今秋
收稻谷3500斤,扣除口粮和种子1500斤,尚有余粮2000斤,小明爸爸准
备卖出去,你看怎么
卖?最多能卖多少元?
生:老师,稻谷多少钱一斤,我们不知道是不能算的!
师:稻谷0.86元斤,谁能算出来?
生:最多能卖1720元。
生:老师能不能碾米以后卖呢?
师:他提出疑问,能不能……
(分组讨论。)
教师相机提供一些数据:
大米每斤1.50元
出米率72%
加工费100斤稻谷4元
信息汇总:教师出示其中1~2位学生计算办法:
2000×72%=1440(斤)
4
1440×1.50=2160(元)
2000÷100×4=80(元)
2160-80=2080(元)
2080-1720=360(元)
生:还有米糠呢?
360+米糠100=460(元)
……
案例分析:
1.“探索”学习,让“学”先行一步。
随着课程改革的深入,以培养学生探究意识、探究能
力为目标的“探究性”学习已成为
教师课题研究的一个热点。以本案为例,教师在课前引导学生从事数学
实践活动,让他们在
调查、采集处理信息的基础上,反馈得到信息:(1)丰收;(2)亩产在1000
斤左右;(3)
新米很香;(4)有的小朋友家中没有田了,只好写别人的……使学生对有关问题形成初
步
认识。学生经过充分探究、思考后学到的东西是书本知识根本无法给予的,学生发言的真实
与
精彩,更是传统教学无法相比的。这样在安排上有很大的自主性和自由性,行为过程无人
干扰,使学生真
正成为活动的主体。从而切实保证了学生学习方式的转变,教师也显得轻松、
自然。
2.尊重教材,更应注重开发数学内容的价值。
教师不仅是教材的使用者,更应成为教材的重
组者、开发者,最大限度地开发并体现教
材的价值。而数学内容的价值并不完全在教材中静态地呈现,它
需要教师去思考、捕捉、开
发,然后通过教学动态地渗透。在这节课的教学中,我注意了两点:(1)培
养学生商品经
济意识。当意外发生时,我没有制止,而是创造民主和谐的气氛让学生去讨论、比较、分析
,
及时抓住了这个教学契机,一步步把学生的思维引向深入,最后得到的结果是碾米后比直接
卖
稻谷多赚了460元。这样既让学生充分感受到心灵的自由,又在潜移默化中渗透了一种意
识,让他们明
白了一个道理:只要发挥自己的聪明才智就能赚钱,而且赚钱要赚得合情、合
理、合法。(2)“学生之
间的信息差”也是一种学习资源。我校虽然是一所农村小学,但
家住在镇上的学生比较多。这次实践活动
后,许多原先成绩优秀的学生少了发言权,而家住
农村平时很少发言的同学成了主讲。学生在讨论、汇报
、交流中仁者见仁,智者见智,成为
学习的主人。学生的数学学习活动成了“一个生动活泼的、主动的和
富有个性的过程”。
3、数学即生活。数学活动回归生活必定为学生的数学学习架构起弹性空间。新教
材为
我们提供了如此具有丰富内涵的教学资源。因此,我们不能单一地巩固新知、训练解题技巧,
而忽视了它蕴涵的诸如数学思想、数学方法、思维方式、学习策略、创新意识等教学价值。
当数学教学
内容的价值被我们合理开发并能在课堂上充分体现时,数学课也一定会精彩纷呈。
三、请选择一个课题
写出你的简要教学设计(15分),并对你的设计做出简要评析(5
分)。(20分)
1、小学数学人教版实验教材一年级上册《认识物体和图形》一节。
2、小学数学人教版实验教材三年级上册《秒的认识》一节。
3、小学数学人教版第十一册《圆的认识》一节。
5
(另附纸)
答案略《圆的认识》教学设计
教学目标:
1.通过两次剪圆,感知对圆的认识;通
过讨论、猜测、验证,理解对圆的认识;通过画
圆,知道圆心和半径的作用,会用圆规画圆,提高对圆的
认识;通过建构,掌握对圆的认识;
通过应用,使学校数学向生活数学延伸,升华对圆的认识。
2.通过欣赏生活中的圆、用圆设计的图案,发现数学美,提高学习的兴趣。
3.通过介绍圆
,培养主动建构的能力;通过学生系列的探索活动,培养学生科学的探究
态度,发展学生的空间观念。
教学重点:认识圆,掌握圆的特
教学设计思路:
圆在生活中是很常见的,应用也是
非常广泛的。通过举例、欣赏、想象基础上的两次剪
圆、套圈基础上的探究活动,实现对生活数学的 <
br>提炼和向学校数学的过渡;通过用圆形物体画圆、用圆规画圆、用绳子画圆,实现生活数学
与学校
数学的精密结合;通过设计汽车轮胎、测量实物圆的直径、利用圆设计图案,实现学
校数学的提升和向生
活数学的延伸。
学生对生活中的圆是认识的,对数学中的圆也是有一定基础的。通过两次剪圆,感知对
圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,提高对圆的认识;通过建
构,
掌握对圆的认识;通过应用,升华对圆的认识。
一、剪圆,感知对圆的认识
师:同学们,这节课我们一起来研究圆,板书圆。你见过圆吗?在哪里见过?
师:放课件,欣赏生活中的圆。
师:请你闭上眼睛在脑子里勾画一下圆的形状.
师:直接剪出你印象中的圆。
师:剪下来的图形跟你印象中的圆完全一样吗?有什么不同?
师:怎样才能剪出你印
象中的圆呢?在刚才的基础上剪一剪。
师:通过剪圆,你觉得圆与带来的平面图形的最大
区别是什么?
二、探究,理解对圆的认识
师:我有一件礼物,谁先抢到就送给谁,你认为现在这种排列合理吗?为什么?怎么排
队最合理
?我应该站在哪儿?你怎么跑?哪两个人之间的距离最远?
师:我们把刚才讨论的内容在这个圆中表示出来,分别怎么表示?分别叫什么?
师:直径真的是最长的吗?怎么验证呢?
师:请你猜想一下,圆会有哪些特征?根据学生的猜想教师板书。
师:你能验证这些
猜想吗?请你试一试。如果一个人验证有困难可以找人合作。
师:谁愿意说说你是怎么验证的?有补充吗?在验证过程中有新的发现吗?
三、画圆,提高对圆的认识
师:我们知道要剪圆先要画圆,你以前画过圆吗?你是怎么画的?
师:如果想画一个半径是3厘米的圆,借助什么来画会比较方便?你会画吗?
6
师:谁愿意展示你是怎么画圆的?先说再画。有不同的方法吗?
师:若想改变圆的大
小,我们可以怎么做?半径的作用是?
师:若想改变圆的位置,我们可以怎么做?圆心的
作用是? 师:你还知道其他画圆的方法吗?
师:我想到操场上画一个很大的圆,你能帮我想个办法吗?谁愿意示范?用这种方法画
圆要注意什么?
四、建构,掌握对圆的认识
师:同学们,刚才我们对圆进行了研究,现在请你闭上眼睛回忆一
下我们学习的过程,
整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
五、应用,升华对圆的认识
师:如果你是汽车设计师,会把车轮设计成什么形状?说说你的理
由?为什么不设计成
其它形状呢?
师:其实利用圆还可以设计出非常美的图案,欣赏用圆设计的图案。
师:你能利用圆在方格纸上设计一个漂亮的图案吗?
小学数学教师基本功考试试题答案
A课程标准部分(35分)
一、填空题:(每空0.5分,共15分)
1、在各个学段中,《课程标准 字号:大 中
小
一、 填空
1、参加继续教育学习是中小学教师的权利和( 义务 )。
2、预防未成年人犯罪的教育目的是(增强法律意识 )。
3、《义务教育法》规定,国家、
社会、学校和家庭依法保障(适龄儿童、少年)依法
接受义务教育的权利。
4、数学课程目标分为(知识与技能)、(解决问题)(数学思考)(情感与态度)四
个维度。
5、教学目标对整个教学活动具有(导向)(激励)(评价)的功能。
6、教学案例的一般结构是(主题与背景)(案例背景)(案例描述)(案例分析)
二、
选择题
1、《中华人民共和国教育法》自( B )之日起开始实施。
A、1990年9月1日 B、1995年9月1日
2、中小学教师职业道德建设在教师对待教育事业的较高道德目标是(A)。
A、献身于人民的教育事业B、忠于职守,为人师表,积极进取。
3、教师在教育教学中应当
平等对待学生,关注学生的(D),因材施教,促进学生的实
际发展。
A、耐心 B、个性
D、个体差异
4、知识和技能的关系是( )
A、知识是技能的表现
B、技能是知识的表现 C知识、技能是两个完全不同的概念 D
三、 判断题,错的要改正
7
1、只要把学习的时间交给学生,让学生自己学习,就是以自主学习为中心的课堂教学。
(*)
2、掌握、了解、理解是过程性目标的行为动词。 ( * )
3、解决问题策略的多样化是要求每个学生用不同的方法去解决同一个数学问题。 ( V )
4、小组合作开始后,教师的角色主要是组织者。 ( * )
四、 简答题
1、
简述加强教师职业道德修养的必要性。
2、 哪些内容可以组织学生合作学习习?
3、
教育科研的一般程序是什么?(基本步骤)
4、 试卷命题的要求和注意事项有哪些?
五、
解答题
1、 计算
549÷(459+459460)
14064+1254+1508+11016+12032+14064
2、 李大妈卖出
168元两件衣服,一件赚20%,另一件亏20%,请你分析一下李大妈这
次生意是亏还是赚。
3、 有ABCDEF六个人进行乒乓球比赛,规定每两人进行比赛一场,每天每人只能打一
场
球,已知第一天C和E打,第二天D和B打,第三天A和C打,第四天E和D打,问第五
天F和(
)打?
4、 小王在操场上散步,他先向西走10米,再向右转45度,又向前走10米,再向右转45度,这样下去,他能不能回到起点,说明理由。
5、
在一个面积为10的正方形里画一个最大的圆形,求此圆的面积,你能用几种解题
思路。
六、
案例分析
1、 “年、月、日的认识”情境创设
上课时,教师为学生准备1994--20
05年之间共十年的年历表,然后让学生以小组为单
位,观察讨论。从这些年历表中,你们发现了什么?
几分钟后学生汇报。
生1:我发现1999年是兔年,是从2月16日 开始的。
生2:我发现2001年是蛇年,是从1月24日开始的。
听到这里,上课教师的表情凝重,
可是学生的回答依然在这无关的信息上进行着,教学
进入了尴尬的境地。原来教师发给学生的每一张年历
表的表头上,都有这样的字眼:X年(X
月X日开始)。
请你对此情境创设进行分析。如果是你讲这节课想怎样创设情境?
2、这样教,行吗?——“圆的周长”教学片段与反思
[教学片段]
师:我国古代数学著作《周髀算经》中有“周三径一”的记载。你知道“周三径一”的
意思吗?
生:直径是1份,周长是3份。
8
生:周长是直径长度的3倍。
师:你们都认为这个“径”是指直径,而且都认为周长是直径长度的3倍,为什么不认
为周长是
半径长度的3倍?
生:从图1中可以看出,周长应该是直径长度的3倍,不可能是半径长度的3倍。
师:
那圆的周长是不是就是直径的3倍呢?你们看老师画图(在已画好直径的圆里再画一条半径,
使半径和直径的夹角是60°,并连接成三角形,如图2)。
这是一个什么三角形?
生:这是一个等边三角形。
师:你是怎么知道的?
生:刚才你在画三角形的时候,是用60°角作为等腰三角形的一个顶角的。
生:图中的两条
半径相等,就知道是个等腰三角形,而它的顶角是60°,所以它又是个
等边三角形。
师:这样的等边三角形在这个圆里到底有多少个呢?
生:有6个。
师:这么快就知道了。你是怎么知道的?
生:我是想象出来的,因为平角是180°,180
°里有3个60°,所以下面有3个,上
面也有3个,所以一共有6个等边三角形。
师:大家同意他的看法吗?教师随即在圆里画出另外5个等边三角形(如图3)。
师:现在你觉得周长正好是直径长度的三倍吗?
生:不正好。曲的线要比直的线长,所以周长要比直径长度的三倍还要多一点。
教师
在原来的板书“圆的周长是直径长度的3倍”后添加“多一些”。
师:这个3倍多一些的数到底是多少呢?(介绍圆周率,推导圆的周长公式。)
[听课教师的声音]
有些教师认为,教师没有把动手操作作为主要的学习方式,引导学生测量
圆周长和直径
的长度,直观感受圆的周长是直径的3倍多一些,与课程标准所倡导的教学理念相悖,有“
灌
输”之嫌。有些教师认为,如果按照教材的意图,沿用传统的教学方法,让学生通过操作、
计
算得出圆的周长是直径长度的3倍多一些,学生是动手操作了,但只是在老师的要求下充
当了一回“操作
工”,既浪费了时间,又没有真正促进学生思维能力的提高。而像今天的教
学,重视了数学思维能力的培
养,回归了数学的本质。从学生课堂倾听的状态与听后的反应
可以看出,执教者的教学是有效的。 动手
实践作为学生的一种学习方式,是不能从表面来
认识的。这个教学案例之所以引起听课教师争议的原因,
就在于采用何种方式认识“圆的周
长是直径的3倍多一些”。有的教师认为“没有把动手操作作为主要的
学习方式,引导学生
测量圆周长和直径的长度,直观感受圆的周长是直径的3倍多一些,与课程标准所倡
导的教
学理念相悖,有„灌输‟之嫌。”可是,当我们综观整个教学案例的时候,我们发现整个教学过程中充满了思维的火花和探索的激情,从我国古代数学著作《周髀算经》中“周三径一”
引出思考
的话题:圆的周长和直径有什么样的关系?然后再经过师生之间一系列的探索互动,
从而使学生形象直观
的认识到“圆的周长是直径的3倍多一些”,在这个基础上再来揭示“圆
周率,推导圆的周长公式”。这
样的学习过程怎么会是“灌输”呢? 所谓“教无定法”的
9
含义,在这个
案例中得到了充分体现,由此也引发我们对“动手实践”的学习方式的深度思
考和重新认识,这些思考和
认识的焦点主要集中于“如何提高动手实践的有效性”。
关于动手实践有效性的思考
动手实
践作为学生的一种学习方式,是不能从表面来认识的。这个教学案例之所以引起
听课教师争议的原因,就
在于采用何种方式认识“圆的周长是直径的3倍多一些”。有的教
师认为“没有把动手操作作为主要的学
习方式,引导学生测量圆周长和直径的长度,直观感
受圆的周长是直径的3倍多一些,与课程标准所倡导
的教学理念相悖,有„灌输‟之嫌。”可
是,当我们综观整个教学案例的时候,我们发现整个教学过程中
充满了思维的火花和探索的
激情,从我国古代数学著作《周髀算经》中“周三径一”引出思考的话题:圆
的周长和直径
有什么样的关系?然后再经过师生之间一系列的探索互动,从而使学生形象直观的认识到<
br>“圆的周长是直径的3倍多一些”,在这个基础上再来揭示“圆周率,推导圆的周长公式”。
这样
的学习过程怎么会是“灌输”呢? 所谓“教无定法”的含义,在这个案例中得到了充
分体现,由此也引
发我们对“动手实践”的学习方式的深度思考和重新认识,这些思考和认
识的焦点主要集中于“如何提高
动手实践的有效性”。
一、参与学习的有效性
在学习过程中,我们需要学习主体对于学习的
热情和行动,这些是学生参与学习并获得
收获的保证。在上面的案例中,我们能够感受到学生参与学习的
热情,也能够通过学习过程
的细节触摸到这种热情:
师:这样的等边三角形在这个圆里到底有多少个呢?
生:有6个。
师:这么快就知道了。你是怎么知道的?
生:我是想象出来的,因为平角是180°,180
°里有3个60°,所以下面有3个,上
面也有3个,所以一共有6个等边三角形。
在学习过
程中学生能够利用自己的想象参与学习是多么了不起的事情,而这正是学生有
效参与学习的体现。我们应
该认识到在学习过程中“动手”只是“实践”的一种形式而已,
学生的想象、思考等等一系列内在思维活
动也可以看作是一种“实践”,不同的是这种“实
践”具有内隐、单向的特征。因此,要提高学生动手实
践的有效性,就必须重视学生参与学
习的有效性,而学生参与学习的有效性又不能仅仅只是注重实践的形
式,更需要重视的是实
践的“内在形式”。
二、学习目标的有效性
构成动手实践的
有效性离不开学习目标的有效性。在上面的案例中,我们发现整个教学
过程都围绕着认识“圆的周长是直
径的3倍多一些”来开展的,也就是说教学目标是很明确
的。围绕着这样的学习目标,教师和学生之间进
行一系列的交流互动,而这些互动和交流也
时时闪现着思想的火光:
师:现在你觉得周长正好是直径长度的三倍吗?
生:不正好。曲的线要比直的线长,所以周长要比直径长度的三倍还要多一点。
10
p>
对于动手实践来说,无论是外在的,还是内在的,都需要有一个有效的学习目标,只有
学习目标的有效性才能够保证动手实践的有效性,否则,那就是浪费时间,从而不能真正促
进学生思维
能力的提高,更无益于学生的学习。
三、学习过程的有效性
学习过程是学习目标得到落实的
载体,学习目标的有效性需要通过学习过程的有效性体
现出来,而这往往是我们日常教学中不太注意的地
方。学习过程是一个整体,因而宏观上它
的有效性实际上就是一种结构的有效性,在微观上它的有效性又
是一种细节的有效性。在上
面的案例中,我们能够清晰的寻找到一个认识和探索“圆的周长和直径之间的
奥秘”的过程,
首先从古代数学著作中关于“周三径一”的记载入手,借古人的智慧激发学生的探索热情
,
同时,为学生打开了认识和探索“圆的周长和直径的关系”的窗口。在这个学习过程中,学
生
能够有参与的机会并能够在一种有效的学习目标指导下一步一步进行学习攀登,因而,这
个学习过程所体
现出来的结构应该是适合学生学习的。
从细节有效性来说,学习过程中的细节是非常重要的,例如上面的案例中这样的教学细
节:
生:周长是直径长度的3倍。
师:你们都认为这个“径”是指直径,而且都认为周长是直径长
度的3倍,为什么不认
为周长是半径长度的3倍?
在探索周长和直径之间的关系的时候,为什
么还要把半径提出来呢?在对比中学习,在
疑问中学习所获得的收获是非常丰硕的,这就是细节的力量,
细节产生关注,关注产生行动。
最后,我们应该认识到,实践活动从来都不是学习过程的补充,它更应
该是学习过程必要的
组成部分。只不过这个部分时隐时现,而且形式多样。但不管它以怎样的面目见人,
只要这
样的动手实践活动是具有“参与性、目标性和过程性”的,那么这样的实践活动对于学生学
习来说就是有效的》安排了 数与代数、 空间与图形 、 统计与概率 、
实践与综合应用四
个学习领域。
11
小学数学教师基本功考试试题及答案
A课程标准部分(35分)
一、填空题:(每空0.5分,共15分)
1、在各个学段中,《课程标准》安排了(数与代
数)、(空间与图形)、(统计与概
率)、(实践与综合应用)四个学习领域。
2、数学是人
们对客观世界(定性把握)和(定量刻画),逐渐抽象概括,形成(方法)
和(理论),并进行广泛
应用 的过程。
3、义务教育阶段的数学课程应突出体现(基础性)、(普及性)和(发展性),使数
学教育面向全体学生,实现人人学(有价值的数学);人人都能(获得必需的数学);不同
的人
在数学上(得到不同的发展)。
4、数学教学活动必须建立在学生的(认知发展水平)和已有的(知识基础之上)。
学生是数学学习的主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
5、有效
的数学学习活动不能单纯的依赖模仿与(记忆),(动手实践)、(自主探索)
与(合作交流)是学生学
习数学的重要方式。
6、对数学学习的评价要关注学生学习的(结果),更要关注他们学习的(过程)
;要
关注学习数学的(水平),更要关注他们在数学活动中所表现出来的(情感与态度),帮助
学生(认识自我),(建立信心)。
7.在数学课标中,对总体目标部分从以下四个方面提出了要求,
即(知识与技能)、(数
学思考)、(解决问题)、(情感与态度),这四个方面是一个密切联系的有机
整体,对人
的发展具有十分重要的作用,他们是在丰富多彩的数学活动中实现的。
二、简答题(每题4分 ,共20分)
1、《数学课程标准》的总体目标是什么?
通过义务教育阶段的学习,学生能够:⑴获得适应未来社会生活和进一步发展所必需的
重要数学知识以及
基本的数学思想方法和必要的应用技能。⑵初步学会运用数学的思维方式
去观察,分析现实社会,去解决
现实生活中和其他学科中的问题,增强应用数学的意识。⑶
体会数学与自然及人类社会的密切联系,了解
数学的价值,增进对数学的理解和学好数学的
信心。⑷具有初步的创新精神和实践能力,在情感态度和一
般能力方面得到充分发展。
2、“数与代数”领域第一学段主要包括哪些内容
万以内的数,简单的分数和小数、常见的量、基本运算、简单的数量关系。
3、第二学段的教学建议是什么
一.让学生在现实情境中体验和理解数学二、鼓励学生独立思
考,引导学生自主探究、
合作交流三、加强估算,鼓励解决问题的多样化
四、重视培养学生应用数学的意识和能力
4、简要说明第一学段的评价建议是什么?
一.注重对学生数学学习过程的评价二、恰当评论学生基础知识和基本技能的理解和掌
握三、重视对学
生发现问题和解决问题能力的评价四、评价方式要多样化五、评价结果以 定
性描述的方式呈现。
5、小组合作学习是数学课堂上的一种学习方式,谈谈在哪些情况下适合进行小组学习?
1
在教学内容的重点和难点处、易混淆处;在思维的交锋处、发散处;在规律的探索处;<
br>在动手操作处。
B教材知识部分(35分)
一、填空题(每空1分,共10分) <
br>1.某一天的外汇牌价所显示的汇率是:1美元兑换8.4元人民币。这天李先生用80
美元兑换
了112万越南盾,1万越南盾约合( 6 )元人民币。
2.在100克的水中加入20克的盐,盐占盐水的( 六分之一 ).
3.将两个棱长都是2分米的正方体木块,拼粘合成一个长方体,这个长方体体积应是
( 16
)。表面积应是( 40 )。
4.判断下列现象中,哪些是平移现象?哪些是旋转现象?
钟摆的运动 ( 旋转 )、
电梯的上下移动(平移 ),
跷跷板的运动( 旋转 )、
推拉抽屉 (平移 ).
5、李家湾今年水稻的总产量比去年增产一成五;
今年水稻总产量是去年的( 115 )%。
6、如果某年的四月份有5个星期六和星期日,那么四月一日是星期( 六 )。
二、解答下列各题(每题5分,共25分)
1、在一个正方体的6个面上分别标上数字,怎样能使得“2”朝上的可能性为13?
答:在两个面上标上“2”。
2、教职工篮球赛市直学校组共有5个球队,每两个队要打一场,一共要打多少场?
答:10场。
3.根据例题,运用等式的基本性质解方程。
例如: a + 5
= 6 3x =12
解: a + 5 - 5 = 6 -5 解:3x÷3 =12÷3
a =1 x =4
4、魏师傅烙饼,每次只能烙两张饼,两面都要烙,每面3分钟,怎样能
最快烙完5张
饼?最快用多少分钟?
答:15分钟。
5、小伟在期末考试中语文、数学、英语的平均成绩是90分,其中英语成绩比语文成绩
多6分
,数学成绩是98分,问小伟的语文、英语成绩各是多少?
答:语文83分,英语89分。
C教学案例分析部分(40分)
一、 案例分析(12分)
案例:“面积的含义”中比较平面图形面积的大小
教学片断如下:
教师出示面积比
较接近的一个正方形和一个长方形,让学生自己想办法比较这两个图形
谁的面积大。
学生独立思考、动手操作后,发言踊跃,纷纷说出了不同的比较方法。
2
生1:可以把长方形和正方形的一个角对齐,然后把长方形多余的部分剪掉后放在正方
形上面,
再把多余的部分剪掉,再放在上面,多余的再剪掉,直到剪拼到最后,把正方形全
盖上了,长方形还剩下
一点儿,说明长方形的面积大。
师:这个方法行不行?
生:行。
生2:我将透明
方格纸分别放在两个图形上面数方格,长方形10个方格,正方形9个方
格,所以长方形面积大。
师:你是用数方格的方法,挺好。
生3:我是用一个小正方形比着在两个图形上面画格子,长
方形里能画10个方格,正方
形里只能画9个方格,所以长方形的面积大。
生4:我在图形上
摆小方块,数一数,发现长方形上面一排摆5个,能摆2排,一共能
摆10个小方块;正方形里一排摆3
个,能摆3排,一共能摆9个小方块,所以长方形面积
大。
生5:我是用摆小圆片的方法,长
方形上能摆10个圆片,正方形上只能摆9个圆片,所
以长方形面积大。
生6:我量了它们的
长和宽,长方形的长是5厘米,宽是2厘米,面积是5×2=10(平
方厘米);正方形的长是3厘米,
宽3厘米,面积是3×3=9(平方厘米)所以长方形的面积
大。
师:你知道得真多! 生7:我也量了长方形和正方形的长与宽,发现长方形的周长比正方形的周长要长,所
以长方形的面
积大。
(生7的话音刚落,就有学生举手表示反对,其他学生也面露困惑之色)
师:大家听明白他的意思了吗?这权且也算一种方法,到底行不行,我们今后会进一步
研究。
师:同学们真爱动脑筋!一下子想出了这么多种方法,了不起!我相信今后大家会有更多
的方法
。
……
请根据以上教学片段对老师的教学行为进行分析(6分)
答:在上述案例
中,教师努力营造开放的教学环境,给学生提供探索和发现的时间与空
间,学生思维灵活,思路开阔,呈
现出了多样化的解决问题的策略。但是进一步分析,发现
教学中学生是“动”起来了,但教师却满足于学
生“自发”状态的发现,停留于不同方法的
展现上。学生在课堂中出现的许多信息,基本上教师默认的多
,回应反馈的少,缺乏通过教
师的点拨使学生思维得到进一步的提升。
只让学生畅抒己见而没
有教师精确的讲授和适时的评价指导,很难将学生的思维引向深
入。对影响后继学习的基本知识和基本方
法放任不管,就会失去教师“教”的真正意义,学
生也就失去了自我反思、比较、交流与提升的机会。因
此,当学生积极参与,纷纷说出了不
同的比较方法后,教师应“趁热打铁”,继续通过适当的评价和引导
,让学生在与同伴的交
流中不断地自行优化自己的思考方法,主动地拓展和完善自己的认知结构。
3
如果你是这位教师,针对学生的回答,你会怎么做?(6分) 答:
比如,对于其中几
位学生的发言可作如下回应反馈:
生1:我把这两个图形重叠在一起,然后
把多出来的部分剪下来,再放在一起比一比,
看最后谁露出来,谁的面积就大。
师:这是一种
剪拼的方法,这种方法虽然破坏了图形的原有形状,但也能比较出面积的
大小。这种剪拼的方法,在今后
的平面图形的学习中用处可大了。(有效的点拨和提炼)
……
生2:用尺子量长方形和正方形的周长,周长长,面积肯定就大。 师:你认为周长长的
平面图
形的面积肯定就大,是吗?这个猜想很有价值,但是否成立,还必须通过验证才行。
下课后,你可以想办
法验证一下,然后把你的验证结论告诉老师,好吗?
在学生展示了多种方法后。
师:同学们
真了不起,一下子想出了这么多的方法。生1用的是剪拼重叠的方法,生2、
生3和生4的方法很相似,
都是用数方格的方法,生5用的是摆小圆片的方法,以及我们现
在还不太明白的直接列式计算的方法。在
这几种方法中,你更喜欢哪一种?说说你的想法。(必
要的梳理和适时的引导)
生8:我喜欢摆小圆片和数方格的方法,因为我觉得这样方便。 师:在摆圆片和数方格
的这两
种方法中,你觉得哪种方法更好?(引导学生进一步深入思考,逐步逼近数学的核心)
生9:我觉得摆圆片的方法更方便。
生10:我不同意生9的意见。用摆圆片的方法,图形的
中间有空隙,容易出现误差,不
如数方格的方法科学。(这是生生之间的有效互动)
师:其他同学的看法呢?(学生大都喜欢用数方格的方法)
师:确实,用数方格的方法能铺满
整个图形,比较精确,也比较科学。下面,我们就用
这种方法来比较几组图形面积的大小。
二、 结合新课改教学理念,对下面的教学片断进行分析。(8分) 教学片段:
小明家今秋
收稻谷3500斤,扣除口粮和种子1500斤,尚有余粮2000斤,小明爸爸准
备卖出去,你看怎么
卖?最多能卖多少元?
生:老师,稻谷多少钱一斤,我们不知道是不能算的!
师:稻谷0.86元斤,谁能算出来?
生:最多能卖1720元。
生:老师能不能碾米以后卖呢?
师:他提出疑问,能不能……
(分组讨论。)
教师相机提供一些数据:
大米每斤1.50元
出米率72%
加工费100斤稻谷4元
信息汇总:教师出示其中1~2位学生计算办法:
2000×72%=1440(斤)
4
1440×1.50=2160(元)
2000÷100×4=80(元)
2160-80=2080(元)
2080-1720=360(元)
生:还有米糠呢?
360+米糠100=460(元)
……
案例分析:
1.“探索”学习,让“学”先行一步。
随着课程改革的深入,以培养学生探究意识、探究能
力为目标的“探究性”学习已成为
教师课题研究的一个热点。以本案为例,教师在课前引导学生从事数学
实践活动,让他们在
调查、采集处理信息的基础上,反馈得到信息:(1)丰收;(2)亩产在1000
斤左右;(3)
新米很香;(4)有的小朋友家中没有田了,只好写别人的……使学生对有关问题形成初
步
认识。学生经过充分探究、思考后学到的东西是书本知识根本无法给予的,学生发言的真实
与
精彩,更是传统教学无法相比的。这样在安排上有很大的自主性和自由性,行为过程无人
干扰,使学生真
正成为活动的主体。从而切实保证了学生学习方式的转变,教师也显得轻松、
自然。
2.尊重教材,更应注重开发数学内容的价值。
教师不仅是教材的使用者,更应成为教材的重
组者、开发者,最大限度地开发并体现教
材的价值。而数学内容的价值并不完全在教材中静态地呈现,它
需要教师去思考、捕捉、开
发,然后通过教学动态地渗透。在这节课的教学中,我注意了两点:(1)培
养学生商品经
济意识。当意外发生时,我没有制止,而是创造民主和谐的气氛让学生去讨论、比较、分析
,
及时抓住了这个教学契机,一步步把学生的思维引向深入,最后得到的结果是碾米后比直接
卖
稻谷多赚了460元。这样既让学生充分感受到心灵的自由,又在潜移默化中渗透了一种意
识,让他们明
白了一个道理:只要发挥自己的聪明才智就能赚钱,而且赚钱要赚得合情、合
理、合法。(2)“学生之
间的信息差”也是一种学习资源。我校虽然是一所农村小学,但
家住在镇上的学生比较多。这次实践活动
后,许多原先成绩优秀的学生少了发言权,而家住
农村平时很少发言的同学成了主讲。学生在讨论、汇报
、交流中仁者见仁,智者见智,成为
学习的主人。学生的数学学习活动成了“一个生动活泼的、主动的和
富有个性的过程”。
3、数学即生活。数学活动回归生活必定为学生的数学学习架构起弹性空间。新教
材为
我们提供了如此具有丰富内涵的教学资源。因此,我们不能单一地巩固新知、训练解题技巧,
而忽视了它蕴涵的诸如数学思想、数学方法、思维方式、学习策略、创新意识等教学价值。
当数学教学
内容的价值被我们合理开发并能在课堂上充分体现时,数学课也一定会精彩纷呈。
三、请选择一个课题
写出你的简要教学设计(15分),并对你的设计做出简要评析(5
分)。(20分)
1、小学数学人教版实验教材一年级上册《认识物体和图形》一节。
2、小学数学人教版实验教材三年级上册《秒的认识》一节。
3、小学数学人教版第十一册《圆的认识》一节。
5
(另附纸)
答案略《圆的认识》教学设计
教学目标:
1.通过两次剪圆,感知对圆的认识;通
过讨论、猜测、验证,理解对圆的认识;通过画
圆,知道圆心和半径的作用,会用圆规画圆,提高对圆的
认识;通过建构,掌握对圆的认识;
通过应用,使学校数学向生活数学延伸,升华对圆的认识。
2.通过欣赏生活中的圆、用圆设计的图案,发现数学美,提高学习的兴趣。
3.通过介绍圆
,培养主动建构的能力;通过学生系列的探索活动,培养学生科学的探究
态度,发展学生的空间观念。
教学重点:认识圆,掌握圆的特
教学设计思路:
圆在生活中是很常见的,应用也是
非常广泛的。通过举例、欣赏、想象基础上的两次剪
圆、套圈基础上的探究活动,实现对生活数学的 <
br>提炼和向学校数学的过渡;通过用圆形物体画圆、用圆规画圆、用绳子画圆,实现生活数学
与学校
数学的精密结合;通过设计汽车轮胎、测量实物圆的直径、利用圆设计图案,实现学
校数学的提升和向生
活数学的延伸。
学生对生活中的圆是认识的,对数学中的圆也是有一定基础的。通过两次剪圆,感知对
圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,提高对圆的认识;通过建
构,
掌握对圆的认识;通过应用,升华对圆的认识。
一、剪圆,感知对圆的认识
师:同学们,这节课我们一起来研究圆,板书圆。你见过圆吗?在哪里见过?
师:放课件,欣赏生活中的圆。
师:请你闭上眼睛在脑子里勾画一下圆的形状.
师:直接剪出你印象中的圆。
师:剪下来的图形跟你印象中的圆完全一样吗?有什么不同?
师:怎样才能剪出你印
象中的圆呢?在刚才的基础上剪一剪。
师:通过剪圆,你觉得圆与带来的平面图形的最大
区别是什么?
二、探究,理解对圆的认识
师:我有一件礼物,谁先抢到就送给谁,你认为现在这种排列合理吗?为什么?怎么排
队最合理
?我应该站在哪儿?你怎么跑?哪两个人之间的距离最远?
师:我们把刚才讨论的内容在这个圆中表示出来,分别怎么表示?分别叫什么?
师:直径真的是最长的吗?怎么验证呢?
师:请你猜想一下,圆会有哪些特征?根据学生的猜想教师板书。
师:你能验证这些
猜想吗?请你试一试。如果一个人验证有困难可以找人合作。
师:谁愿意说说你是怎么验证的?有补充吗?在验证过程中有新的发现吗?
三、画圆,提高对圆的认识
师:我们知道要剪圆先要画圆,你以前画过圆吗?你是怎么画的?
师:如果想画一个半径是3厘米的圆,借助什么来画会比较方便?你会画吗?
6
师:谁愿意展示你是怎么画圆的?先说再画。有不同的方法吗?
师:若想改变圆的大
小,我们可以怎么做?半径的作用是?
师:若想改变圆的位置,我们可以怎么做?圆心的
作用是? 师:你还知道其他画圆的方法吗?
师:我想到操场上画一个很大的圆,你能帮我想个办法吗?谁愿意示范?用这种方法画
圆要注意什么?
四、建构,掌握对圆的认识
师:同学们,刚才我们对圆进行了研究,现在请你闭上眼睛回忆一
下我们学习的过程,
整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
五、应用,升华对圆的认识
师:如果你是汽车设计师,会把车轮设计成什么形状?说说你的理
由?为什么不设计成
其它形状呢?
师:其实利用圆还可以设计出非常美的图案,欣赏用圆设计的图案。
师:你能利用圆在方格纸上设计一个漂亮的图案吗?
小学数学教师基本功考试试题答案
A课程标准部分(35分)
一、填空题:(每空0.5分,共15分)
1、在各个学段中,《课程标准 字号:大 中
小
一、 填空
1、参加继续教育学习是中小学教师的权利和( 义务 )。
2、预防未成年人犯罪的教育目的是(增强法律意识 )。
3、《义务教育法》规定,国家、
社会、学校和家庭依法保障(适龄儿童、少年)依法
接受义务教育的权利。
4、数学课程目标分为(知识与技能)、(解决问题)(数学思考)(情感与态度)四
个维度。
5、教学目标对整个教学活动具有(导向)(激励)(评价)的功能。
6、教学案例的一般结构是(主题与背景)(案例背景)(案例描述)(案例分析)
二、
选择题
1、《中华人民共和国教育法》自( B )之日起开始实施。
A、1990年9月1日 B、1995年9月1日
2、中小学教师职业道德建设在教师对待教育事业的较高道德目标是(A)。
A、献身于人民的教育事业B、忠于职守,为人师表,积极进取。
3、教师在教育教学中应当
平等对待学生,关注学生的(D),因材施教,促进学生的实
际发展。
A、耐心 B、个性
D、个体差异
4、知识和技能的关系是( )
A、知识是技能的表现
B、技能是知识的表现 C知识、技能是两个完全不同的概念 D
三、 判断题,错的要改正
7
1、只要把学习的时间交给学生,让学生自己学习,就是以自主学习为中心的课堂教学。
(*)
2、掌握、了解、理解是过程性目标的行为动词。 ( * )
3、解决问题策略的多样化是要求每个学生用不同的方法去解决同一个数学问题。 ( V )
4、小组合作开始后,教师的角色主要是组织者。 ( * )
四、 简答题
1、
简述加强教师职业道德修养的必要性。
2、 哪些内容可以组织学生合作学习习?
3、
教育科研的一般程序是什么?(基本步骤)
4、 试卷命题的要求和注意事项有哪些?
五、
解答题
1、 计算
549÷(459+459460)
14064+1254+1508+11016+12032+14064
2、 李大妈卖出
168元两件衣服,一件赚20%,另一件亏20%,请你分析一下李大妈这
次生意是亏还是赚。
3、 有ABCDEF六个人进行乒乓球比赛,规定每两人进行比赛一场,每天每人只能打一
场
球,已知第一天C和E打,第二天D和B打,第三天A和C打,第四天E和D打,问第五
天F和(
)打?
4、 小王在操场上散步,他先向西走10米,再向右转45度,又向前走10米,再向右转45度,这样下去,他能不能回到起点,说明理由。
5、
在一个面积为10的正方形里画一个最大的圆形,求此圆的面积,你能用几种解题
思路。
六、
案例分析
1、 “年、月、日的认识”情境创设
上课时,教师为学生准备1994--20
05年之间共十年的年历表,然后让学生以小组为单
位,观察讨论。从这些年历表中,你们发现了什么?
几分钟后学生汇报。
生1:我发现1999年是兔年,是从2月16日 开始的。
生2:我发现2001年是蛇年,是从1月24日开始的。
听到这里,上课教师的表情凝重,
可是学生的回答依然在这无关的信息上进行着,教学
进入了尴尬的境地。原来教师发给学生的每一张年历
表的表头上,都有这样的字眼:X年(X
月X日开始)。
请你对此情境创设进行分析。如果是你讲这节课想怎样创设情境?
2、这样教,行吗?——“圆的周长”教学片段与反思
[教学片段]
师:我国古代数学著作《周髀算经》中有“周三径一”的记载。你知道“周三径一”的
意思吗?
生:直径是1份,周长是3份。
8
生:周长是直径长度的3倍。
师:你们都认为这个“径”是指直径,而且都认为周长是直径长度的3倍,为什么不认
为周长是
半径长度的3倍?
生:从图1中可以看出,周长应该是直径长度的3倍,不可能是半径长度的3倍。
师:
那圆的周长是不是就是直径的3倍呢?你们看老师画图(在已画好直径的圆里再画一条半径,
使半径和直径的夹角是60°,并连接成三角形,如图2)。
这是一个什么三角形?
生:这是一个等边三角形。
师:你是怎么知道的?
生:刚才你在画三角形的时候,是用60°角作为等腰三角形的一个顶角的。
生:图中的两条
半径相等,就知道是个等腰三角形,而它的顶角是60°,所以它又是个
等边三角形。
师:这样的等边三角形在这个圆里到底有多少个呢?
生:有6个。
师:这么快就知道了。你是怎么知道的?
生:我是想象出来的,因为平角是180°,180
°里有3个60°,所以下面有3个,上
面也有3个,所以一共有6个等边三角形。
师:大家同意他的看法吗?教师随即在圆里画出另外5个等边三角形(如图3)。
师:现在你觉得周长正好是直径长度的三倍吗?
生:不正好。曲的线要比直的线长,所以周长要比直径长度的三倍还要多一点。
教师
在原来的板书“圆的周长是直径长度的3倍”后添加“多一些”。
师:这个3倍多一些的数到底是多少呢?(介绍圆周率,推导圆的周长公式。)
[听课教师的声音]
有些教师认为,教师没有把动手操作作为主要的学习方式,引导学生测量
圆周长和直径
的长度,直观感受圆的周长是直径的3倍多一些,与课程标准所倡导的教学理念相悖,有“
灌
输”之嫌。有些教师认为,如果按照教材的意图,沿用传统的教学方法,让学生通过操作、
计
算得出圆的周长是直径长度的3倍多一些,学生是动手操作了,但只是在老师的要求下充
当了一回“操作
工”,既浪费了时间,又没有真正促进学生思维能力的提高。而像今天的教
学,重视了数学思维能力的培
养,回归了数学的本质。从学生课堂倾听的状态与听后的反应
可以看出,执教者的教学是有效的。 动手
实践作为学生的一种学习方式,是不能从表面来
认识的。这个教学案例之所以引起听课教师争议的原因,
就在于采用何种方式认识“圆的周
长是直径的3倍多一些”。有的教师认为“没有把动手操作作为主要的
学习方式,引导学生
测量圆周长和直径的长度,直观感受圆的周长是直径的3倍多一些,与课程标准所倡
导的教
学理念相悖,有„灌输‟之嫌。”可是,当我们综观整个教学案例的时候,我们发现整个教学过程中充满了思维的火花和探索的激情,从我国古代数学著作《周髀算经》中“周三径一”
引出思考
的话题:圆的周长和直径有什么样的关系?然后再经过师生之间一系列的探索互动,
从而使学生形象直观
的认识到“圆的周长是直径的3倍多一些”,在这个基础上再来揭示“圆
周率,推导圆的周长公式”。这
样的学习过程怎么会是“灌输”呢? 所谓“教无定法”的
9
含义,在这个
案例中得到了充分体现,由此也引发我们对“动手实践”的学习方式的深度思
考和重新认识,这些思考和
认识的焦点主要集中于“如何提高动手实践的有效性”。
关于动手实践有效性的思考
动手实
践作为学生的一种学习方式,是不能从表面来认识的。这个教学案例之所以引起
听课教师争议的原因,就
在于采用何种方式认识“圆的周长是直径的3倍多一些”。有的教
师认为“没有把动手操作作为主要的学
习方式,引导学生测量圆周长和直径的长度,直观感
受圆的周长是直径的3倍多一些,与课程标准所倡导
的教学理念相悖,有„灌输‟之嫌。”可
是,当我们综观整个教学案例的时候,我们发现整个教学过程中
充满了思维的火花和探索的
激情,从我国古代数学著作《周髀算经》中“周三径一”引出思考的话题:圆
的周长和直径
有什么样的关系?然后再经过师生之间一系列的探索互动,从而使学生形象直观的认识到<
br>“圆的周长是直径的3倍多一些”,在这个基础上再来揭示“圆周率,推导圆的周长公式”。
这样
的学习过程怎么会是“灌输”呢? 所谓“教无定法”的含义,在这个案例中得到了充
分体现,由此也引
发我们对“动手实践”的学习方式的深度思考和重新认识,这些思考和认
识的焦点主要集中于“如何提高
动手实践的有效性”。
一、参与学习的有效性
在学习过程中,我们需要学习主体对于学习的
热情和行动,这些是学生参与学习并获得
收获的保证。在上面的案例中,我们能够感受到学生参与学习的
热情,也能够通过学习过程
的细节触摸到这种热情:
师:这样的等边三角形在这个圆里到底有多少个呢?
生:有6个。
师:这么快就知道了。你是怎么知道的?
生:我是想象出来的,因为平角是180°,180
°里有3个60°,所以下面有3个,上
面也有3个,所以一共有6个等边三角形。
在学习过
程中学生能够利用自己的想象参与学习是多么了不起的事情,而这正是学生有
效参与学习的体现。我们应
该认识到在学习过程中“动手”只是“实践”的一种形式而已,
学生的想象、思考等等一系列内在思维活
动也可以看作是一种“实践”,不同的是这种“实
践”具有内隐、单向的特征。因此,要提高学生动手实
践的有效性,就必须重视学生参与学
习的有效性,而学生参与学习的有效性又不能仅仅只是注重实践的形
式,更需要重视的是实
践的“内在形式”。
二、学习目标的有效性
构成动手实践的
有效性离不开学习目标的有效性。在上面的案例中,我们发现整个教学
过程都围绕着认识“圆的周长是直
径的3倍多一些”来开展的,也就是说教学目标是很明确
的。围绕着这样的学习目标,教师和学生之间进
行一系列的交流互动,而这些互动和交流也
时时闪现着思想的火光:
师:现在你觉得周长正好是直径长度的三倍吗?
生:不正好。曲的线要比直的线长,所以周长要比直径长度的三倍还要多一点。
10
p>
对于动手实践来说,无论是外在的,还是内在的,都需要有一个有效的学习目标,只有
学习目标的有效性才能够保证动手实践的有效性,否则,那就是浪费时间,从而不能真正促
进学生思维
能力的提高,更无益于学生的学习。
三、学习过程的有效性
学习过程是学习目标得到落实的
载体,学习目标的有效性需要通过学习过程的有效性体
现出来,而这往往是我们日常教学中不太注意的地
方。学习过程是一个整体,因而宏观上它
的有效性实际上就是一种结构的有效性,在微观上它的有效性又
是一种细节的有效性。在上
面的案例中,我们能够清晰的寻找到一个认识和探索“圆的周长和直径之间的
奥秘”的过程,
首先从古代数学著作中关于“周三径一”的记载入手,借古人的智慧激发学生的探索热情
,
同时,为学生打开了认识和探索“圆的周长和直径的关系”的窗口。在这个学习过程中,学
生
能够有参与的机会并能够在一种有效的学习目标指导下一步一步进行学习攀登,因而,这
个学习过程所体
现出来的结构应该是适合学生学习的。
从细节有效性来说,学习过程中的细节是非常重要的,例如上面的案例中这样的教学细
节:
生:周长是直径长度的3倍。
师:你们都认为这个“径”是指直径,而且都认为周长是直径长
度的3倍,为什么不认
为周长是半径长度的3倍?
在探索周长和直径之间的关系的时候,为什
么还要把半径提出来呢?在对比中学习,在
疑问中学习所获得的收获是非常丰硕的,这就是细节的力量,
细节产生关注,关注产生行动。
最后,我们应该认识到,实践活动从来都不是学习过程的补充,它更应
该是学习过程必要的
组成部分。只不过这个部分时隐时现,而且形式多样。但不管它以怎样的面目见人,
只要这
样的动手实践活动是具有“参与性、目标性和过程性”的,那么这样的实践活动对于学生学
习来说就是有效的》安排了 数与代数、 空间与图形 、 统计与概率 、
实践与综合应用四
个学习领域。
11