新人教版六年级数学上册各单元知识点归纳

温柔似野鬼°
632次浏览
2020年08月03日 11:14
最佳经验
本文由作者推荐

过中秋节作文-华光股份



各单元知识点归纳
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
1
1
例如:65×5表示求5个65的和是多少? ×5表示求5个的和是多少?
3
3
2、一个数乘分数的意义是求一个数的几分之几是多少。
1
4
1
3
4
3
例如:×表示求的是多少。4×表示求4的是多少.
3
7
3
7
8
8
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数 与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带
分数进行乘法计算时,要先把带 分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分 的就不约,
常考的质因数有11×11=121;13×13=169;17×17=289;19×1 9=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把
小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同 。整数乘法的交换律、
结合律和分配律,对于分数乘法也同样适用。

1



乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分
之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段
的左边要对齐 。(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分数句中分数的前面;或在“占”、“是”、“比”“相
当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”相当于 “ = ”
(2)分数前是“的”字:用单位“1”的量×分数=具体量
1
1
例如:甲数是20,甲数的是多少?列式是:20×
3
3
4、看分数前有没有多或少的问题;分数前是“多或少”的关系式:
(比少):单位“1”的量×(1-分数)=具体量;
1
例如:甲数是50,乙数比甲数少,乙数是多少?
2
1
列式是:50×(1-)
2
(比多):单位“1”的量×(1+分数)=具体量
3
例如:小红有30元钱,小明比小红多
5
,小红有多少钱?
3
列式是:50×(1+
5

3、求一个数的几倍是多少:用 一个数×几倍;

2



4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分数)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其
中”)

第二单元位置与方向(二)

一、确定物体位置的方法:1、先找观测点 ;2、再定方向(看方向夹角的度数);3、
最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性 :1、两地的位置具有相对性在叙述两地的位置关系时,观
测点不同,叙述的方向正好相反,而度数和距 离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法

三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要
说清谁是谁的倒数)。
2、求倒数的方法:

3



(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分
母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
222
11< br>5、运用,a×=b×求a和b是多少。把a×=b×看成等于1,也就是求的
333
4 4
1
倒数和求的倒数。
4
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除 法的意义相同,表示已知两个因数的积和其中一个因数,求另一
个因数的运算。
33
11
例如:÷意义是:已知两个因数的积是与其中一个因数,求另一个因数
55
22< br>的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。

4



“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括
号里面的, 再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X(一般把单位1设为X),用方
程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分数=具体量
例如:公鸡有20只,是母鸡只数的
1
3
,母鸡有多少只。(单位一是母鸡只数,单位
一未知.)解:设母鸡有X只。列方 程为:X×
1
3
=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分数对应量÷对应分数 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的
1
3
,母鸡有多少只。 (单位一是母鸡只数,单位
一未知,)用除法,列式是:20÷
1
3

2、看分数前有没有比多或比少的问题;
分数前是“多或少”的关系式:
(比少):具体量÷ (1-分数)= 单位“1”的量;
例如:桃树有50棵,比苹果树少
1
6
,苹果树有多少棵。
列式是:50÷(1-
1
6

(比多):具体量 ÷ (1+分数)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了
1
7
,原价多少?

5



1
列式是:80÷(1+)
7
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为
分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
15
3
列式是:15÷20==
20
4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数
就除以那个数),结果写为分数形式。
2
例如:5比3多几分之几?(5-3)÷3=
3
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就
除以那个数),结果写为分数形式。
2
例如:3比5少几分之几?(5-3)÷5=
5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总 量看作单位“1”,合做多长时间完成一项工程用1÷工作
111
效率和,即1÷(+),(工 作效率=)
A时间B时间时间
例如:一项工程甲单独做要5天完成,乙单独做要10天完成, 甲单独做要3天完
111
成,三人合做几天可以完成?列式:1÷(
5
+10
+
3




6



第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的 前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3
例如 15 :10 = 15÷10=(比值通常用分数表示,也可以用小数或整数表示)
2
3
15 ∶ 10 =
2
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比 前 项 比号“:”
除号“÷”
后 项 比值
除 数 商
分 母 分数值
除 法 被除数
分 数 分 子 分数线“—”
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关
系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相

7



除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)
3
15
例如:15∶ 10 =15÷10==
2
10
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不
变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整
数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①两个整数比:用比的前项和后项同时乘分母的最大公因数。
②两个分数比:用前项和后项同时乘分母的最小公倍数,再按化简整数比的方法
化简。
③两个小数比:比的前项和后项同时向右移动小数点的位置,要移几位都移几位,
先化成整数比再化简 。
④一个分数和一个整数的比:分数和整数同时乘分数的分母,把分数化成整数再化
简。 < br>⑤一个小数和一个分数的比:先把小数化成分数(能约分的先约分),再按化简分
数比的方法化简 。


8



(2)用求比值的方法。注意: 最后结果要写成比的形式。
3
15
例如: 15∶10 = 15÷10 == = 3∶2
2
10
3
还可以15∶10 = 15÷10 = 最简整数比是3∶2
2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值, 结果没有单
位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按 比例分
配。一般有两种解题法
1,用分率(分数)解:按比例分配通常把总量看作单位一,即 转化成分数。要先
求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1144
1+4=5 糖占 用 25×得到糖的数量,水占 用 25×得到水的数量。
5555
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5, 一份就是25÷5=5,糖有1份就是5×1,水有4分
就是5×4
第六单元百分数
一、百分数的意义和写法
(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数 是指的两个数
的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:
联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所

9



以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读
作百分之。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添
上百分号。
2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分
号。
(二)百分数的和分数的互化
1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分
数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数 ,再写成百分
数形式。②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分
数。(建议用这种方法)
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:

10




一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达
不到1 00%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=1520=75﹪
3、已知单位“1”的量(用乘法),求单位“1 ”的百分之几是多少的问题,数量关
系式和分数乘法解决问题中的关系式相同:
(1)百分率前是“的”: 单位“1”的量×百分率=百分率对应量
(2百分率前是“多或少”的数量关系:
单位“1”的量×(1±百分率)=百分率对应量
4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解法: (1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 百分率对应量÷对应百分率 = 单位“1”的量
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要 写
为百分数形式。看百分率前有没有比多或比少的问题;
百分率前是“多或少”的关系式:
(比少):具体量÷ (1-百分率)= 单位“1”的量;

11



例如:大米有50千克,比面粉树少50﹪,面粉有多少千克。
列式是:50÷(1-50﹪)
(比多):具体量 ÷ (1+百分率)= 单位“1”的量
例如:工人做110个零件,比原计划多做了10﹪,原计划做多少个?
列式是:110÷(1+10﹪)
6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量 =百分之几
即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数
就除以那个数),结果写为百分数形式。
甲比乙多几分之几的问题,方法A,(甲-乙)÷乙 (建议用)
方法B,甲÷乙-100﹪
例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?
列式是:(50-40)÷40=0.25=25﹪
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就
除以那个数),结果写为百分数形式。
乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)
方法B, 100﹪-乙÷甲
例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?
(100-90)÷100=0.1=10﹪
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)
8、求价格先 降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a﹪)(假设原来的价
格为“1”。求变化幅度 (求降价后的价格是涨价后价格的百分之几)用1-降价后

12




第五单元圆的认识
一、认识圆形
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕 相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规
两脚分开,两脚之间 的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直 径
是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同 一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,
所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。用字母表
示为:d=2r或r= d÷2
8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这
个图 形是轴对称图形。折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆;只有2
条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对
称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板 )画出虚线,这条虚线两端要
超出图形一点。

13
1
2



二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
3、圆周率:任意一个圆 的周长与它的直径的比值是一个固定的数,我们把它叫做
圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家
祖冲之。
(1)、一个圆的周长总是 它直径的3倍多一些,这个比值是一个固定的数。圆周率
π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd 或圆的周长等
于2乘圆周率乘半径,用字母表示C=2πr
(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示d = C ÷π
(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍字母表示 r = C ÷ 2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形
里画一个最大的圆,圆 的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)、半圆弧的周长(周长的一半):等于圆的周长÷2
计算方法:2π r ÷ 2 即C半= π r
(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推
导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、圆面积公式的推导: (1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像
越接近长方形。长方形的长相当于圆的周 长的一半,长方形的宽相当于圆的半径。

14



(2)拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
3、圆面积的计算方法:因为:长方形面积 = 长 ×宽
所以:圆的面积 = 圆周长的一半 × 圆的半径
即S圆 = C÷2× r=πr × r=πr
2
圆的面积公式:S圆 =πr
4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。
S

= πR-πr或环形的面积公式:S环 = π(R-r)(建议用这个公式)。
2222
2
5、一个圆,半径扩大或缩小多少倍 ,直径和周长也扩大或缩小相同的倍数。而面
积扩大或缩小的倍数是这倍数的平方倍。
例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大
3的平方倍得到9倍。
6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆 的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面
积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方 形,圆的周长相等时,圆面积最大,正方形居中,长方形面积
最小。反之,面积相同时,长方形的周长最 长,正方形居中,圆的周长最短。
9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7

15



10、外方内圆(内切圆)公式S=S正-S圆或S=0.86r。
2
11、外圆内 方(外切圆):把正方形看成两个面积相等的三角形,三角形的底就是
直径,高是半径,公式S=S圆- S正=S圆-dr或S=1.14r
2
12、一条弧和经过这条弧两端的两条半径所围成的图 形叫做扇形。顶点在圆心的角
叫做圆心角。扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×
n
;S
360
扇环=S环×
n

360
14、求阴影部分的面积:S阴影=大图形的面积- 小图形的面积,也可用割补法把阴
影部分组合成一个图形。

第七单元:扇形统计图

一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部
分 数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比
图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化
情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上
写出百分率)
四、应用:1.会观察统计图。 2、你得到什么数学信息?
回答①、***占总体的百分之几;②、**占的百分比最多,**占的百分比最少;
3、你还能提什么数学问题:**和**一共占百分之几。

16



各单元知识点归纳
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
1
1
例如:65×5表示求5个65的和是多少? ×5表示求5个的和是多少?
3
3
2、一个数乘分数的意义是求一个数的几分之几是多少。
1
4
1
3
4
3
例如:×表示求的是多少。4×表示求4的是多少.
3
7
3
7
8
8
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数 与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带
分数进行乘法计算时,要先把带 分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分 的就不约,
常考的质因数有11×11=121;13×13=169;17×17=289;19×1 9=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把
小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同 。整数乘法的交换律、
结合律和分配律,对于分数乘法也同样适用。

1



乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分
之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段
的左边要对齐 。(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分数句中分数的前面;或在“占”、“是”、“比”“相
当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”相当于 “ = ”
(2)分数前是“的”字:用单位“1”的量×分数=具体量
1
1
例如:甲数是20,甲数的是多少?列式是:20×
3
3
4、看分数前有没有多或少的问题;分数前是“多或少”的关系式:
(比少):单位“1”的量×(1-分数)=具体量;
1
例如:甲数是50,乙数比甲数少,乙数是多少?
2
1
列式是:50×(1-)
2
(比多):单位“1”的量×(1+分数)=具体量
3
例如:小红有30元钱,小明比小红多
5
,小红有多少钱?
3
列式是:50×(1+
5

3、求一个数的几倍是多少:用 一个数×几倍;

2



4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分数)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其
中”)

第二单元位置与方向(二)

一、确定物体位置的方法:1、先找观测点 ;2、再定方向(看方向夹角的度数);3、
最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性 :1、两地的位置具有相对性在叙述两地的位置关系时,观
测点不同,叙述的方向正好相反,而度数和距 离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法

三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要
说清谁是谁的倒数)。
2、求倒数的方法:

3



(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分
母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
222
11< br>5、运用,a×=b×求a和b是多少。把a×=b×看成等于1,也就是求的
333
4 4
1
倒数和求的倒数。
4
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除 法的意义相同,表示已知两个因数的积和其中一个因数,求另一
个因数的运算。
33
11
例如:÷意义是:已知两个因数的积是与其中一个因数,求另一个因数
55
22< br>的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。

4



“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括
号里面的, 再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X(一般把单位1设为X),用方
程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分数=具体量
例如:公鸡有20只,是母鸡只数的
1
3
,母鸡有多少只。(单位一是母鸡只数,单位
一未知.)解:设母鸡有X只。列方 程为:X×
1
3
=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分数对应量÷对应分数 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的
1
3
,母鸡有多少只。 (单位一是母鸡只数,单位
一未知,)用除法,列式是:20÷
1
3

2、看分数前有没有比多或比少的问题;
分数前是“多或少”的关系式:
(比少):具体量÷ (1-分数)= 单位“1”的量;
例如:桃树有50棵,比苹果树少
1
6
,苹果树有多少棵。
列式是:50÷(1-
1
6

(比多):具体量 ÷ (1+分数)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了
1
7
,原价多少?

5



1
列式是:80÷(1+)
7
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为
分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
15
3
列式是:15÷20==
20
4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数
就除以那个数),结果写为分数形式。
2
例如:5比3多几分之几?(5-3)÷3=
3
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就
除以那个数),结果写为分数形式。
2
例如:3比5少几分之几?(5-3)÷5=
5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总 量看作单位“1”,合做多长时间完成一项工程用1÷工作
111
效率和,即1÷(+),(工 作效率=)
A时间B时间时间
例如:一项工程甲单独做要5天完成,乙单独做要10天完成, 甲单独做要3天完
111
成,三人合做几天可以完成?列式:1÷(
5
+10
+
3




6



第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的 前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3
例如 15 :10 = 15÷10=(比值通常用分数表示,也可以用小数或整数表示)
2
3
15 ∶ 10 =
2
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比 前 项 比号“:”
除号“÷”
后 项 比值
除 数 商
分 母 分数值
除 法 被除数
分 数 分 子 分数线“—”
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关
系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相

7



除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)
3
15
例如:15∶ 10 =15÷10==
2
10
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不
变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整
数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①两个整数比:用比的前项和后项同时乘分母的最大公因数。
②两个分数比:用前项和后项同时乘分母的最小公倍数,再按化简整数比的方法
化简。
③两个小数比:比的前项和后项同时向右移动小数点的位置,要移几位都移几位,
先化成整数比再化简 。
④一个分数和一个整数的比:分数和整数同时乘分数的分母,把分数化成整数再化
简。 < br>⑤一个小数和一个分数的比:先把小数化成分数(能约分的先约分),再按化简分
数比的方法化简 。


8



(2)用求比值的方法。注意: 最后结果要写成比的形式。
3
15
例如: 15∶10 = 15÷10 == = 3∶2
2
10
3
还可以15∶10 = 15÷10 = 最简整数比是3∶2
2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值, 结果没有单
位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按 比例分
配。一般有两种解题法
1,用分率(分数)解:按比例分配通常把总量看作单位一,即 转化成分数。要先
求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1144
1+4=5 糖占 用 25×得到糖的数量,水占 用 25×得到水的数量。
5555
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5, 一份就是25÷5=5,糖有1份就是5×1,水有4分
就是5×4
第六单元百分数
一、百分数的意义和写法
(一)、百分数的意义:表示一个数是另一个数的百分之几。百分数 是指的两个数
的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:
联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所

9



以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读
作百分之。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添
上百分号。
2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分
号。
(二)百分数的和分数的互化
1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分
数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数 ,再写成百分
数形式。②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分
数。(建议用这种方法)
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:

10




一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达
不到1 00%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。
列式是:15÷20=1520=75﹪
3、已知单位“1”的量(用乘法),求单位“1 ”的百分之几是多少的问题,数量关
系式和分数乘法解决问题中的关系式相同:
(1)百分率前是“的”: 单位“1”的量×百分率=百分率对应量
(2百分率前是“多或少”的数量关系:
单位“1”的量×(1±百分率)=百分率对应量
4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解法: (1)方程: 根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 百分率对应量÷对应百分率 = 单位“1”的量
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要 写
为百分数形式。看百分率前有没有比多或比少的问题;
百分率前是“多或少”的关系式:
(比少):具体量÷ (1-百分率)= 单位“1”的量;

11



例如:大米有50千克,比面粉树少50﹪,面粉有多少千克。
列式是:50÷(1-50﹪)
(比多):具体量 ÷ (1+百分率)= 单位“1”的量
例如:工人做110个零件,比原计划多做了10﹪,原计划做多少个?
列式是:110÷(1+10﹪)
6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量 =百分之几
即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数
就除以那个数),结果写为百分数形式。
甲比乙多几分之几的问题,方法A,(甲-乙)÷乙 (建议用)
方法B,甲÷乙-100﹪
例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?
列式是:(50-40)÷40=0.25=25﹪
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就
除以那个数),结果写为百分数形式。
乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)
方法B, 100﹪-乙÷甲
例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?
(100-90)÷100=0.1=10﹪
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)
8、求价格先 降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a﹪)(假设原来的价
格为“1”。求变化幅度 (求降价后的价格是涨价后价格的百分之几)用1-降价后

12




第五单元圆的认识
一、认识圆形
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕 相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规
两脚分开,两脚之间 的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直 径
是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同 一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,
所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。用字母表
示为:d=2r或r= d÷2
8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这
个图 形是轴对称图形。折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆;只有2
条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对
称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板 )画出虚线,这条虚线两端要
超出图形一点。

13
1
2



二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
3、圆周率:任意一个圆 的周长与它的直径的比值是一个固定的数,我们把它叫做
圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家
祖冲之。
(1)、一个圆的周长总是 它直径的3倍多一些,这个比值是一个固定的数。圆周率
π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd 或圆的周长等
于2乘圆周率乘半径,用字母表示C=2πr
(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示d = C ÷π
(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍字母表示 r = C ÷ 2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形
里画一个最大的圆,圆 的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)、半圆弧的周长(周长的一半):等于圆的周长÷2
计算方法:2π r ÷ 2 即C半= π r
(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推
导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、圆面积公式的推导: (1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像
越接近长方形。长方形的长相当于圆的周 长的一半,长方形的宽相当于圆的半径。

14



(2)拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
3、圆面积的计算方法:因为:长方形面积 = 长 ×宽
所以:圆的面积 = 圆周长的一半 × 圆的半径
即S圆 = C÷2× r=πr × r=πr
2
圆的面积公式:S圆 =πr
4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。
S

= πR-πr或环形的面积公式:S环 = π(R-r)(建议用这个公式)。
2222
2
5、一个圆,半径扩大或缩小多少倍 ,直径和周长也扩大或缩小相同的倍数。而面
积扩大或缩小的倍数是这倍数的平方倍。
例如: 在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大
3的平方倍得到9倍。
6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆 的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面
积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方 形,圆的周长相等时,圆面积最大,正方形居中,长方形面积
最小。反之,面积相同时,长方形的周长最 长,正方形居中,圆的周长最短。
9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7

15



10、外方内圆(内切圆)公式S=S正-S圆或S=0.86r。
2
11、外圆内 方(外切圆):把正方形看成两个面积相等的三角形,三角形的底就是
直径,高是半径,公式S=S圆- S正=S圆-dr或S=1.14r
2
12、一条弧和经过这条弧两端的两条半径所围成的图 形叫做扇形。顶点在圆心的角
叫做圆心角。扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×
n
;S
360
扇环=S环×
n

360
14、求阴影部分的面积:S阴影=大图形的面积- 小图形的面积,也可用割补法把阴
影部分组合成一个图形。

第七单元:扇形统计图

一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部
分 数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比
图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化
情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上
写出百分率)
四、应用:1.会观察统计图。 2、你得到什么数学信息?
回答①、***占总体的百分之几;②、**占的百分比最多,**占的百分比最少;
3、你还能提什么数学问题:**和**一共占百分之几。

16

5月14日是什么节日-公务员年度考核表


炫富被杀-电子商务专业介绍


英国利物浦大学-课本剧


内蒙古自考招生信息网-上海公务员局


关于狗的资料-会议主持词


中国卫生人才网官网报名入口-生日的祝福语


陕西工业职业技术学院专业-北海市人事考试网


副食品-寒假实践报告