高中物理定理、定律、公式表_(2017版全)

温柔似野鬼°
765次浏览
2020年08月02日 08:41
最佳经验
本文由作者推荐

愚公移山辩论赛-急匆匆

高中物理定理、定律、公式表 (全)



一直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。







二、曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr
/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=
0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。



四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。



五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定
}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〕/振动中的能量转化。


六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行



七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9
.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。



八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造
出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能。



九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。


十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中)
{F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式)
{E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源
)电荷形成的电场E=kQ/r2
{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d
{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE
{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd
{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA
{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA
{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式)
{C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平抛运动
垂直电场方向:匀速直线运动L=Vot
(在带等量异种电荷的平行极板中:E=U/d)
平行电场方向:初速度为零的匀加速直线运动
d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。



十一、恒定电流
1.电流强度:I=q/t
{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R
{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S
{ρ:电阻率(Ω?m),L:
导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI
{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt
{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ ...
1/R并=1/R1+1/R2+1/R3+ ...
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ ...
电压关系 U总=U1+U2+U3+ ... U总=U1=U2=U3
功率分配 P总=P1+P2+P3+... P总=P1+P2+P3+ ...
10.欧姆表测电阻
(1)电路组成
(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法: 电流表外接法:
电压表示数:U=UR+UA 电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小,便于调节电压的选择条件Rp>Rx
分压接法
电压调节范围大,电路复杂,功耗较大,便于调节电压的选择条件Rp注:1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用。


十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是
矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感、日光灯〔见第二册P180〕。



十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的
功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
十五、电磁振荡和电磁波
振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注: (1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
(3)其它相关内容:电磁场/电磁波、无线电波的发射与接收、电视、雷达。



十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;?极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷
数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)



十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)〔见第三册P23〕
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{ :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播〔见第三册P27〕
6.光的偏振:光的偏振现象说明光是横波〔见第三册P32〕
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用〔见第三册P29〕
8.光子说,一个光子的能量E=hν
{h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。



十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)〔见第三册P23〕
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{ :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播〔见第三册P27〕
6.光的偏振:光的偏振现象说明光是横波〔见第三册P32〕
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电
波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用〔见第三册P29〕
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。



十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:紫光靠近底边出射。
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯〕
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{ :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν
{h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W
{mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注: (1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光/物质波


针对高考要求,物理复习内容包括知识和能力两个方面,重点是能力,即运用物理概念、规律分析解决问题的能力。所以,物理复习的核心是全面、深入、准确地理解物理概念、规律、方法。
1、全面复习
应该了解知识和能力是不可分割的,一般说,高考试题对知识和能力的考查是结合起来进行的。一道试题既考查了知识,同时又考查了能力,而且常常是考查了几种能力。我们不应该把某些知识与某种能力简单地对应起来。显然,一个知识贫乏的人不可能有很强的能力,所以,考生应该全面复习知识,不要遗漏。
全面复习不是机械地、简单地浏览全部知识。由物理现象、物理概念、规律等组成的物理理论好比一棵大树,各部分内容是紧密联系形成的一有机的整体,有主干、支干、树叶等。在逐章逐节复习全部知识时,要注意深入理解和体会各知识点间的内在联系,建立知识结构,使自己具备丰富的、系统的物理知识,逐步体会各知识点的地位、作用、分清主次,理解理论的实质,这是提高能力的基础。
高考试题知识覆盖面广,考生应对全部考试内容认真复习,该记忆的应该记忆,不要猜题、压题,不要认为不是重点内容就不会考,也不要认为有的知识生疏、冷僻就不会考,应该扎扎实实地全面复习。
2、全面、深入、准确地理解物理概念、物理规律
(1)要在更广泛的知识和更普遍的背景材料上把握物理概念、物理规律。
理解和掌握物理概念、物理规律就需要对概念、规律的提出、建立有一定的了解,对概念、规律内容的各种表达形式(文字的和数字的)有清楚的认识,能理解它们的确切含义,理解它们的成立条件和适用范围,理解它们在物理理论大厦中的位置,会应用它们分析
解决问题。在复习前考生对此已经有一定的认识、理解,但是应该知道,基本物理概念、物理规律揭露了客观事物的本质,是人类经过长期曲折的历史过程的结晶,具有深刻的、丰富的意义,对它们的实质和意义的理解是分层次的,在高中一、二年级学习时的理解是低层次的,在复习过程中要努力提高一个层次。
例如对力的概念的理解包括对具体的力(重力、弹力、摩擦力、电场力、安培力、洛仑兹力等)的概念的理解,也包括对一般、抽象的力的概念的理解,还包括力作用于物体产生不同的效果的理解等。我们需要从不同的角度来理解力的概念,我们在繁杂的力学问题中,在带电粒子在电场和磁场运动问题中,遇到各种各样的力,通过这些问题不断加深对不同性质的力的理解,也不断加深对抽象的普遍的力的概念的理解。如:
物体沿斜面下滑支持力不做功(斜面不动),这是常见的情况,但不能得出支持力总不做功的错误结论。支持力的特点是方向垂直斜面,如斜面可动,支持力可以做正功,也可以做负功;
静摩擦力可以使物体加速,也可以使物体减速,可以做正功、做负功、不做功,但一对静摩擦力总不做功(做功代数和为零);
滑动摩擦力可以使物体减速,也可以使物体加速,可以做正功、做负功,但一对滑动摩擦力总做负功,系统克服一对滑动磨擦力做的功等于系统内能的增加量;
洛仑兹力的方向总跟速度垂直,总不做功,它只改变速度方向不改变速度大小,这是洛仑兹力的最大特点,其它的力都不具有这一特点;
力产生加速度,反之如果发现物体有加速度就判定一定是力产生的等等。
类似的问题很多,我们应该不断总结、归纳。
例如,电场强度的定义是 E=F/q 。应该清楚有两种电场;静止电荷产生的电场和随时间变化的磁场产生的电场。定义 E = F/q 对这两种电场都适用,它是电场强度的普遍定义。这两种电场的性质不同,静止电荷产生的静电场,其电场线起于正电荷终止于负电荷,不可能闭合。变化磁场产生的涡旋电场,其电场线没有起点、终点,是闭合的。电动势的本质是非静电力移动电荷做的功,电感线圈中的自感电动势、变压器副线圈中的感应电动势都是涡旋电场力产生的。



应该注意,对基本物理概念、物理规律的深刻理解不可能一次完成,它需要一个反复加深认识的过程。遇到新的现象、新的问题、新的领域,我们都需要重新认识、体会有关概念、规律的准确含义。这样我们就不断在越来越广泛的知识和背景上来把握概念、规律,从而对它们的理
解就更全面、深入和准确。
(2)概念与规律紧密联系。
应该知道,物理概念、物理规律揭露物理现象的本质,物理规律建立了有关物理量间的联系,它们之间是紧密联系的。如果把它们隔离开来,脱离物理规律、死背概念定义或脱离概念、形式上对待规律内容,是不可能很好理解和掌握物理概念、规律的。我们应该主要通过规律来理解概念,通过概念来掌握规律。例如:
功的概念除抓住功的定义式 W = FScosα 外,应该着重从动能定理、功能关系、热力学第一定律、普遍的能量守恒与转化定律等角度来理解,即从能量变化、转化的角度来理解。在电学中、光学中,我们越来越着重从能量转化来理解功,如光电效应中电子脱离金属的逸出功是从能量转化来理解的;
动量概念应联系动量定理、特别是动量守恒定律来理解;
电阻概念应联系欧姆定律、焦耳定律等来理解。电阻的定义是 R = U/I ,按欧姆定律 I = U/R ,i = E/(R+r) ,我们来体会电阻的阻碍作用。串联电阻、并联电阻的等效电阻也由U与I的比来理解。从焦耳定律 Q = I2Rt 来体会电阻是消耗电能转化为内能的元件;
法拉第电磁感应定律 ε=Δф/Δt 的掌握不能离开磁通量概念和感应电动势概念等等。
(3)比较易混的物理概念、规律。
比较容易混淆的物理概念、规律的异同、区别和联系有利于准确理解概念、规律的准确含义。例如:
动量和动能都是描述物体运动状态的,都与物体的质量、速度有关。但动量是矢量,与动量有关的规律是动量定理和动量守恒定律,动能是标量,与动能有关的规律是动能定理、机械能守恒定律、功能关系等。
做功与传热都是改变物体内能的两种方式,在使物体内能变化上功与热量是等效的,功、热量、能量的单位也相同。但传热发生在存在温度差的两物体之间,是物理间内能传递的一种方式。做功与两物体间的温度差无关,是物体间其他形式能与内能转化的一种方式;
电场强度E=F/q 、E=kQ/r2 、E=U/d 的区别、联系;
电功率 P=IU 、P=I2R 、P=U2/R 的区别、联系;
(4)灵活应用物理概念、规律。
只有通过实践、通过应用才能检查出我们对物理概念、规律是否真正理解,哪些内容理解了,哪些内容还没有理解。
解题是物理概念、规律的一种应用。我们根据概念、规律对题意进行具体分析、确定研究对象,分析对象所处的物理状态和发生的物理过程,弄清楚题目的物理情景、现象产生的原因、条件,然后确定具体的物理量,建立解题方程、关系,求出最后答案,必要时进行讨论

根据物理规律的内容、特点,我们得出应用规律的一些基本步骤,但我们不应该死套基本步骤,而应该理解基本步骤来源于物理规律本身,对具体问题要具体分析并灵活应用。那种把物理题形式分成许多"类型",对某一"类型"的题套用"解题步骤"的做法,不能很好培养自己独立地、灵活地分析解决问题的能力。例如:
牛顿定律 F = ma 是对质点的某一时刻说的,根据定律和有关力、质量、加速度的概念应该理解,应用牛顿定律首先要明确研究对象是哪一物体或一组物体,它们要能看成一个质点。研究的质点明确了,质量m才能定下来,加速度a和受力 F 才能够分析明确。质点的受力分析和加速度分析除了根据力是物体间相互作用、重力、弹力、摩擦力、电场力、安培力、洛仑兹力公式和加速度定义、运动学公式外,在许多问题中还需要把力和加速度结合起来分析,应灵活运用;


动力学有5个重要规律:牛顿定律;动量定理;动能定理;动量守恒定律;机械能守恒定律。这些规律在研究对象、内容、适用条件、受力分析等方面各有特点。对一个具体的力学问题研究应该选用哪个或哪几个规律求解要根据规律特点和题意的具体分析确定。大致说来,如求某一时刻(位置)物体受力或加速度可考虑用牛顿定律,如果问题只涉及力、时间而与位移无明显关系可考虑用动量定理,如果问题只涉及力、位移而与时间无明显关系可考虑用动能定理,如果能判定系统符合动量守恒或机械能守恒条件可考虑用守恒定律。在理解概念、规律的基础上,只有不断通过解题实践提高分析解决问题的能力,不断总结解题经验教训,才能灵活运用规律解决问题。
3、注意物理状态、物理过程的分析。
对一道物理题在弄清题意确定应用的物理规律和研究对象后,就要对对象进行物理状态、物理过程的分析,对问题形成鲜明的物理图象。这样才容易排除一些错误观念的干扰,找准解决问题的出发点。尤其是对一些较难的、灵活性较大、情景较新的问题,分析清楚物理过程才容易找到解题的关键条件或问题中的隐蔽条件。
4、正确对待解题
高考是通过物理试题的求解成绩来区分考生能力的高低、优劣,理解和掌握物理理论当然应该表现为求解各种物理题方面,所以,解一定数量的较多类型的问题是必要的,这有利于加深对物理概念、规律的理解,提高解题的能力。但是,我们在解一道物理题时心里要清楚,解这道题不是目的而是一种手段,其目的是检查我们对概念、规律掌握的程度,培养和提高独立地、灵活地分析解决问题的能力。因为
物理习题是不可穷尽的,现在流传的高中物理习题已经在万题以上,每年的高考试题又出现不少新题,对一个物理概念、物理规律的考查可以从许多角度、各种不同的方式进行,只有紧紧抓住解题的根本才能在高考中取得好成绩。
(1)精解少量典型题、浏览较多的习题。
对一些典型的有代表性的习题,要深入地重点求解,真正把问题弄懂。怎样选择有代表性的典型习题呢?首先要选择高考试题,高考试题概念性强,对概念、规律的考查深入、灵活,有的题立意新、情景新、设问角度新,有的题综合性强,有的题含义深刻,非常值得我们深入钻研。其次要选择应用概念、规律重要内容、要领性强、比较灵活的习题,也选择在解题方法、技巧上有一定代表性的习题。怎样才是真正弄懂这些精选的习题呢?这只有通过自己独立的反复思考才能达到,在解题过程中应该清楚地体会到应用了概念、规律的那些方面的内容来分析问题、建立关系,解这道题有几条思路,应该选择哪条思路解题,解题的关键在哪里,怎样求解解题方程,解得的结论有什么物理意义,解这道题对概念、规律有什么新的体会、认识,如果题目条件发生变化或已知和待求的倒过来问题是否能解等等。
对其他的一些问题也要经过一定的选择,对这些题如果想一下就很清楚怎样求解,就不一定花太多时间去做。有的题想一下不知道怎样做就要认真对待,解出后要回头想想当初卡在什么地方解不出来,怎样突破的。利用这种方法能在较短的时间内接触较多的习题。
只要我们抓住解题的根本。我们会发现真正具有代表性的典型题并不很多,许多题都是大同小异的。盲目地追求解题的数量没有多大效果,流传的有的题概念上模糊或错误,这种题解了后会起不良作用,要注意避免。
(2)以物理概念、规律、方法为核心不断总结经验教训,提高解题能力。
物理习题数量多、灵活性大,物理概念、规律、方法是解题的依据、出发点、灵魂,只有抓住这个根本,不断归纳总结才能提高解题能力。
对习题的分类应从基本概念、规律上看。如从牛顿定律看把动力学问题分为:已知力求运动和已知运动求力两种基本类型是很有用的,还可细分为:在恒力作用下的运动,在万有引力作用下的天体运动,在弹性恢复力作用下的简谐运动等。但从形式上把问题分为:斜面问题、竖直问题、水平问题等没有什么用处。
在解题过程中出现错误是常有的事,当代著名的哲学家波普尔认为:"我们能够从我们的错误中学习。""我们的一切知识都只能通过纠正
我们的错误而增长。"所以,我们应该抓住错误不放。发现错误是我们进步、提高的起点,许多错误是由于我们没有真正理解概念、规律造成的,找到错误的根源就使我们对概念、规律的理解提高一步,这是根本上的提高,极为有用。常常有这种情况:一个概念性错误会在多道题目中一犯再犯,这说明这个概念较难、又很重要,我们还没有找到错误的根源。应该引起我们的特别重视,可与同学讨论或问老师受到启发,但一定要通过自己独立的反复思考才能真正解决问题。
有的较难的题我们一时解不出来,后来解出来了,但过了一段时间再看这道题又不会解了,这说明这道题没有真正搞懂。我们经过反复思考找出症结所在,对提高解题能力很有好处。
通过一定量习题的求解,我们会发现在理解概念、规律方面的许多问题,也会发现解题方法、技巧方面的许多问题,还会积累不少的解题技巧、经验,这些都要求我们及时地归纳总结。例如:
◎力学问题中研究对象的选定;
◎力学规律的选用;
◎怎样利用图象分析解决问题;
◎怎样确定电势的高低;
◎如何识别电路结构(串、并联关系);
◎怎样画草图找出解题思路;
◎如何利用光路可逆性等等。
还可对一些较大的问题进行总结,如:如何求物理量?这在力、热、电、光、原子各部分中都会遇到,要总结出求物理量的两条基本途径:一条是根据定义,另一条是根据与该物理量有关的规律。正是后一条途径给我们求解物理量开辟了广阔的思路,提供了多种选择。这个问题很值得总结。
总而言之,学习物理主要是要理解,不要认为听老师讲解就会懂得物理,物理是想懂的,只有反复思考、探索问题的实质,不断地独立思考才能真正懂得,才会求解各种各样的物理习题。



基础打牢,归纳分类,总结规律,会建立物理模型,勤思多练,定能进步。

1 高中物理定理、定律、公式表 (全)
一直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,
加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。


日语等一下-山岗读音


frenchman-山冈拼音


制冷系数-什么的唱腔


低头见花-探寻的意思


星星是恒星吗-鬼头鬼脑


什么旗息鼓-破涕为笑


等闲的意思-西戎


擎天柱英文-手尾