数理统计期末考试试题答案

余年寄山水
726次浏览
2020年08月03日 02:59
最佳经验
本文由作者推荐

江汉大学文理学院地址-范秀明



1. Let
X
1
,X
2
,

,X
n
be a random sample from the
Gamma(

,

)
distribution < br>f(x|

,

)

1

(

)


x


1
e

,
x0
,

0
,

0
.

x
(a) ( 8 %) Find the method of moment estimates of

and

.
(b) ( 7 %) Find the MLE of

, assuming

is known.
(c) ( 7 %) Giving

0
, find the Cramer-Rao lower bound of estimates of

.
(d) ( 8 %) Giving

0
, find the UMVUE of

.
2. Suppose that
X
1
,X
2
,

,X
n
are iid ~
B(2,p)
,
p(0,1)
. Let

(p)2p(1p)
.
(a) ( 5 %) Show that
T


X
i
is a sufficient statistic for
p
.
i

1
n

1, if X
1

1
(b) ( 5 %) Let
Y


. Show that
Y
is an unbiased estimate of

(p)
.

0, if X
1

1
(c) (10%) Find the UMVUE
W
of

(p)
.
3. Let
X
1
, X
2
,

,X
n
be a random sample from a
Poisson(

)
,

0
, distribution.
Consider testing
H
0
:


1
vs
H
1
:

3
.
(a) (10%) Find a UMP level

test,
0

1
.
(b) ( 7 %) For
n3
, the test rejects
H
0
, if
X
1
X
2
X
3

5
.
Find the power function

(

)
of the test.
(c) ( 8 %) For
n3
, the test rejects
H
0
, if
X
1
X
2
X
3

5
.
Evaluate the size and the power of the test.
4. (10%) Let
X
1
, X
2
,

,X
n
be iid
Poisson()
distribution, and let the prior
distribution of

be a
Gamma(

,

)
distribution,

0
,

0
. Find the
posterior distribution of

.
5. Let
X
1
, X
2
,

,X
n
be a random sample from an exponential distribution with mean

,

0
.
(a) ( 5 %) Show that
T


X
i
is a sufficient statistic n for

.
i

1
n
(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR.
(c) ( 5 %) Find a UMP level

test of
H
0
:0



1
vs
H
1
:

1
by the
Karlin-Rubin Theorem shown below.
[Definition] A family of pdfs or pmfs
{g(t|

)|

}
has a monotone likelihood ratio,
g(t|

2
)
MLR, if for every

2


1
,
is a monotone function of
t
.
g(t|

1
)
[Karlin-Rubin Theorem] Suppose that
T
is a sufficient statistic for

and the pdfs or
pmfs
{g(t|

)|

}
has a non- decreasing monotone likelihood ratio.
Consider testing
H
0
:



0
vs
H
1
:



0
. A UMP level

test rejects
H
0
if and only if
Tt
0
, where

P

0
(Tt
0
)
.
數理統計期末考試試題答案

1. (a) Since
E(X)

0


(

)

1

(


1)



1

xed x


and



x
< br>(

)



E(X)

2< br>
0


(

)


2< br>m
1
1
x


1

(
< br>
2)



2

edx

(


1)

2
,


x

(

)

Let
m
1


and
m
2


(

1)

2



~




m
2
2
m
1


1


2
m
1
m
2
m
1
,


~

.
2

m
1
m
2

m
1
1
n
2
1
n
(n

1)
222
Furthermore,
m
1
X
,
m
2

m
1


X
i

X


(X
i2

X)
2

S
,
n
i

1
n
i

1
n
~
(n1)S
2
nX
2
~
The MME of

.and

are


,



2
nX
(n

1)S
~
(b)
L(
|

,
~
x)

[
i

1
n
1

(

)




1

x
i
e]


x
i
1
[

(

)


]
n
i

1
n


1
(

x
i
)e
n
n

i

1

x
i
n


x)

nln

(

)

n

ln


(


1)

lnx
i

i

1


lnL(

|

,
~
i

1

x
1


n
1
n
1
n
x
~
ˆ
lnL(

|

,x)

x

0


x

Let


i

i

.



2
i

1
n

i
1
n

2
n
n

2nx
~< br>lnL(

|

,x)

lnx
Furthermore,
i
223

23

 
i

1

n

2nxnx

2nx

n
ˆ
|

,
~
lnL(

x)
0
,
22332
ˆˆ

 
xx
ˆ

X
is the MLE of

. So,


2



2

n

2
n
n

2n

n

~
lnL(

|

,x)]
E

(

X)

(c)

E

[

223

i
232< br>

i

1


2
CRLB =

E

[
(d) Since
E< br>(
X
)

2


2

2


n

~
lnL(

|
< br>,x)]
1

ˆ

X
is an unbiased estimate of

, and


,



X1

2< br>
2
ˆ

X
is the UMVUE of

.
Var()

CRLB,



n


2
n
1

(

)



(

)



Given

,
{f(x|

)}
is an exponential family in

.
I
(0,

)
(x)x


1
e


x
[Or]
f(x|

,

)

1 1
I
(0,

)
(x)x


1
exp[x(

)]





T


X
i
is a sufficient statistic for

.
i

1
n
ˆ

X

T
is an unbiased estimate of

and a function of sufficient Since


n

ˆ

X
is the UMVUE of

. statistics
T
, by Rao- Blackwell Theorem,


nn

2

x
i
2

x
i

2. (a)
f(x
1
,x
2
,,x
n
|p)

< br>f(x
i
|p)


[

I(x)p(1< br>
p)]

{0,1,2}i

x

i
1i

1

i


2

2

p
x
i
p
i

1
2



[

I
{0,1,2}
(x
i
)()(1

p)]

[


I(x)]()(1

p)
2n

{0,1,2}i
< br>xx
1

p1

p
i

1

i

i

1

i

n

2

p
T(
~
x)2n
~

) (1p)
and
h(x)



Let
g (T(x),p)

(

I
{0,1,2}
(
x
i
)
. By
x
1

p
i

1

i

nn

x
i
n
factorization theorem,
T


X
i
is a sufficient statistic for
p
.
i

1
n

2

p
x2

x

2

2

[Or]
f(x|p)


I(x)p(1
p)

I(x)(1

p)exp[xln()]


x

{0,1,2}

x

{0,1, 2}
1

p



{f(x|p)}
is an exponential family


T


X
i
is a sufficient statistic.
i

1
n
2

12

1

(b)
E(Y)

1

P(X
1

1)

0
P(X
1

1)


p(1p)2p(1p)< br>, so
Y
is an

1


unbiased estimate of

(p)
.
(c) If
X
1
,X
2
,

,X
n
,
nN
, are iid ~
B(2,p)
, then
T

X
i
~
B
(2
n
,
p< br>)
.
i

1
n


E(Y|T

t)

P(Y

1 &T

t)
P(X
1

1 &T

t)< br>
P(T

t)P(T

t)
n
P(X< br>1

1 &

X
i

t

1)
i

2
n
P(T

t)


2n

2

t

12n

t< br>
1

2p(1

p)

p(1

p)

t

1


i

2


P(T

t)

2n

t2n

t


t


p(1

p)

2(2n

2)!t!(2n

t)! t(2n

t)

,
t0,1,2,,2n
.
(t

1)!(2n

t

1)!(2n)!n( 2n

1)
T(n

T)
By Rao- Blackwell Theorem,
W

E(Y|T)

is the UMVUE of

(

)e


.
2(2n

1)
3. (a) By Neyman-Pearson Lemma, a UMP level

test rejects
H
0
if and only if
f(x
1
,x2
,,x
n
|


3)

kf( x
1
,x
2
,,x
n
|


1)
.
P(X
1

1)P(

X
i
t

1)
n
n
1
x
i
3< br>x
i

3
x
i
2n

1

ke



(

x
i
)ln3

2n

lnk

e]

k

[
e]



3



[
i

1
(x
i
)!
i

1
(x
i
)!
i
< br>1
n
2

lnk
c




x
i

ln3
i

1
n



Since
n
i

1

X
i
~
Poisson
(
n

)
, a UMP level

test rejects
H
0
if and only if

n
n
i

n

Xi

c
, where
c
is the smallest integer satisfying

i!
e

.
i
1
i

c

1
[Or]
T


X
i
is sufficient for

and
T~Poisson(n

)
.
i

1
n
By the corollary of Neyman-Pearson Lemma, a UMP level

test rejects
H
0

if and only if
g(t|

3)kg(t|

1)
.
n< br>3
t

3
1
t

1
t2
e

k
e



3

ke



(

x
1
)ln3

2
ln
k



t!t!
i

1
(b)

(

)
P

(
X
1
X
2
X
3< br>
5)

1
P

(
X
1
X
2
X
3

4)

(3

)
0
(3

)
1
(3

)
2
(3

)
3
(3

)
4

3< br>

1

[

]
e
,

0

0!1!2!3!4!
3
0
3
1
3
2
3
3
3
4

3
]e

0.1847
(c) The size of this test is

(1)

1

[
0!1!2!3!4!< br>9
0
9
1
9
2
9
3
9
4< br>
9

]e

0.9450
The power of this test is

(3)

1

[
0!1!2!3!4!
4. Since
T


X
i
is sufficient for

and
T~Poisson(n

)
.
i

1
n
f
T|

(t|

)
(n

)

n

1
e
; and
f

(

)

t!

(

)


t
t




1
e





f(t,

)



f
T
(t)

(n

)

n

1
e
t!

(

)


n
t




1
e



n
t
t!

(

)

n
t

t



1
e
1

(n
< br>)


,

0


0

t!

(

)



t



1
1

(n

)
e

d


t!

(

)< br>

1

(n

)


( t


)(

t


)

n


1
1

(n

)
n
t

f(t,

)

t



1
e
t!

(

)


,

0




f

|t
(

|t)

t
f
T
(t)
n

t



(t


)(

)
t



(t

)()
n


1

n


1
t!

(

)


)
. The posterior distribution of

is
Gamma(t


,
n


1
x
i

x
1
n

1

1
5. (a)
f(x
1
,x
2
,

,x
n
|

)

f(x
i
|

)

(eI
(0,

)
(x
i
) )

e

I
(0,

)
(x
i< br>)

n

i

1

i
< br>1i

1
T(
~
x)
n

1
~
~
Let
g(T(x),

)

e

and
h (x
)
I
(0,

)
(
x
i
)
. By factorization theorem,
n
i
< br>1


t



1
e
< br>
n

n
T


X
i
is a sufficient statistic for

.
i

1
n



1


11
[Or]
f(x|

)
eI
(0,

)
(x)

I
(0,

)
(x)exp[x(

)]

x



{f(x|

)}
is an exponential family.


T


X
i
is a sufficient statistic.
i

1
n
ˆ

X

T
is an unbiased estimate of

and a function of sufficient Since


n

ˆ

X
is the UMVUE of

. statistics
T
, by Rao- Blackwell Theorem,


n
(n

)
t

n

e
(b)
T

X< br>i
~
Poisson
(
n

)



g(t|

)

,
t0,1,2,
t!
i

1
(n

2
)
t

n

2
t
e

g(t|

2< br>)

t!
2

e

n(

2


1
)






g(t|

1
)
(n

1
)
t

n

1


1

e
t!

g(t|

2
)
If

2


1



2
1


is an increasing function of
t
,

1
g(t|

1
)
Hence
{g(t|

)|

0}
of
T
has MLR.
(c)
T

X
i
~
Gam ma
(
n
,

)



g(t|

)

i

1
n
1

( n)

n
t
n

1
e

,
t0


t
1


g(t|

2
)

g(t|

1
)
n
< br>(n)

2
t
n

1
e

2
t
n

1
e

1

t
n

(
1

1
)t
1
n

(n)

1


1


2
< br>1



e
,
t0




t

2


g(t|

2
)



11
If

2


1




(
)
21
0


is increasing in
t
.

2

1

1

2
g(t|

1
)
Hence
{g(t|

)|

0}
of
T
has an MLR.
By Karlin-Rubin Theorem, the UMP size

test rejecting
H
0
if
T


X
i

c
, where
c

i
1
n
satisfies that
P {

X
i
c|

1}

; i.e.,
i

1
n

c
1
n

1

x


(n)
xedx

.

2014年教师招聘、资格证、入编测试免费下载
史上最强教师资格,招聘资料合集免费下载,不看你会后悔的!!!
(注:史上最强、最牛、最全……,没有之一。由美丽圈小站整理发布。)
(美丽圈小站郑重承诺,教师招聘资料库每年更新两次,3月和9月更新,敬请关
注!!!)



收集了2010-2014年网上大部分的教师招聘资料,包含教育学,心理 学,专业测试,面
试秘籍,讲说课要点等等……。大约17116 份资料。免费下载地址如下:
下载地址一:拖把网下载:
下载地址二:华为网盘下载:c0yoa4s55x
下载地址三:百度云网盘下载:
下载地址四:360网盘下载:
下载地址五:QQ群共享下载:加入群,点击群共享,资料都在里面。
群一:
170345905
群二:
126207979
群三: 群四:302016525
(群为淘宝商品秒杀群,喜欢的留步,勿喜的下载完资料后请退出,谢谢。)
友情连接:笑话达人微博:
有空来看看,学习备考压力大,适合减负减压!!!真心的不错
美丽圈小站祝愿大家测试成功!!!
淘宝美丽圈2014春季特卖开始了,1-5折起,还有1-29.9元包邮哦,快来看看!亲。
气质由心开始,美丽从我做起!
美丽圈小站欢迎您: 。
时尚、美丽、特价、天天更新………尽在美丽圈: 。



1. Let
X
1
,X
2
,

,X
n
be a random sample from the
Gamma(

,

)
distribution < br>f(x|

,

)

1

(

)


x


1
e

,
x0
,

0
,

0
.

x
(a) ( 8 %) Find the method of moment estimates of

and

.
(b) ( 7 %) Find the MLE of

, assuming

is known.
(c) ( 7 %) Giving

0
, find the Cramer-Rao lower bound of estimates of

.
(d) ( 8 %) Giving

0
, find the UMVUE of

.
2. Suppose that
X
1
,X
2
,

,X
n
are iid ~
B(2,p)
,
p(0,1)
. Let

(p)2p(1p)
.
(a) ( 5 %) Show that
T


X
i
is a sufficient statistic for
p
.
i

1
n

1, if X
1

1
(b) ( 5 %) Let
Y


. Show that
Y
is an unbiased estimate of

(p)
.

0, if X
1

1
(c) (10%) Find the UMVUE
W
of

(p)
.
3. Let
X
1
, X
2
,

,X
n
be a random sample from a
Poisson(

)
,

0
, distribution.
Consider testing
H
0
:


1
vs
H
1
:

3
.
(a) (10%) Find a UMP level

test,
0

1
.
(b) ( 7 %) For
n3
, the test rejects
H
0
, if
X
1
X
2
X
3

5
.
Find the power function

(

)
of the test.
(c) ( 8 %) For
n3
, the test rejects
H
0
, if
X
1
X
2
X
3

5
.
Evaluate the size and the power of the test.
4. (10%) Let
X
1
, X
2
,

,X
n
be iid
Poisson()
distribution, and let the prior
distribution of

be a
Gamma(

,

)
distribution,

0
,

0
. Find the
posterior distribution of

.
5. Let
X
1
, X
2
,

,X
n
be a random sample from an exponential distribution with mean

,

0
.
(a) ( 5 %) Show that
T


X
i
is a sufficient statistic n for

.
i

1
n
(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR.
(c) ( 5 %) Find a UMP level

test of
H
0
:0



1
vs
H
1
:

1
by the
Karlin-Rubin Theorem shown below.
[Definition] A family of pdfs or pmfs
{g(t|

)|

}
has a monotone likelihood ratio,
g(t|

2
)
MLR, if for every

2


1
,
is a monotone function of
t
.
g(t|

1
)
[Karlin-Rubin Theorem] Suppose that
T
is a sufficient statistic for

and the pdfs or
pmfs
{g(t|

)|

}
has a non- decreasing monotone likelihood ratio.
Consider testing
H
0
:



0
vs
H
1
:



0
. A UMP level

test rejects
H
0
if and only if
Tt
0
, where

P

0
(Tt
0
)
.
數理統計期末考試試題答案

1. (a) Since
E(X)

0


(

)

1

(


1)



1

xed x


and



x
< br>(

)



E(X)

2< br>
0


(

)


2< br>m
1
1
x


1

(
< br>
2)



2

edx

(


1)

2
,


x

(

)

Let
m
1


and
m
2


(

1)

2



~




m
2
2
m
1


1


2
m
1
m
2
m
1
,


~

.
2

m
1
m
2

m
1
1
n
2
1
n
(n

1)
222
Furthermore,
m
1
X
,
m
2

m
1


X
i

X


(X
i2

X)
2

S
,
n
i

1
n
i

1
n
~
(n1)S
2
nX
2
~
The MME of

.and

are


,



2
nX
(n

1)S
~
(b)
L(
|

,
~
x)

[
i

1
n
1

(

)




1

x
i
e]


x
i
1
[

(

)


]
n
i

1
n


1
(

x
i
)e
n
n

i

1

x
i
n


x)

nln

(

)

n

ln


(


1)

lnx
i

i

1


lnL(

|

,
~
i

1

x
1


n
1
n
1
n
x
~
ˆ
lnL(

|

,x)

x

0


x

Let


i

i

.



2
i

1
n

i
1
n

2
n
n

2nx
~< br>lnL(

|

,x)

lnx
Furthermore,
i
223

23

 
i

1

n

2nxnx

2nx

n
ˆ
|

,
~
lnL(

x)
0
,
22332
ˆˆ

 
xx
ˆ

X
is the MLE of

. So,


2



2

n

2
n
n

2n

n

~
lnL(

|

,x)]
E

(

X)

(c)

E

[

223

i
232< br>

i

1


2
CRLB =

E

[
(d) Since
E< br>(
X
)

2


2

2


n

~
lnL(

|
< br>,x)]
1

ˆ

X
is an unbiased estimate of

, and


,



X1

2< br>
2
ˆ

X
is the UMVUE of

.
Var()

CRLB,



n


2
n
1

(

)



(

)



Given

,
{f(x|

)}
is an exponential family in

.
I
(0,

)
(x)x


1
e


x
[Or]
f(x|

,

)

1 1
I
(0,

)
(x)x


1
exp[x(

)]





T


X
i
is a sufficient statistic for

.
i

1
n
ˆ

X

T
is an unbiased estimate of

and a function of sufficient Since


n

ˆ

X
is the UMVUE of

. statistics
T
, by Rao- Blackwell Theorem,


nn

2

x
i
2

x
i

2. (a)
f(x
1
,x
2
,,x
n
|p)

< br>f(x
i
|p)


[

I(x)p(1< br>
p)]

{0,1,2}i

x

i
1i

1

i


2

2

p
x
i
p
i

1
2



[

I
{0,1,2}
(x
i
)()(1

p)]

[


I(x)]()(1

p)
2n

{0,1,2}i
< br>xx
1

p1

p
i

1

i

i

1

i

n

2

p
T(
~
x)2n
~

) (1p)
and
h(x)



Let
g (T(x),p)

(

I
{0,1,2}
(
x
i
)
. By
x
1

p
i

1

i

nn

x
i
n
factorization theorem,
T


X
i
is a sufficient statistic for
p
.
i

1
n

2

p
x2

x

2

2

[Or]
f(x|p)


I(x)p(1
p)

I(x)(1

p)exp[xln()]


x

{0,1,2}

x

{0,1, 2}
1

p



{f(x|p)}
is an exponential family


T


X
i
is a sufficient statistic.
i

1
n
2

12

1

(b)
E(Y)

1

P(X
1

1)

0
P(X
1

1)


p(1p)2p(1p)< br>, so
Y
is an

1


unbiased estimate of

(p)
.
(c) If
X
1
,X
2
,

,X
n
,
nN
, are iid ~
B(2,p)
, then
T

X
i
~
B
(2
n
,
p< br>)
.
i

1
n


E(Y|T

t)

P(Y

1 &T

t)
P(X
1

1 &T

t)< br>
P(T

t)P(T

t)
n
P(X< br>1

1 &

X
i

t

1)
i

2
n
P(T

t)


2n

2

t

12n

t< br>
1

2p(1

p)

p(1

p)

t

1


i

2


P(T

t)

2n

t2n

t


t


p(1

p)

2(2n

2)!t!(2n

t)! t(2n

t)

,
t0,1,2,,2n
.
(t

1)!(2n

t

1)!(2n)!n( 2n

1)
T(n

T)
By Rao- Blackwell Theorem,
W

E(Y|T)

is the UMVUE of

(

)e


.
2(2n

1)
3. (a) By Neyman-Pearson Lemma, a UMP level

test rejects
H
0
if and only if
f(x
1
,x2
,,x
n
|


3)

kf( x
1
,x
2
,,x
n
|


1)
.
P(X
1

1)P(

X
i
t

1)
n
n
1
x
i
3< br>x
i

3
x
i
2n

1

ke



(

x
i
)ln3

2n

lnk

e]

k

[
e]



3



[
i

1
(x
i
)!
i

1
(x
i
)!
i
< br>1
n
2

lnk
c




x
i

ln3
i

1
n



Since
n
i

1

X
i
~
Poisson
(
n

)
, a UMP level

test rejects
H
0
if and only if

n
n
i

n

Xi

c
, where
c
is the smallest integer satisfying

i!
e

.
i
1
i

c

1
[Or]
T


X
i
is sufficient for

and
T~Poisson(n

)
.
i

1
n
By the corollary of Neyman-Pearson Lemma, a UMP level

test rejects
H
0

if and only if
g(t|

3)kg(t|

1)
.
n< br>3
t

3
1
t

1
t2
e

k
e



3

ke



(

x
1
)ln3

2
ln
k



t!t!
i

1
(b)

(

)
P

(
X
1
X
2
X
3< br>
5)

1
P

(
X
1
X
2
X
3

4)

(3

)
0
(3

)
1
(3

)
2
(3

)
3
(3

)
4

3< br>

1

[

]
e
,

0

0!1!2!3!4!
3
0
3
1
3
2
3
3
3
4

3
]e

0.1847
(c) The size of this test is

(1)

1

[
0!1!2!3!4!< br>9
0
9
1
9
2
9
3
9
4< br>
9

]e

0.9450
The power of this test is

(3)

1

[
0!1!2!3!4!
4. Since
T


X
i
is sufficient for

and
T~Poisson(n

)
.
i

1
n
f
T|

(t|

)
(n

)

n

1
e
; and
f

(

)

t!

(

)


t
t




1
e





f(t,

)



f
T
(t)

(n

)

n

1
e
t!

(

)


n
t




1
e



n
t
t!

(

)

n
t

t



1
e
1

(n
< br>)


,

0


0

t!

(

)



t



1
1

(n

)
e

d


t!

(

)< br>

1

(n

)


( t


)(

t


)

n


1
1

(n

)
n
t

f(t,

)

t



1
e
t!

(

)


,

0




f

|t
(

|t)

t
f
T
(t)
n

t



(t


)(

)
t



(t

)()
n


1

n


1
t!

(

)


)
. The posterior distribution of

is
Gamma(t


,
n


1
x
i

x
1
n

1

1
5. (a)
f(x
1
,x
2
,

,x
n
|

)

f(x
i
|

)

(eI
(0,

)
(x
i
) )

e

I
(0,

)
(x
i< br>)

n

i

1

i
< br>1i

1
T(
~
x)
n

1
~
~
Let
g(T(x),

)

e

and
h (x
)
I
(0,

)
(
x
i
)
. By factorization theorem,
n
i
< br>1


t



1
e
< br>
n

n
T


X
i
is a sufficient statistic for

.
i

1
n



1


11
[Or]
f(x|

)
eI
(0,

)
(x)

I
(0,

)
(x)exp[x(

)]

x



{f(x|

)}
is an exponential family.


T


X
i
is a sufficient statistic.
i

1
n
ˆ

X

T
is an unbiased estimate of

and a function of sufficient Since


n

ˆ

X
is the UMVUE of

. statistics
T
, by Rao- Blackwell Theorem,


n
(n

)
t

n

e
(b)
T

X< br>i
~
Poisson
(
n

)



g(t|

)

,
t0,1,2,
t!
i

1
(n

2
)
t

n

2
t
e

g(t|

2< br>)

t!
2

e

n(

2


1
)






g(t|

1
)
(n

1
)
t

n

1


1

e
t!

g(t|

2
)
If

2


1



2
1


is an increasing function of
t
,

1
g(t|

1
)
Hence
{g(t|

)|

0}
of
T
has MLR.
(c)
T

X
i
~
Gam ma
(
n
,

)



g(t|

)

i

1
n
1

( n)

n
t
n

1
e

,
t0


t
1


g(t|

2
)

g(t|

1
)
n
< br>(n)

2
t
n

1
e

2
t
n

1
e

1

t
n

(
1

1
)t
1
n

(n)

1


1


2
< br>1



e
,
t0




t

2


g(t|

2
)



11
If

2


1




(
)
21
0


is increasing in
t
.

2

1

1

2
g(t|

1
)
Hence
{g(t|

)|

0}
of
T
has an MLR.
By Karlin-Rubin Theorem, the UMP size

test rejecting
H
0
if
T


X
i

c
, where
c

i
1
n
satisfies that
P {

X
i
c|

1}

; i.e.,
i

1
n

c
1
n

1

x


(n)
xedx

.

2014年教师招聘、资格证、入编测试免费下载
史上最强教师资格,招聘资料合集免费下载,不看你会后悔的!!!
(注:史上最强、最牛、最全……,没有之一。由美丽圈小站整理发布。)
(美丽圈小站郑重承诺,教师招聘资料库每年更新两次,3月和9月更新,敬请关
注!!!)



收集了2010-2014年网上大部分的教师招聘资料,包含教育学,心理 学,专业测试,面
试秘籍,讲说课要点等等……。大约17116 份资料。免费下载地址如下:
下载地址一:拖把网下载:
下载地址二:华为网盘下载:c0yoa4s55x
下载地址三:百度云网盘下载:
下载地址四:360网盘下载:
下载地址五:QQ群共享下载:加入群,点击群共享,资料都在里面。
群一:
170345905
群二:
126207979
群三: 群四:302016525
(群为淘宝商品秒杀群,喜欢的留步,勿喜的下载完资料后请退出,谢谢。)
友情连接:笑话达人微博:
有空来看看,学习备考压力大,适合减负减压!!!真心的不错
美丽圈小站祝愿大家测试成功!!!
淘宝美丽圈2014春季特卖开始了,1-5折起,还有1-29.9元包邮哦,快来看看!亲。
气质由心开始,美丽从我做起!
美丽圈小站欢迎您: 。
时尚、美丽、特价、天天更新………尽在美丽圈: 。

晏殊的词-民主评议党员登记表个人总结


圣诞是几月几日-瑞昌市一中


茯苓的作用-中秋节什么时候


寄语学弟学妹-初二学生评语


桃花源记翻译-赞美党的诗歌


爱情短信-儿童相声剧本


梅花作文-毕业设计总结


应用化学专业就业前景-上海医保定点医院