六年级数学小论文五篇
gszs-离退休工作总结
六年级数学小论文五篇
【导语】“数学小论文”是让学生以日记的形式描述
他们发现的数学问题及其解决,是学
生数学学习经历的一种书面写作记录。
六年级数学小论文篇一
今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。
我打开页面
,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和
个位数相加,再把原数减去相
加的数,最后记住得出数字的图案,点一下水晶球,就会出
现那个你记住的图案了(水晶球旁边有10—
—99的数字,数字旁有一种图案)。如:23
2+3=5 23—5=18。
我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点
水晶
球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以
准确的出现我记下的
图案。好神奇啊!
我心想:水晶球为什么知道我记下的图案啊?
于是,我做了一个
很笨的小实验:从10——99的数字都算一遍。结果发现得出来的
数都是9的倍数:9、18、27、
36、45、54、63、72。我又看了看这些数字边的图案,都
是一样的。我说:”哦,所以水晶球
会知道我记下的图案啊!哈哈哈!“
我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将
任我们翱翔!
六年级数学小论文篇二
数学的知识海洋是无穷尽的,学习数学的过程也韵味无穷。今天,
一道有趣的数学题
引起了我的注意,于是,我叫妈妈来一起思考这道题。
题目如下:某区
举行小学生春季运动会,其中某校参加的人数占运动员总人数的十五
分之一;若这个学校再去10名运动
员,则该校人数占运动员总人数的二十三分之二。问
这次运动会共有运动员多少人?这个学校有多少人参
加运动会?
妈妈看到这道题后,二话不说,立马用方程来解。设原来共有运动员X人参加,那么
现参赛总人数为(X
+ 10),根据“原来参赛总人数 × 115 + 10 = 现在参赛总人数
×
223”的关系式得出X =
450,那么最终的答案就是:这次运动会共有460人参加,
这个学校有40人参加。
我承认,在解方程的熟练程度方面,我还不如妈妈;但是,难道这道题就只能用解方
程这一种方法来求解
吗?数学老师在课堂上说过:掌握了比例法,可以使问题简单化,甚
至可以把六年级的数学题变为二年级
的那么简单!这道题目中有变量,也有不变量。哈哈,
这时候我的脑海中浮现出“以不变量或者中间量做
单位1”而用比例法求解。对于这道题,
不变量是其他学校的参赛人数。所以,用1 - 115 =
1415算出原来这个学校和其他学
校的人数比例是1:14。然而这个学校增加10人后,那总人数也
就增加10人,所以用1
- 223 =
2123算出现在这个学校和其他学校的人数比例是2:21。列出算式如下:
(原)某校:其他
= 1:14 = 3:42
(现)某校:其他 = 2:21 = 4:42
因为其他学校参赛人数不变,这样就可以算出这个学校增加10人是增加了4 - 3 =
1份,那么,比的单位就是10 ÷ 1 = 10人。用4 × 10 =
40就算出这个学校现在的参
赛人数;(4 + 42)× 10 =
460算出这次运动会参赛的总人数。
一道题就这样被迎刃而解了。看到我不列方程直接算出答案
,妈妈先是有些惊讶,继
而拍拍自己脑门,连声说着:“我怎么没想到呢?”接着,当我说出:“数学王
老师说了,
如果看到应用题只知道列方程的话,是没有前途的”这句话后,妈妈来了句:“太伤自尊了!”就假装不理我了。
通过这道有趣的数学题,告诉我们一个道理:遇到难题不要怕,积极
思考各个数之间
的关系,进而找到解题的钥匙,这样,任何题都能被解决。
六年级数学小论文篇三
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里…
……都离不开数学。
我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的
折数各不相同。我一
眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打
八折,可是打八折怎么算呢?我问
妈妈。妈妈告诉我,打八折就是乘以0.8,也就是
35*0.8=28(元)。我恍然大悟。我准备把
这袋旺旺大礼包买下来,可是,妈妈告诉我,
可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,
果然,我又看见了卖旺旺大礼
包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,
净含量不同,原
价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*0.8=28(元),40*0
.8=32(元),
一袋是628克,现价28元,另一袋是650克,现价32元。用28628≈0
.045,
32650≈0.049,0.049>0.045,所以第二袋划算一点儿
,于是,我们买下了第二袋。通过
这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:
1~100
报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,
我便思考怎样才能
获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定
有数学问题,用1+3=4,10
04=25,我不能当第一个报的,只能当最后一个报的,她报X
个数,我就报(4—X)个数,就可以
获胜,我抱着疑惑的心理去和她报数,显然,她没有
思考获胜的策略,我用我的方法去和她报数,到了最
后,我果然报到了100,我获胜了。
原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。
到了六年级,我也学到
了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱
思考,
寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻
松,但我们爬得越高,
山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续
攀登下
去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰
顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
六年级数学小论文篇四
在美国有一个小男孩,他叫洛齐·盖亚。
一个风光美好的日子,天空突然出现了一轮
黑圈,将盖亚吸了进去。转眼间,盖亚来
到了一个外星球上。这星球上的居民们很混乱,盖亚连忙拉住一
位老外星人,问他这是怎
麽回事?听过一段话后,盖亚才只到了。原来这里有两个国家:语文国和数学国
。两国总
统争辩哪国强而引发了战争。其实他们的战争并非什麽抢林弹雨之类的,而是双方互相出
题。如果回答错误,就失败了。
盖亚的好奇心发亮了,他悄悄地跑到战斗场旁的一根大柱上偷看
。只见语文王穿着苏
轼套装,数学王则穿着华罗庚套装。数学王首先出题:934988706乘826
33316等于?语
文王哑了。他虽然语文博大精通,但对数学来说,1加1都不会,怎能解决这道题呢
?只
有乖乖认输了。语文王也出题了:“孙行者”的下句是什麽?数学王也像语文王一样成哑
巴
了。两国总统沉默不语了,看来他们明白了不学习其它知识是不行的。之后,语文王和
数学王决定将语文
国和数学国融合成一个国家,叫“语数国”。人们便互相学习,互相交
流,互相发展。
盖亚不知不觉地回到了地球,他也知道了不能单学一种本领,不然就会受人轻视的喔!
六年级数学小论文篇五
今天,我在做题时被一道应用题给难住了。这道题
的题目是:小华今年3岁,今年爸
爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸
爸和小
华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关
系,画张图试试。
我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是2
4岁。再根
据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
六年级数学小论文五篇
【导语】“数学小论文”是让学生以日记的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。
六年级数学小论文篇一
今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。
我打开页面
,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和
个位数相加,再把原数减去相
加的数,最后记住得出数字的图案,点一下水晶球,就会出
现那个你记住的图案了(水晶球旁边有10—
—99的数字,数字旁有一种图案)。如:23
2+3=5 23—5=18。
我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点
水晶
球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以
准确的出现我记下的
图案。好神奇啊!
我心想:水晶球为什么知道我记下的图案啊?
于是,我做了一个
很笨的小实验:从10——99的数字都算一遍。结果发现得出来的
数都是9的倍数:9、18、27、
36、45、54、63、72。我又看了看这些数字边的图案,都
是一样的。我说:”哦,所以水晶球
会知道我记下的图案啊!哈哈哈!“
我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将
任我们翱翔!
六年级数学小论文篇二
数学的知识海洋是无穷尽的,学习数学的过程也韵味无穷。今天,
一道有趣的数学题
引起了我的注意,于是,我叫妈妈来一起思考这道题。
题目如下:某区
举行小学生春季运动会,其中某校参加的人数占运动员总人数的十五
分之一;若这个学校再去10名运动
员,则该校人数占运动员总人数的二十三分之二。问
这次运动会共有运动员多少人?这个学校有多少人参
加运动会?
妈妈看到这道题后,二话不说,立马用方程来解。设原来共有运动员X人参加,那么
现参赛总人数为(X
+ 10),根据“原来参赛总人数 × 115 + 10 = 现在参赛总人数
×
223”的关系式得出X =
450,那么最终的答案就是:这次运动会共有460人参加,
这个学校有40人参加。
我承认,在解方程的熟练程度方面,我还不如妈妈;但是,难道这道题就只能用解方
程这一种方法来求解
吗?数学老师在课堂上说过:掌握了比例法,可以使问题简单化,甚
至可以把六年级的数学题变为二年级
的那么简单!这道题目中有变量,也有不变量。哈哈,
这时候我的脑海中浮现出“以不变量或者中间量做
单位1”而用比例法求解。对于这道题,
不变量是其他学校的参赛人数。所以,用1 - 115 =
1415算出原来这个学校和其他学
校的人数比例是1:14。然而这个学校增加10人后,那总人数也
就增加10人,所以用1
- 223 =
2123算出现在这个学校和其他学校的人数比例是2:21。列出算式如下:
(原)某校:其他
= 1:14 = 3:42
(现)某校:其他 = 2:21 = 4:42
因为其他学校参赛人数不变,这样就可以算出这个学校增加10人是增加了4 - 3 =
1份,那么,比的单位就是10 ÷ 1 = 10人。用4 × 10 =
40就算出这个学校现在的参
赛人数;(4 + 42)× 10 =
460算出这次运动会参赛的总人数。
一道题就这样被迎刃而解了。看到我不列方程直接算出答案
,妈妈先是有些惊讶,继
而拍拍自己脑门,连声说着:“我怎么没想到呢?”接着,当我说出:“数学王
老师说了,
如果看到应用题只知道列方程的话,是没有前途的”这句话后,妈妈来了句:“太伤自尊了!”就假装不理我了。
通过这道有趣的数学题,告诉我们一个道理:遇到难题不要怕,积极
思考各个数之间
的关系,进而找到解题的钥匙,这样,任何题都能被解决。
六年级数学小论文篇三
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里…
……都离不开数学。
我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的
折数各不相同。我一
眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打
八折,可是打八折怎么算呢?我问
妈妈。妈妈告诉我,打八折就是乘以0.8,也就是
35*0.8=28(元)。我恍然大悟。我准备把
这袋旺旺大礼包买下来,可是,妈妈告诉我,
可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,
果然,我又看见了卖旺旺大礼
包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,
净含量不同,原
价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*0.8=28(元),40*0
.8=32(元),
一袋是628克,现价28元,另一袋是650克,现价32元。用28628≈0
.045,
32650≈0.049,0.049>0.045,所以第二袋划算一点儿
,于是,我们买下了第二袋。通过
这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:
1~100
报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,
我便思考怎样才能
获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定
有数学问题,用1+3=4,10
04=25,我不能当第一个报的,只能当最后一个报的,她报X
个数,我就报(4—X)个数,就可以
获胜,我抱着疑惑的心理去和她报数,显然,她没有
思考获胜的策略,我用我的方法去和她报数,到了最
后,我果然报到了100,我获胜了。
原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。
到了六年级,我也学到
了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱
思考,
寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻
松,但我们爬得越高,
山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续
攀登下
去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰
顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
六年级数学小论文篇四
在美国有一个小男孩,他叫洛齐·盖亚。
一个风光美好的日子,天空突然出现了一轮
黑圈,将盖亚吸了进去。转眼间,盖亚来
到了一个外星球上。这星球上的居民们很混乱,盖亚连忙拉住一
位老外星人,问他这是怎
麽回事?听过一段话后,盖亚才只到了。原来这里有两个国家:语文国和数学国
。两国总
统争辩哪国强而引发了战争。其实他们的战争并非什麽抢林弹雨之类的,而是双方互相出
题。如果回答错误,就失败了。
盖亚的好奇心发亮了,他悄悄地跑到战斗场旁的一根大柱上偷看
。只见语文王穿着苏
轼套装,数学王则穿着华罗庚套装。数学王首先出题:934988706乘826
33316等于?语
文王哑了。他虽然语文博大精通,但对数学来说,1加1都不会,怎能解决这道题呢
?只
有乖乖认输了。语文王也出题了:“孙行者”的下句是什麽?数学王也像语文王一样成哑
巴
了。两国总统沉默不语了,看来他们明白了不学习其它知识是不行的。之后,语文王和
数学王决定将语文
国和数学国融合成一个国家,叫“语数国”。人们便互相学习,互相交
流,互相发展。
盖亚不知不觉地回到了地球,他也知道了不能单学一种本领,不然就会受人轻视的喔!
六年级数学小论文篇五
今天,我在做题时被一道应用题给难住了。这道题
的题目是:小华今年3岁,今年爸
爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸
爸和小
华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关
系,画张图试试。
我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是2
4岁。再根
据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。