小学六年级奥数新定义运算
职责-安徽建筑工业学院
第一周 定义新运算
【名言警句】
天才由于积累,聪明在于勤奋。?
——华罗庚
【知识点精讲】
一、什么是定义新运算?
定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?
解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化
为常规
的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特
殊的运算符号,如*、△、▽、⊙、等,这是与四则
运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【举一反三】
1、设
a*b
=
(a+b)
×
(a
-b)
,求27*9。
2、设
a*b=a
2
+2b
,求10*6和5*(2*8)。 3、设
a*b=3a
-
b
×
1
,
求(25*1
2)*(10*5)。
2
例2、设
p、q
是两个数,规定:
p△q=4×q-(p+q)
÷2。求3△(4△6)
【举一反三】
1、设
p、q
是两个数,规定:
p△q=4×q-(p+q)
÷2。求5△(6△4)。
2、设
p、q
是两个数,规定:
p△q=p
2
+(p-q)
×2。求30△(5△3)。
3、设
M、N
是两个数,规定:
M
*
例3、
如果
1*
N
MN
NM
-
,求
10*20
1
。
4
5111111111
111111
,
2*42222222222
,
3*3333
333
,
4*2444
,那么
7*4
;
210*2
。
【举一反三】
1、如果
1*5111111111111111
,
2*42222
222222
,
3*3333333
,…那么
4*4
。
2、规定
a
*
b
a
aa
aaa
aa
a
,那么
8*5<
br> 。
(b-1)个a
3、如果
2*1
111
,
3*2
,<
br>4*3
,那么
(6*3)(2*6)
。
233
444
例4、规定
②
123
,
③
234
,
④
345
,
⑤
456
,…如果
1
⑥
1
⑦
1
⑦
A
。
那么,A是几?
【举一反三】
1、
规定:
②
123
,
③
234
,
④
345
,
⑤
456
,…如果
1
⑧
1
⑨
1
⑨
A
,那么A= 。
2、规定:
③
234
,
④
345
,
⑤
456
,
⑥
567
,…如果
1
⑩
11
W
,那么□= 。
1111
= 。
3、如果
12=1+2,23=2+3+4,…,56=5+6+7+8+9+10
,那
么,在
X
3=54
中,
X
例5、设
a
e
b
4
a
2
b
【举一反三】
1、设
a
e
b
3
a
2
b
,已知
x
e
(4e1)7
,求
x
。
2、对两个整数
a
和
b
定义新运算“
▽
”: a▽b
1
ab
,求
x
e(4e1)34
中
的未知数
x
。
2
2
a
b
,求
6▽4+9▽8
。 (
a
b
)(
a
b
)
4
xy
(其中
m
是一个确定的整数)。如果
mx
3
y
3、对任意两个整数
x
和
y
定义新运算“*”:
x*
y
1*21
,那么
3*12
。
【家庭作业】
1. 设
a,b
表示两个不同的数,规定
ab
3a4b
.求
(87)6
。
2. 定义运算?为
a
?
b
=5×
ab(ab)
.求11?12。
1
3.
a,b
表示两个数,记为:
a
※
b
=2×
abb
.求8※(4※16)。
4
4. 设
x,y<
br>为两个不同的数,规定
x
□
y
(xy)4
.求
a
□16=10中
a
的值。
ab
.求21010的值。
ab
PQ34
6.
P,Q
表示两个数,
P
※
Q
=,如3※4==3.5.求4※(6※8);如果
x
※(6※8)
=6,那么
x
?
22
5.
规定
a
b
7.
定义新运算
x
⊕
y
x1
.求3⊕(2⊕4)的值。
y
8. 有一个数学运算符号“?”,使下列算式成立:4?8=16,10?6=26,6?
10=22,18?14=50.求7?3=?
9.
“▽”表示一种新运算,它表示:
xy
10.
ab
11
.求3▽5的值。
xy(x1)(y8)ab
,在
x(51)6
中.求
x
的值。
a
b
xy
,而且1
2=2
3.求3
4的值。
xy
11. 规定
xyxA
12. 规定
a
⊕
ba(a1)(a2)(ab1)
,(
a,b
均为
自然数,
ba
).如果
x
⊕10=65,那么
x
?
13. 对于数
a,b
规定运算“▽”为
ab(a3)(b5)<
br>.求
5(67)
的值。
14.
x,y
表示两个数,规
定新运算“”及“△”如下:
x
y6x5y
,
x
△
y3xy
.求(23)△4的值。
第一周 定义新运算
【名言警句】
天才由于积累,聪明在于勤奋。?
——华罗庚
【知识点精讲】
一、什么是定义新运算?
定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?
解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化
为常规
的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特
殊的运算符号,如*、△、▽、⊙、等,这是与四则
运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【举一反三】
1、设
a*b
=
(a+b)
×
(a
-b)
,求27*9。
2、设
a*b=a
2
+2b
,求10*6和5*(2*8)。 3、设
a*b=3a
-
b
×
1
,
求(25*1
2)*(10*5)。
2
例2、设
p、q
是两个数,规定:
p△q=4×q-(p+q)
÷2。求3△(4△6)
【举一反三】
1、设
p、q
是两个数,规定:
p△q=4×q-(p+q)
÷2。求5△(6△4)。
2、设
p、q
是两个数,规定:
p△q=p
2
+(p-q)
×2。求30△(5△3)。
3、设
M、N
是两个数,规定:
M
*
例3、
如果
1*
N
MN
NM
-
,求
10*20
1
。
4
5111111111
111111
,
2*42222222222
,
3*3333
333
,
4*2444
,那么
7*4
;
210*2
。
【举一反三】
1、如果
1*5111111111111111
,
2*42222
222222
,
3*3333333
,…那么
4*4
。
2、规定
a
*
b
a
aa
aaa
aa
a
,那么
8*5<
br> 。
(b-1)个a
3、如果
2*1
111
,
3*2
,<
br>4*3
,那么
(6*3)(2*6)
。
233
444
例4、规定
②
123
,
③
234
,
④
345
,
⑤
456
,…如果
1
⑥
1
⑦
1
⑦
A
。
那么,A是几?
【举一反三】
1、
规定:
②
123
,
③
234
,
④
345
,
⑤
456
,…如果
1
⑧
1
⑨
1
⑨
A
,那么A= 。
2、规定:
③
234
,
④
345
,
⑤
456
,
⑥
567
,…如果
1
⑩
11
W
,那么□= 。
1111
= 。
3、如果
12=1+2,23=2+3+4,…,56=5+6+7+8+9+10
,那
么,在
X
3=54
中,
X
例5、设
a
e
b
4
a
2
b
【举一反三】
1、设
a
e
b
3
a
2
b
,已知
x
e
(4e1)7
,求
x
。
2、对两个整数
a
和
b
定义新运算“
▽
”: a▽b
1
ab
,求
x
e(4e1)34
中
的未知数
x
。
2
2
a
b
,求
6▽4+9▽8
。 (
a
b
)(
a
b
)
4
xy
(其中
m
是一个确定的整数)。如果
mx
3
y
3、对任意两个整数
x
和
y
定义新运算“*”:
x*
y
1*21
,那么
3*12
。
【家庭作业】
1. 设
a,b
表示两个不同的数,规定
ab
3a4b
.求
(87)6
。
2. 定义运算?为
a
?
b
=5×
ab(ab)
.求11?12。
1
3.
a,b
表示两个数,记为:
a
※
b
=2×
abb
.求8※(4※16)。
4
4. 设
x,y<
br>为两个不同的数,规定
x
□
y
(xy)4
.求
a
□16=10中
a
的值。
ab
.求21010的值。
ab
PQ34
6.
P,Q
表示两个数,
P
※
Q
=,如3※4==3.5.求4※(6※8);如果
x
※(6※8)
=6,那么
x
?
22
5.
规定
a
b
7.
定义新运算
x
⊕
y
x1
.求3⊕(2⊕4)的值。
y
8. 有一个数学运算符号“?”,使下列算式成立:4?8=16,10?6=26,6?
10=22,18?14=50.求7?3=?
9.
“▽”表示一种新运算,它表示:
xy
10.
ab
11
.求3▽5的值。
xy(x1)(y8)ab
,在
x(51)6
中.求
x
的值。
a
b
xy
,而且1
2=2
3.求3
4的值。
xy
11. 规定
xyxA
12. 规定
a
⊕
ba(a1)(a2)(ab1)
,(
a,b
均为
自然数,
ba
).如果
x
⊕10=65,那么
x
?
13. 对于数
a,b
规定运算“▽”为
ab(a3)(b5)<
br>.求
5(67)
的值。
14.
x,y
表示两个数,规
定新运算“”及“△”如下:
x
y6x5y
,
x
△
y3xy
.求(23)△4的值。