四年级下册《三角形边的关系》教学设计
医学类大学排名-元旦串词
四年级下册《三角形边的关系》教学设计
【小编寄语】查字典数学网小编给大家整
理了四年级下
册《三角形边的关系》教学设计,希望能给大家带来帮助!
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册
第82页的内容。
教学目标:
1.知识与技能:
(1)通过创设问题情境、观察比较,初步感知三角形边的
关系,体验学数学的乐趣。
(2)运用“三角形任意两边的和大于第三边”的性质,解
决生活中的实际问题。
2.过程与方法:
通过实践操作、猜想验证、合作探究,经历发现“三角形
任意两边的和大
于第三边”这一性质的活动过程,发展空间
观念,培养逻辑思维能力,体验“做数学”的成功。
3.情感与态度:
(1)发现生活中的数学美,会从美观和实用的角度解决生
活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
教学重点:
理解、掌握“三角形任意两边之和大于第三边”的性质。
第 1 页
教学难点:
引导探索三角形的边的关系,并发现“三角形任意两边的
和大于第三边”的性质。
教学准备:
课件、学具袋。
教学过程:
(课前谈话)今天很高兴能认识各
位在座的小朋友。我呀,
是来自绿影小学的包老师。来之前,我就听说某某学校的小
朋友,聪明
伶俐,爱动脑筋,是不是这样啊?为了表扬同学
们在课堂的表现,老师还特地带来了一些小奖品,瞧,都
贴
黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?
如果你能答出老师的问题,老师就让你上来任意选一个小
奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两
个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两
个问题啦。希望大家再接再厉,在课堂上有更好
的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么?
(三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
第 2 页
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形 不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三
角形,有的时候不能围成一个三角形
。看来呀,咱们考虑问
题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系
呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?同学们,你们
想不想自己动手来探究这个问题呀?
板书课题:三角形边的关系(让学生收拾好一号学具袋)
[设计意图:随意的给学生三根小棒,让学
生先猜能否围
成一个三角形,再通过动手围,发现有的三根小棒能围成三
角形,有的三根小棒不
能围成三角形。这不仅激活了学生的
旧知,刺激了学生的思维,更激发了学生探索的欲望:能否
围成一个三角形跟什么有关系,怎么的三根小棒才能围成三
角形呢?]
二、实践操作,探究学习
1.动手操作。
电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,
第 3 页
再配一根多长的小棒,就能围成一个三角形?
教师说明操作要求:
(1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实
践操作表格);
(
2)在作业纸上有不同的线段,请你用两根小棒去围一围,
看看是否能围成一个三角形(至少要和三条不
同的线段围一
围);
(3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。
学生活动,教师巡视指导。
2.汇报交流。
教师:下面就请同学们来汇报一下你的操作结果。
请不同的学生汇报,教师在课件中输入数据和结果。如下
图:
第一边
长度(cm)第二边
长度(cm)第三边
长度(cm)能否
围成算 式
631×
2×
3×
第
4 页
4√
5√
6√
7√
8√
9×
10×
[设计意图:既然已经知道能否围成一个三角形,与三角
形
的边有关系,所以教师先给出学生两根6厘米和3厘米的
小棒,让学生通过动手操作得到,当第三边是几
厘米的时候
能围成三角形,直观明了,为后面的探究打好基础。]
3.集体探究。
第一层次:发现不能围成的原因。
(1)教师:同学们通过动手实践,发现1厘米的小棒不能围,
确定吗?咱们再来验证一下。
课件演示:当三根小棒分别是1厘米、3厘米和6厘米的
时候,围不成三角形。
教师:为什么围不成?你会用一个数学关系式表示出它们
的关系吗?
引导学生得出:1+3<6,所以围不成。
(2)教师:下面我们再来验证一下2厘米。课件演示。
教师:你发现了什么?会用一个数学关系式表示出它们的
第 5 页
关系吗?
引导学生得出:2+3<6,所以围不成。
(3)教师:3厘米也不能围成,是什么原因呢?课件演示。
提问:它为什么也围不成?你会用一个数学关系式表示出
它们的关系吗?
引导学生说出:3+3=6,所以不能围。
(4)提出:1厘米、2厘米和3厘米的小棒都围不成。
大家
观察这三道算式,谁能用一句话说说什么情况下不能围成三
角形阿?
板书(补上小于等于号):两边之和≤第三边 不能围成
三角形
[设计意图:学生已
经有了操作的初步体验,但是不能围
成的原因是什么,却还没有发现。这里,通过课件直观、生
动的演示和教师及时的启发、点拨,学生便会很快的发现不
能围成三角形的原因了。]
第二个层次:猜想,初步得出三角形边的性质。
教师:两边之和小于或者等于第三边,不能围成三角形。
同学们猜想一下,什么情况下能围成三角形呢?
学生猜出:两边之和大于第三边。
板贴:两边之和>第三边 能围成三角形?
同时,教师在旁边画上“?”
初步验证猜想:
第 6 页
教师:这个猜想对不对呢?这需要进行验证。看看这些能
围成三角形的边,是不是具备这样的关系?
教师指着4厘米,问:当第三根小棒是4厘米的时候,谁
能来说一说?
同时课件进行演示,得出:4+3>6。 课件演示。
教师指着5厘米,问:那5厘米?
得出:5+3>6
教师点击:那么下面就依次类推了。课件依次出现算式:
6+3>6 7+3>6
8+3>6 9+3>6
[设计意图:由于有了“两边之和≤第三边,不能围成
三角形”这个结论作基础,学生会自然而然地想到当“两边
之和大于第三边”的时候就能围成三
角形。这时教师及时说
明,这只是猜想,要经过验证才能判断它是否正确。]
第三个层次:引发矛盾,突破难点。
教师指着表格,质疑:你们有没有发现问题啊?咱们在动
手操作的时候得出9厘米不能围,可是9+3>6呀,这符
合我们刚刚得出的结论啊?
先让学生说一说,然后进行课件演示。
教师:9和3这组的两边之和是大于6,可是它能围成
吗?(不能)(课件演示确实不能围成。)
教师:我们再换一组看看,3和6这组的两边之和第三边
9比,什么关系?(相等)
教师:那还要看哪一组?(6和9的和与3比)
第 7 页
引导学生明确:只通过一组来判断能否围成三角形,全面
吗?那应该怎么说?
引导学生得出“任意”两字。
[设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什
么样的关系,从而发现只通过一组两边的
和来判断能否围成
三角形是不全面的,必须要看三组,这样“任意”在这里的
引出也就水到渠成
了。]
第四个层次:再次验证,明确三角形三边的关系。
教师:下面我们利用这个结论
再来验证一下,这些能围成
三角形的三边,是不是都具备这样的关系?每个同学选一个
你喜欢的
在小组内交流。
学生交流,集体汇报。
第一边
长度(cm)第二边
长度(cm)第三边
长度(cm)能否
围成算 式
6
31×1+3<6
2×2+3<6
3×3+3=6
4√4+3>6 3+6>4
4+6>3
第 8 页
5√5+3>6
3+6>5 5+6>3
6√6+3>6 3+6>6
6+6>3
7√7+3>6 3+6>7 7+6>3
8√8+3>6 3+6>8 8+6>3
9×9+3>6 3+6=9 9+6>3
10×
教师:在同学们的猜想前面加上“任意”两字,通过再次
验证后,发现它就是一条正确的结论
。(教师擦掉“?”)咱
们来一起读一遍。
[设计意图:加上“任意”两字以后,结论是不
是就正确
了呢?这时,让学生回过头来,再次验证能围成三角形的三
边是不是具备这样的关系,
不仅加深了学生对三角形边的关
系的理解,也让学生充分经历了“猜想—验证—结论”这一
科学
的学习过程。]
第五个层次:找出判断不能围成的简捷方法。
教师:在这些不能围成三角形的三边中,它们也应该有几
组算式?(3组)
那我们在判断它能不能围成的时候,是不是要把三组算式
都找出来啊?
引导学生明确:只要找到一组不符合能围成的条件就可以
了。
教师:谁能快速地说出‘10’不能围成的原
第 9 页
因?
[设计意图:怎样最快的找到不能围成的原因,在这里也
应该
让学生明确。方法最优化应随时有效地渗透在教学环节
中。]
第六个层次:再次验证“任意”,将结论从特殊扩大到一
般;同时发现判断能围成三角形的简单方法。
(1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角
形的第三边,得到这样的结论的。
那是不是任意一个三角形
的三边都具备这样的关系呢?
教师演示课件,随意拖拉两次,让学生用估算的方法说出
三边的关系。
[设计意图:一开始
的研究,是从给定的3厘米和6厘米
的两边着手的。在这里通过课件的直观演示,将特殊情况推
广到一般情况,让学生明白任意一个三角形的三边都有这样
的性质。]
(2)提出:在判断能围成三角形的时候有没有更简单的方
法?是不是每次都要计算三组啊?
让学生先充分地进行交流。
引导学生发现:因为较小的两边的和都大于最长的边了,
那么用
最长的边加一条较短的边,就一定大于另一条短边
了。所以呢,这要把只要把较小的两条边加起来这一组
进行
判断,就可以代表三组了。还需要每组都判断吗?
第 10 页
[设计意图:我以为,在全体学生都已经掌握的基础上,
肯定会有少数学生发
现判断能围成三角形的诀窍。教师的设
计应当顾及到这样的学生。所以,在这里可以及时地引导全
体学生都掌握简单方法。]
三、深化认知,联系实际,拓展应用
1.轻松小游戏。
教师:同学们的表现真是棒极了,老师为了表扬大家,给
你做个小游戏,想不想啊?
出示:有人说自己步子大,一步能跨两米多,你相信吗?
为什么?
请两个学生上来跨一步。
先让学生充分的交流。
教师:你能用我们今天学习的知识来解释一下吗?
课件演示:两腿和地面跨出的距离形成了一个三角形。
教师:可是有个人说,我可以。你们知道是谁吗?
出示姚明图片,身高:226厘米;腿长131厘米。
[设计意图:通过游戏的形式解决问题,使学
生主动地把
本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步
达到“会学”数学的境界
,并再次向学生渗透看问题要全面
的原则。]
2.判断:下面哪组的小棒能围成一个三角形?(单位:厘
米)(有图。)
第 11 页
(1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2
[设计意图:这道基础题的练习,既是对前面所学内容的
巩固,同时引导学生利用简单方法快
速地进行判断。]
3.儿童乐园要建一个凉亭,亭子上部是三角形木架,现在
已经准备了两
根三米长的木料,假如你是设计师,第三根木
料会准备多长?并说明理由。
[设计意图:“
从问题中来,到问题中去”,让学生用学
习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。]
四、全课小结,从考虑问题要全面,引出第三边的取值范
围
[设计意图:对于小
学四年级的学生而言,范围的建立的
确是有一定困难的。再次呈现前面的研究表格,这些数据是
具体的,教师提出:“3.5厘米行吗?3.2呢?3.1呢?3.01呢?
不断地向3逼近,学生自然
会想到3.0001也是可以的,那
该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生
不难得出“又必须比9厘米短”。这样层层递进的启发引导,
发散拓宽了学生的思维,有机地渗透了无
限逼近的数学思
想,培养了学生抽象、概括的能力。]
第 12 页
四年级下册《三角形边的关系》教学设计
【小编寄语】查字典数学网小编
给大家整理了四年级下
册《三角形边的关系》教学设计,希望能给大家带来帮助!
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册
第82页的内容。
教学目标:
1.知识与技能:
(1)通过创设问题情境、观察比较,初步感知三角形边的
关系,体验学数学的乐趣。
(2)运用“三角形任意两边的和大于第三边”的性质,解
决生活中的实际问题。
2.过程与方法:
通过实践操作、猜想验证、合作探究,经历发现“三角形
任意两边的和大
于第三边”这一性质的活动过程,发展空间
观念,培养逻辑思维能力,体验“做数学”的成功。
3.情感与态度:
(1)发现生活中的数学美,会从美观和实用的角度解决生
活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
教学重点:
理解、掌握“三角形任意两边之和大于第三边”的性质。
第 1 页
教学难点:
引导探索三角形的边的关系,并发现“三角形任意两边的
和大于第三边”的性质。
教学准备:
课件、学具袋。
教学过程:
(课前谈话)今天很高兴能认识各
位在座的小朋友。我呀,
是来自绿影小学的包老师。来之前,我就听说某某学校的小
朋友,聪明
伶俐,爱动脑筋,是不是这样啊?为了表扬同学
们在课堂的表现,老师还特地带来了一些小奖品,瞧,都
贴
黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?
如果你能答出老师的问题,老师就让你上来任意选一个小
奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两
个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两
个问题啦。希望大家再接再厉,在课堂上有更好
的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么?
(三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
第 2 页
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形 不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三
角形,有的时候不能围成一个三角形
。看来呀,咱们考虑问
题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系
呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?同学们,你们
想不想自己动手来探究这个问题呀?
板书课题:三角形边的关系(让学生收拾好一号学具袋)
[设计意图:随意的给学生三根小棒,让学
生先猜能否围
成一个三角形,再通过动手围,发现有的三根小棒能围成三
角形,有的三根小棒不
能围成三角形。这不仅激活了学生的
旧知,刺激了学生的思维,更激发了学生探索的欲望:能否
围成一个三角形跟什么有关系,怎么的三根小棒才能围成三
角形呢?]
二、实践操作,探究学习
1.动手操作。
电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,
第 3 页
再配一根多长的小棒,就能围成一个三角形?
教师说明操作要求:
(1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实
践操作表格);
(
2)在作业纸上有不同的线段,请你用两根小棒去围一围,
看看是否能围成一个三角形(至少要和三条不
同的线段围一
围);
(3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。
学生活动,教师巡视指导。
2.汇报交流。
教师:下面就请同学们来汇报一下你的操作结果。
请不同的学生汇报,教师在课件中输入数据和结果。如下
图:
第一边
长度(cm)第二边
长度(cm)第三边
长度(cm)能否
围成算 式
631×
2×
3×
第
4 页
4√
5√
6√
7√
8√
9×
10×
[设计意图:既然已经知道能否围成一个三角形,与三角
形
的边有关系,所以教师先给出学生两根6厘米和3厘米的
小棒,让学生通过动手操作得到,当第三边是几
厘米的时候
能围成三角形,直观明了,为后面的探究打好基础。]
3.集体探究。
第一层次:发现不能围成的原因。
(1)教师:同学们通过动手实践,发现1厘米的小棒不能围,
确定吗?咱们再来验证一下。
课件演示:当三根小棒分别是1厘米、3厘米和6厘米的
时候,围不成三角形。
教师:为什么围不成?你会用一个数学关系式表示出它们
的关系吗?
引导学生得出:1+3<6,所以围不成。
(2)教师:下面我们再来验证一下2厘米。课件演示。
教师:你发现了什么?会用一个数学关系式表示出它们的
第 5 页
关系吗?
引导学生得出:2+3<6,所以围不成。
(3)教师:3厘米也不能围成,是什么原因呢?课件演示。
提问:它为什么也围不成?你会用一个数学关系式表示出
它们的关系吗?
引导学生说出:3+3=6,所以不能围。
(4)提出:1厘米、2厘米和3厘米的小棒都围不成。
大家
观察这三道算式,谁能用一句话说说什么情况下不能围成三
角形阿?
板书(补上小于等于号):两边之和≤第三边 不能围成
三角形
[设计意图:学生已
经有了操作的初步体验,但是不能围
成的原因是什么,却还没有发现。这里,通过课件直观、生
动的演示和教师及时的启发、点拨,学生便会很快的发现不
能围成三角形的原因了。]
第二个层次:猜想,初步得出三角形边的性质。
教师:两边之和小于或者等于第三边,不能围成三角形。
同学们猜想一下,什么情况下能围成三角形呢?
学生猜出:两边之和大于第三边。
板贴:两边之和>第三边 能围成三角形?
同时,教师在旁边画上“?”
初步验证猜想:
第 6 页
教师:这个猜想对不对呢?这需要进行验证。看看这些能
围成三角形的边,是不是具备这样的关系?
教师指着4厘米,问:当第三根小棒是4厘米的时候,谁
能来说一说?
同时课件进行演示,得出:4+3>6。 课件演示。
教师指着5厘米,问:那5厘米?
得出:5+3>6
教师点击:那么下面就依次类推了。课件依次出现算式:
6+3>6 7+3>6
8+3>6 9+3>6
[设计意图:由于有了“两边之和≤第三边,不能围成
三角形”这个结论作基础,学生会自然而然地想到当“两边
之和大于第三边”的时候就能围成三
角形。这时教师及时说
明,这只是猜想,要经过验证才能判断它是否正确。]
第三个层次:引发矛盾,突破难点。
教师指着表格,质疑:你们有没有发现问题啊?咱们在动
手操作的时候得出9厘米不能围,可是9+3>6呀,这符
合我们刚刚得出的结论啊?
先让学生说一说,然后进行课件演示。
教师:9和3这组的两边之和是大于6,可是它能围成
吗?(不能)(课件演示确实不能围成。)
教师:我们再换一组看看,3和6这组的两边之和第三边
9比,什么关系?(相等)
教师:那还要看哪一组?(6和9的和与3比)
第 7 页
引导学生明确:只通过一组来判断能否围成三角形,全面
吗?那应该怎么说?
引导学生得出“任意”两字。
[设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什
么样的关系,从而发现只通过一组两边的
和来判断能否围成
三角形是不全面的,必须要看三组,这样“任意”在这里的
引出也就水到渠成
了。]
第四个层次:再次验证,明确三角形三边的关系。
教师:下面我们利用这个结论
再来验证一下,这些能围成
三角形的三边,是不是都具备这样的关系?每个同学选一个
你喜欢的
在小组内交流。
学生交流,集体汇报。
第一边
长度(cm)第二边
长度(cm)第三边
长度(cm)能否
围成算 式
6
31×1+3<6
2×2+3<6
3×3+3=6
4√4+3>6 3+6>4
4+6>3
第 8 页
5√5+3>6
3+6>5 5+6>3
6√6+3>6 3+6>6
6+6>3
7√7+3>6 3+6>7 7+6>3
8√8+3>6 3+6>8 8+6>3
9×9+3>6 3+6=9 9+6>3
10×
教师:在同学们的猜想前面加上“任意”两字,通过再次
验证后,发现它就是一条正确的结论
。(教师擦掉“?”)咱
们来一起读一遍。
[设计意图:加上“任意”两字以后,结论是不
是就正确
了呢?这时,让学生回过头来,再次验证能围成三角形的三
边是不是具备这样的关系,
不仅加深了学生对三角形边的关
系的理解,也让学生充分经历了“猜想—验证—结论”这一
科学
的学习过程。]
第五个层次:找出判断不能围成的简捷方法。
教师:在这些不能围成三角形的三边中,它们也应该有几
组算式?(3组)
那我们在判断它能不能围成的时候,是不是要把三组算式
都找出来啊?
引导学生明确:只要找到一组不符合能围成的条件就可以
了。
教师:谁能快速地说出‘10’不能围成的原
第 9 页
因?
[设计意图:怎样最快的找到不能围成的原因,在这里也
应该
让学生明确。方法最优化应随时有效地渗透在教学环节
中。]
第六个层次:再次验证“任意”,将结论从特殊扩大到一
般;同时发现判断能围成三角形的简单方法。
(1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角
形的第三边,得到这样的结论的。
那是不是任意一个三角形
的三边都具备这样的关系呢?
教师演示课件,随意拖拉两次,让学生用估算的方法说出
三边的关系。
[设计意图:一开始
的研究,是从给定的3厘米和6厘米
的两边着手的。在这里通过课件的直观演示,将特殊情况推
广到一般情况,让学生明白任意一个三角形的三边都有这样
的性质。]
(2)提出:在判断能围成三角形的时候有没有更简单的方
法?是不是每次都要计算三组啊?
让学生先充分地进行交流。
引导学生发现:因为较小的两边的和都大于最长的边了,
那么用
最长的边加一条较短的边,就一定大于另一条短边
了。所以呢,这要把只要把较小的两条边加起来这一组
进行
判断,就可以代表三组了。还需要每组都判断吗?
第 10 页
[设计意图:我以为,在全体学生都已经掌握的基础上,
肯定会有少数学生发
现判断能围成三角形的诀窍。教师的设
计应当顾及到这样的学生。所以,在这里可以及时地引导全
体学生都掌握简单方法。]
三、深化认知,联系实际,拓展应用
1.轻松小游戏。
教师:同学们的表现真是棒极了,老师为了表扬大家,给
你做个小游戏,想不想啊?
出示:有人说自己步子大,一步能跨两米多,你相信吗?
为什么?
请两个学生上来跨一步。
先让学生充分的交流。
教师:你能用我们今天学习的知识来解释一下吗?
课件演示:两腿和地面跨出的距离形成了一个三角形。
教师:可是有个人说,我可以。你们知道是谁吗?
出示姚明图片,身高:226厘米;腿长131厘米。
[设计意图:通过游戏的形式解决问题,使学
生主动地把
本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步
达到“会学”数学的境界
,并再次向学生渗透看问题要全面
的原则。]
2.判断:下面哪组的小棒能围成一个三角形?(单位:厘
米)(有图。)
第 11 页
(1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2
[设计意图:这道基础题的练习,既是对前面所学内容的
巩固,同时引导学生利用简单方法快
速地进行判断。]
3.儿童乐园要建一个凉亭,亭子上部是三角形木架,现在
已经准备了两
根三米长的木料,假如你是设计师,第三根木
料会准备多长?并说明理由。
[设计意图:“
从问题中来,到问题中去”,让学生用学
习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。]
四、全课小结,从考虑问题要全面,引出第三边的取值范
围
[设计意图:对于小
学四年级的学生而言,范围的建立的
确是有一定困难的。再次呈现前面的研究表格,这些数据是
具体的,教师提出:“3.5厘米行吗?3.2呢?3.1呢?3.01呢?
不断地向3逼近,学生自然
会想到3.0001也是可以的,那
该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生
不难得出“又必须比9厘米短”。这样层层递进的启发引导,
发散拓宽了学生的思维,有机地渗透了无
限逼近的数学思
想,培养了学生抽象、概括的能力。]
第 12 页