奥数常见题型
燕窝的营养价值-四个意识心得体会
..
奥数常见题型
一、 盈亏问题
解答盈亏问题 的关键在于找
出两次分配中,由于每次分配的数量的改变和剩余数变化的情
况之间的关系,然后运用盈亏问题的基本数
量关系求出答案。
盈亏问题的基本数量关系有:
(盈+亏)÷两次分配的差数
(大盈-小盈)÷两次分配的差数
【例1】若干名同学去划船,他们租了一些船
,若每船4人则多5人,若每船5人则船上有
4个空位。问有多少名同学?多少条船?
【分析
】两种乘船情况,在面对同样多人数的时候,出现了多5人,少4人两种情形,差了
5+4=9人。由于
一条船4人,另一种情况一条船5人,相对应的两条船差5-4=1人。几条船
最终相差9人,为什么呢
?9÷1=9条船,共有4×9+5=41名同学。
【例2】若干同学去划船,他们租了
一些船,若每船4人则多5人,若一条船上做6人,其
余每船5人则船上有3个空位。问有多少名同学?
多少条船?
【分析】将第二个情况转化为每船5人则船上有2个空位,两种乘船情况,在面对同样多人
数的时候,出现了多5人,少2人两种情形,差了5+2=7人。由于一条船4人,另一种情况
一条船5人,相对应的两条船差5-4=1人。几条船最终相差7人,为什么呢?7÷1=7条船,
共有
4×7+5=33名同学。
【例3】有一堆螺丝和螺母,若1个螺丝配2个螺母,则多1
0个螺母;若1个螺丝配3个螺
母,则少6螺母。问:螺丝、螺母各有多少个?
【分析】由“
1个螺丝配2个螺母,则多10个螺母”或知螺母是螺丝的2倍多10个;由“1
个螺丝配3个螺母,则
少6螺母”,可知螺母是螺丝的3倍少6个。
螺丝有:(10+6)÷(3-2)=16个
螺母有:16×2+10=42个
【例4】A,B两车同时从甲、乙两站相对开
出,第一次距乙站78.4千米处相遇,相遇后两车
仍以原速度继续行驶,并在到达对方车站后,立即沿
原路返回,途中两车在距甲站53.2千
米相遇,这次相遇点相距多少千米?
【分析】两车同
时从两地相向而行,第一次相遇两车共行了一个全程,在距乙站78.4千米
处相遇,也就是B车行了7
8.4千米,说明每行一个全程B车就行78.4千米 ,第二次相遇
两车共行了三个全程,B车共行了
(78.4*3)千米,减去53.2千就是全程的距离。全程再减
去78.4和53.2就是两次相遇
点相距的距离。
算式:
78.4*3-53.2-78.4-53.2=78.4*2-53.2*2
练习:
1、学校组织旅游,乘车时发现如果每辆车做25人,还有12人没有座位,如果每辆车做28
人,还空下9个座位。请问共有多少辆车?多少人?
(12+9)÷(28-25)=7(辆)
7×25+12=187(人)
2、小红家买来一蓝橘子分给全家人.如果其中二人每人分3
个,其余每人分2个,则多出4
个;如果其中一人分6个,其余每人分4个,则又缺12个,小红家买来
多少个橘子?共有多少
;.
..
人?
(3-2)×2+4+12-(6-4)=16
16÷(4-2)=8人
2×3+2×6+4=22个
3、淼淼从家到学校,先用每分钟50米的速度走2分钟后,感
到如果这样走下去,他上课就
要迟到8分钟。后来他改用每分钟60米的速度前进,结果早到5分钟。淼
淼家到学校的距
离是多少?
(50×8+60×5)÷(60-50)=70分
50×(70+8)=3900米
二、
年龄问题
年龄问题的特点是:随着时间的变化,两个有的年龄之差永远不变,但原来二人年龄的倍数<
br>和今后二年龄的倍数却发生了变化。
【例1】父亲今年46岁,儿子今年14岁,
当父亲的年龄是儿子的9倍时,父子的年龄和是
多少岁?
【分析】当父亲的年龄是儿子的9倍
时,父亲与儿子的年龄差还是46-14=32岁,父亲的年
龄比儿子多9-1=8倍,其中的一倍是儿
子当时的年龄,是32÷(9-1)=4岁,父亲是4×9=36
岁。父子年龄和是4+36=40岁。
【例2】今年祖父的年龄是小明年龄的6倍,几年后祖父的年龄将是小明年龄的5倍。又过
了几年,祖父的年龄将是小明年龄的4倍。问:小明今年多少岁?
【分析】祖父和小明的年龄
差是永远不变的,这个差是6-1=5,5-1=4,4-1=3的倍数,而[5,
4,3]=60(按
常规祖父的年龄只能比小明大60岁),今年祖父比小明多6-1=5倍,可求出小
强今年的年龄是60
÷(6-1)=12岁。
练习二
1、爸爸今年44岁,小强今年12岁,多少年前爸爸年龄是小强年龄的9倍?
(44-12)÷(9-1)=4岁
12-4=8年
2、姐姐6年后的年龄与妹妹
4年前的年龄和是29岁,妹妹现在的年龄是两人年龄差的4
倍。姐姐今年多少岁?
(29-6+4)÷(5+4)=3岁
妹妹:4×3=12岁
姐姐:5×3=15岁
3、小亮比小明大2岁,小刚比小军大1岁,小军年龄最小。5年前四
人年龄和是8岁,5
年后四人年龄和是47岁,今年这四个小朋友各有多少岁?
8+(5+5)×4=48岁
年龄和相差48-47=1岁,说明有一人10年间长了9岁
小军今年是4岁
小刚今年4+1=5岁
小亮今年是(27-9+2)÷2=10岁
小明今年是10-2=8岁
;.
..
三、鸡免问题
学会运用假设法解题
【例1】鸡免同笼,共100个头,280只脚。问:鸡、免各有多少只?
【分析】假设这1
00只全是免,每只免有4只脚,应该有4×100=400只脚,实际只有280
只脚,相差了400
-280=120只脚。相差的原因是每只鸡多算了2只脚,相差的总脚数120
里含有多少个2,就是
多少只鸡按免算了。从而求出鸡的只数120÷2=60只,免有100-60=40
只。
【例2】蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有以上三种
小虫
16只,共有110条腿和14对翅膀,问:每种小虫各有几只?
【分析】从腿入手,蜘蛛有8条腿,
而蜻蜓和蝉都有6条腿,我们可以把6条腿的小虫看作
一种,这样就容易了。如果批16只小虫都看用6
条腿,那么应该有16×6=96条腿,而与实
际的110条腿,相差了110-96=14条,相差的
原因是批蜘蛛的8条腿当用6条来算的,这样
就少算了2条腿,少多少个2就是蜘蛛的只数14÷(8-
6)=7只,这样蜻蜓和蝉共有16-7=9
只,再用假设法求出蜻蜓和蝉的只数。蝉有(9×2-14
)÷(2-1)=4只,蜘蛛有9-4=5只。
【例3】某次数学竞赛共有12题,评分
标准是:每做对一道题得10分,每做错一道或不做
题扣2分。明明参加这次竞赛,得了84分。问:明
明做对了几道题?
【分析】如果12题全部答对了,应该得分为12×10=120分,而明明实际得
了84分,损失
了120-84=36分,由做错一道或不做题扣2分,可得如果有一题不答或答错,将
损失10+2=12
分,明明答错或不答的题数为36÷12=3道,答对了12-3=9道。
练习三:
1、2角和5角的硬币共100枚,价值35元,二种硬币各有多少枚?
(350-2×100)÷(5-2)=50枚……5角
100-50=50枚……2角 <
br>2、1角、2角和5角的硬币共100枚,价值20元,如果其中2角硬币的价值比1角硬币的
价
值多13角,那么三种硬币各有多少枚?
解:设1分的有a枚,2分的有b枚
(5-1)a+(5-2)b=5×100-200
2b-a=13
解方程得a=51,b=32
5分的有100-32-51=17。
3、一个运输
队包运1998套玻璃具。运输合同规定:每套运费以1.6计算,每损坏一套不仅
不得运费,还要从总
费中扣除赔偿费18元。结果运输队实际得到运费3059.6元,那么,在
运输过程中共损坏了多少套
茶具?
(1.6×1998-3059.6)÷(18+1.6)=7套
四、 平均数问题
;.
..
【例1】 暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.
如果他在暑假的最后
一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游
498米;如果他
想平均每天游500米,那么最后一天应游多少米?
【分析】因为平均每天所游的距离提高 498-495=3米,需要多游778-670=108米,
所以暑
假一共有108÷3=36天,如果平均每天游500米,则要在最后一天游
(500-498)×36+778=850
米。
【例2】 某次数学竞赛原定
一等奖10人,二等奖20人,现在将一等奖中最后4人调整为
二等奖,这样得二等奖的学生的平均分提
高了1分,得一等奖的学生的平均分提高了3分,
那么原来一等奖平均分比二等奖平均分多
分。
【分析】
解法一:根据题意可知:前六人平均分=前十人平均分+3,这说明在计算前
十人平均分时,
前六人共多出3×6=18(分),来弥补后四人的分数。因此后四人的平均分比前十人
平均分少
18÷4=4.5分,也就是:后四人平均分=前十人平均分一4.5 。
当后四人
调整为二等奖,这样二等奖共有20+4=24(人),平均每人提高了1分,也就由调整
进来的四人来
供给,每人平均供给24÷4=6(分),因此,四人平均分=(原来二等奖平均分)+6,
与前面
式比较,原来一等奖平均分比原来二等奖平均分多4.5+6=10.5(分)。
【解法二】
图上横向的线表示人数,竖向的线表示分数,红线表示原来的的一等奖和二等奖
,蓝线表示
调整后的一等奖和二等奖,虽然一、二等奖的人数和平均分发生变化,但一、二等奖的总分<
br>没有变,也就是说图上红线的两个长方形的面积之和等于蓝线的两个长方形的面积之和,我
们观察
图可以发现两块黄色小长方形的面积等于蓝色长方形的面积(10-4)×3+20×1=38,蓝
色长
方形的长是4,宽就是38÷4=9.5,原一等奖比二等奖的平均分高9.5+1=10.5分。
练习四:
1. 甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙
班的平均成绩
要比甲班平均成绩高7分,那么乙班的平均成绩是______分。
;.
..
49×7÷(51+49)=3.43分
81+7-3.43=84.57分
2. 某次数学竞赛原定一等奖10人,二等奖20人,
现在将二等奖中前4人调整为一等奖,
这样得二等奖的学生的平均分下降了1分,得一等奖的学生的平均
分下降了2分,那么原来
一等奖平均分比二等奖平均分多 分。
(10×2+20×1)÷4=10分
五、还原问题
还原问题也叫倒推问题。解答还原问题的方法,是用加、减法互为逆运算和乘、
除法互为逆
运算的原理,从最后一次运算的结果,一步一步地往回推理,直到推得原数为止。
【例1】村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次
卖
出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?
【分析】
从上面线段图可以看出:
最后剩下2个再加上第三次卖出的再余下的一半以外的
2个,就是再余下的一半,由此可求
出再余下的是(2+2)×2=8(个).
8个再加上第
二次卖出余下的一半以外的2个就是余下的一半,因此可求出余下的是:(8+2)
×2=20(个)
20个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个
数是
: (20+2)×2=44(个) 答:这篮鸡蛋有44个.
【例2】甲、乙、丙三人
钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数
都比原来增加了两倍,结果乙的钱最多
;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比
原来增加了两倍,结果丙的钱最多;最后丙拿出一些
钱给甲和乙,使甲和乙的钱数都比原来
增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,
那么三人原来的钱分别是
多少元?
【分析】三人最后一样多,所以都是81÷3=27元,然
后我们开始还原:(1)甲和乙把钱还给
丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27
÷3=9,丙是81-9-9=63;(2)
甲
和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;(3)
最后是乙和丙把钱还给甲:
乙57÷3=19,丙21÷3=7,甲81-19-7=55元.
练习五:
1、某粮库有面粉若干袋,第一次卖掉原有的一半少12袋,第二次卖
出剩下的一半多10袋,
;.
..
第三次又卖出48袋,这时还剩28袋。求粮库中原有面粉多少袋?
[(48+28+10)×2—12]×2=320袋
2、袋里有若干个球,小明每次拿出其
中的一半再放回一个球,这样共操作了5次,袋中还
有3个球。问:袋中原有多少个球?
(3-1)×2=4个
(4-1)×2=6个
(6-1)×2=10个
(10-1)×=18个
(18-1)×2=34个
3、有119只蜜蜂在三棵枣
树上采蜜.一会儿有10只蜜蜂从第一棵枣树上飞到第二棵枣树上;
过了一会儿,又有20只蜜蜂从第二
棵枣树上飞走了.这时三棵枣树上的蜜蜂正好一样多,第
二棵枣树上原来有多少只蜜蜂?
(119-20)÷3-10+20=43只
小升初常见奥数提醒,奥数网小编现将整理如下
,希望同学们认真解答每道题,掌握解题步
骤和原理。
1、(归一问题)工程队计划用6
0人5天修好一条长4800米的公路,实际上增加了20
人,每人每天比计划多修了4米,实际修完这
条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56
千米,乙
车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3
、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车
每小时行84千米
,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一
座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列
车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨
道上相向而
行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从<
br>客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多
少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,
但离
两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速
度是每小时24千
米。求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给
小李多少枚后,
小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款
,六年级捐款数是二年级的3倍,如果从六年
级捐款钱数中取出160元放入二年级,那么六年级的捐款
钱数比二年级多40元,两个年级
分别捐款多少元?
9、(和差问题)一只两层书架共放
书72本,若从上层中拿出9本给下层,上层还比下
层多4本,上下层各放书多少本?
;.
..
10、(周期问题)2006年7月1日是星期六,求10月1日是星期几?
11、(鸡兔同笼问题)
小丽买回0、8元一本和0、4元一本的练习本共50本,付出人民币
32元。0、8元一本的练习本有
多少本?
12、(年龄问题)5年前父亲的年龄是儿子的7倍。15年后父亲的年龄是儿子的二倍
,
父亲和儿子今年各是多少岁?
13、(盈亏问题)王老师发笔记本给学生们,每人6本
则剩下41本,每人8本则差29
本。求有多少个学生?有多少个笔记本?
14、(还原
问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下
的一半多1个,第三次卖掉第
二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果
店里原来一共有多少个芒果?
15、置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5
把椅子的价钱
相等,每张桌子和每把椅子各是多少元?
16、(最佳安排)烤面包的架子上一次最多只能烤两个
面包,烤一个面包每面需要2
分钟,那么烤三个面包最少需要多少分钟?
17、(油和桶
问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9、75千克,
原有油多少千克?桶重多少
千克?
⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是
鸭的4倍,问鸡、鸭、鹅各有多少只?
19、(鸡兔同笼)实验小学举行数学竞赛,每做
对一题得9分,做错一题倒扣3分,共
有12道题,小旺得了84分,小旺做错了几道题?
20、(相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,
乙每分钟行
45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头
向甲跑去,遇到甲再向
乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
;.