小学奥数─工程问题分类讲解.

余年寄山水
704次浏览
2020年08月04日 09:24
最佳经验
本文由作者推荐

满分作文开头结尾-购房合同书样本


小学奥数─工程问题分类讲解

工程问题是小学数学应用题教学中的重点,是分 数应用题的引申与补充,是培养学生抽象逻辑思维能
力的重要工具。工程问题是把工作总量看成单位“1 ”的应用题,它具有抽象性,学生认知起来比较困难。在
教学中,让学生建立正确概念是解决工程应用题 的关键。
一. 工程问题的基本概念
定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”
工作效率:单位时间内完成的工作量
三个基本公式:工作总量=工作效率×工作时间,
工作效率=工作总量÷工作时间,
工作时间=工作总量÷工作效率;
二、为了学好分数、百分数应用题,必须做到以下几方面:
① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;
② 在理解、掌握分数的意义和性质的前提下灵活运用;
③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之
间 的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;
④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多
端,单靠 统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转
化等多种 解题方法,不断地开拓解题思路.
三、利用常见的数学思想方法:
如代换法、比例法、列表法、方程法等
抛开“工作总量”和“时间”,抓住题目给出的工作效 率之间的数量关系,转化出与所求相关的工作效率,
最后再利用先前的假设“把整个工程看成一个单位” ,求得问题答案.一般情况下,工程问题求的是时间.

熟练掌握工程问题的基本数量关系与一般解法;
(1) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;
(2) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;
(3) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.


一、 周期性工程问题
【例 1】 一件工程,甲单独做要
6
小时,乙单独做要
10
小时,如果接甲、乙、甲、乙...顺序交替工作,
每次1
小时,那么需要多长时间完成?
【考点】工程问题 【难度】4星 【题型】解答
【解析】 甲
1
小时完成整个工程的
11
,乙1
小时完成整个工程的,交替干活时两个小时完成整个工程的
610
11444< br>1

,甲、乙各干
3
小时后完成整个工程的
3
,还剩下,甲再干
1
小时完成整个
61015155
5
工程的
11
1
,还剩下,乙花小时即
20
分钟即可完成.所以需要
7小时
20
分钟来完成整个工程.
630
3
【答案】
7
小时
20
分钟

【巩固】 一项工程,甲单独完成需l2小时,乙单独完成需15小时。甲乙合做1小时后,由甲单独做 1小
时,再由乙单独做1小时,……,甲、乙如此交替下去,则完成该工程共用________小时。
【考点】工程问题 【难度】3星 【题型】解答
【关键词】2008年,希望杯,第六届,五年级,一试
【解析】 甲乙合做1小时后,还剩 下:
1
2×5=10小时,还剩下
1117113
,还需要做

,甲乙单独做2小时,共做

0
1111111
,需要甲做1小时 ,还有

,乙还需要做

小时,一
1
共需要1+10+ 1+ 0.25=12.25小时
【答案】
8.5



【例 2】 一项工程,乙单独做要
17
天完成.如果第一天甲做,第二天乙做,这样 交替轮流做,那么恰好
用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流 的做法多用
半天完工.问:甲单独做需要几天?
【考点】工程问题 【难度】4星 【题型】解答
【解析】 甲、乙轮流做,如果是偶数天完成,那 么乙、甲轮流做必然也是偶数天完成,且等于甲、乙轮流
做的天数,与题意不符;所以甲、乙轮流做是奇 数天完成,最后一天是甲做的.那么乙、甲轮流
做比甲、乙轮流做多用半天,这半天是甲做的.如果设甲 、乙工作效率分别为
V
1

V
2
,那么
1
V
1
V
2
V
1
,所以
V
1
 2V
2
,乙单独做要用
17
天,甲的工作效率是乙的
2
倍, 所以甲单独做需要
2
1728.5
天.
【答案】
8.5


【巩固】 规定两人轮流做一个工程,要求第 一个人先做1个小时,第二个人接着做一个小时,然后再由第


一个人做1个小时,然后又 由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一
个工程需要
9.8
小时,而乙、甲轮流做同样的工程只需要
9.6
小时,那乙单独做这个工程需要多少
小 时?
【考点】工程问题 【难度】4星 【题型】解答
甲乙甲乙

甲1小时乙0.8小时
【解析】 根据题意,有:,可知,甲做
10.60.4
小时与乙做
10.80.2

乙甲乙甲
乙1小时甲0.6小时
时的工作量相等,故甲工作2小时,相当于乙1小时的工作量.
所以,乙单独工作需要
9.85527.3
小时.
【答案】
7.3
小时


【例 3】 蓄水池有一条进水 管和一条排水管.要灌满一池水,单开进水管需
5
小时;排光一池水,单开
排水管需< br>3
小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开
1
时.问:多长时间后水池的水刚好排完?(精确到分钟)
【考点】工程问题 【难度】4星 【题型】解答
【解析】 法一:
112121
1
小时排水比
1
小时进水多


3
,说 明排水开了
3
小时后(实际加上进
351521510
水3小时,已经过去< br>6
小时了),水池还剩一池子水的
再过
1
小时,水池里的水为一池子水 的
把这些水排完需要
113


10510
1

10
319

小时,不到1小时,
10310
997
小时
7
小时
54
分.
1010
所以共需要
61
法二:
112211
1< br>小时排水比
1
小时进水多


4

351515230
说明
8
小时以后,水池的水全部排完,并且多排了一池子水的< br>排一池子需要
3
小时,排一池子水的
所以实际需要
8
【答案 】
7
小时
54



1

30
111
需要
3
小时,
303010
19
7
小时
7
小时
54
分.
1010
【巩固】 蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管 需
3
小时,单开丙管


需要
5
小时,要排光一池水,单 开乙管需要
4
小时,单开丁管需要
6
小时,现在池内有
1
的 水,
6
若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开
1
小时,问 多少时间后水开始溢出水
池?
【考点】工程问题 【难度】5星 【题型】解答
11117171
【解析】 甲乙丙丁顺序循环各开
1
小时 可进水:

,循环
5
次后水池还空:
15

3456606604
111333
的工作量由甲管注水需要:

(小时),所以经过
4520
小时后水开始溢出水池.
443444
3
【答案】
20

4

二、 水管问题

【例 4】 一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小 时灌满.现在先开乙管6小
时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?
【考点】工程问题 【难度】3星 【题型】解答
【解析】 由于甲、乙和乙、丙的工作效率之和都知道了,根据“现在先开乙管6小时,还需甲、丙两管 同
时开2小时灌满”,我们可以把乙管的6小时分成3个2小时,第一个2小时和甲同时开,第二
个2小时和丙同时开,第三个2小时乙管单独开.这样就变成了甲、乙同时开2小时,乙、丙同
时开2 小时,乙单独开2小时,正好灌满一池水.可以计算出乙单独灌水的工作量为
11111
,所以 整池水由乙管单独灌水,
122
,所以乙的工作效率为:
(622) 
54101020
需要
1
1

20
(小时)
20
【答案】
20
小时

【巩固】 某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若 要求
10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放 小
时.
【考点】工程问题 【难度】3星 【题型】解答
【解析】 要想同时开的时间最小,则根据工效,让甲“满负荷”地做,才可能使得同 时开放的时间最小.所
1

1
4
(小时),即甲、乙最少要同时 开放4小时. 以,乙开放的时间为

110



1 2

24
【答案】4小时


【例 5】 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打
开8个水 龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
【考点】工程问题 【难度】3星 【题型】解答
【解析】 先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4 × 60= 240(立方
米).时间都用分钟作单位,1个水龙头每分钟放水量是240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是8 × 8 × 90,其中 90分钟内流入水量是 4 × 90,因此原来水
池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).打开13个水龙头每分钟可以放出水8×13,除去
每分 钟流入4,其余将放出原存的水,放空原存的5400,需要5400 ÷(8 × 13- 4)=54(分钟 ).
所以打开13个龙头,放空水池要54分钟.水池中的水,有两部分,原存有水与新流入的水,就需
要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
【答案】54分钟

【巩固】 一个蓄水池有1个进水口和15个出水口,水从进水 口匀速流入.当池中有一半的水时,如果打
开9个出水口,9小时可以把水排空.如果打开7个出水口, 18小时可以把水排空.如果是一满
池水,打开全部出水口放水,那么经过 时 分水池刚好被排空.
【考点】牛吃草问题 【难度】3星 【题型】填空
【关键词】对比思想方法
【解析】 本题是牛吃草问题的变形.
设每个出水口每小 时的出水量为1,则进水口每小时的进水量为:
(71899)(189)5
,半
池水的量为:
(95)936
,所以一池水的量为72.
如果打开全 部15个出水口,排空水池所需要的时间为
72(155)7.2
小时,即7小时12分 钟.
【答案】
7
小时
12
分钟


【例 6】 一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水 箱已
满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水?
【考点】工程问题 【难度】4星 【题型】解答
【解析】 由于乙管每分钟注水量是甲管每分钟注 水量的2倍.那么甲管注入18吨水的时间是乙管注入
18236
吨水的时间,则甲管注入 18吨水的时间与乙管注入27吨水的时间比是
36:274:3
.那
么在这两种情 况下丙管注水的时间比为
4:3
,而且前一种情况比后一种情况多注入
27189

水,则甲管注入18吨水时,丙管注入水
9(43)436
吨.
所以该水箱最多可容纳水
183654
吨.
【答案】
54


【巩固】 一个水箱有甲、乙、丙三根进水管, 如果只打开甲、丙两管,甲管注入
30
吨水时,水箱已满;


如果只打开 乙、丙两管,乙管注入
40
吨水时,水箱才满.已知乙管每分钟注水量是甲管的
1.5
倍,
则该水箱注满时可容纳 吨水.
【考点】工程问题 【难度】4星 【题型】解答
【解析】 方法一:乙注入40吨水的时间相当于 甲注入
那么,乙注40吨水丙可注水量为
(吨)为水箱容量。
方法二:如果只打开甲 、丙两管,注满水时甲管注入了30吨水;如果只打开乙、丙两管,注满
水时乙管注入了40吨水.由于 乙管每分钟注水量是甲管的
1.5
倍,所以在甲管注入30吨水的时
间内,乙管可以注 入
301.545
吨水,而在只打开乙、丙两管的情况下乙管共注入了40吨水,
可见打开甲、丙两管注满水所用的时间是打开乙、丙两管所用时间的
459
可以假设打开乙、< br>
倍.
408
9
a
吨水,所以有
8
40吨水的时间,甲注入30吨水,丙可注水量为
x

1.5
401401< br>9030120
所以
30x40
解得
x90
,< br>x

x

1.5301.530
丙两管的情况下丙管注了
a
吨水,则打开甲、丙两管的情况下丙管注了
9
a30a40
,得到
a80
,所以水箱注满时可容纳
8040120
吨水.在得到第 一种情况所
8
9
用时间是第二种情况所用时间的倍之后,可以假设第二种情况此时乙、 丙两管继续注水,总时
8
9
间为注满水所需时间的倍,也就是与第一种情况所用时间相 同.此时,注入的水量也是水箱容
8
91
积的倍,即比第一种情况多了倍.然而此时注 水时间相同,所以丙管注入的水量相同,乙管
88
1
则注入
301.54 5
吨水,比甲管多注了
453015
吨,所以这15吨就是水箱容积的,那么水< br>8
1
箱容积为
15120
吨.
8
【答案】
120




【例 7】 放满一个水池,如果同时打开1,2号阀门,则12分钟可以完成;如果同时打开1,3号阀门,
则15 分钟可以完成;如果单独打开1号阀门,则20分钟可以完成;那么,如果同时打开1,2,
3号阀门, 分钟可以完成。
【考点】工程问题 【难度】3星 【题型】解答
【关键词】2009年,学而思杯,6年级
【解析】 单独打开1号门,2 0分钟可以完成,说明1号门每分钟完成
钟可以完成,说明2号闸门每分钟完成
1
,而 同时打开1、2号闸门12分
20
111
,而现在同时打开1、3号闸门,15分钟可

122030


以完成,说明3号闸门每分钟完成
11
1
1



10
分钟。

203060

111
,则同时打开1、2、3号闸门,需要

152060
【答案】
10
分钟

【巩固】 放满一个水 池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4
阀门,则21分钟 可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打
开1,2,4号阀门,则 30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分
钟可以完成?
【考点】工程问题 【难度】3星 【题型】解答
【解析】 根据条件,列表如下(画○表示阀门打开,画×表示阀门关闭):
1号

×


2号


×

3号



×
4号
×



工作效率
1

20
1

21
1

28
1

30
从表中可以看出,每个阀门都打开了三次,所以这4个阀门的工作效率之和为:
111

1
1

1
3
,那么同时打开这 4个阀门,需要.
118
(分钟)

18
18
< br>20212830

【答案】
18
分钟



三、 比例法及工资分配问题
【例 8】 有一项工程,有三个工程队来争夺施工 权利,已知甲乙丙三个工程队都是工作时间长短来付费
的,甲、乙两队合作,
10
天可 以全部完工,共需要支付
18000
元,由乙、丙两队合作,
20
天可
以完工,共需要支付
12000
元,由甲、丙两队合作,
12
天可以完成, 共需要支付
15000
,如果该
工程只需要一个工程队承建,如果只能一个队伍单独施 工,那么最快的比最慢的会早完工____
天.需要支付速度最快的队伍____元.
【考点】工程问题 【难度】3星 【题型】解答
【关键词】2010年,学而思杯,5年级


11

1
【解析】 甲乙丙的工效和为



2
0

10122

7
711
,所以甲的工效为,乙的工效为

60
602015
711711
,丙的工效为

,所以从时间上考虑,应该选择甲,会比丙早完工
601 545

6
180
天,同样的道理,甲乙丙的每日工资之和是
(
,所以甲的每
)21825
(元)
102012
日费用为
18256001225
(元),乙的费用为
18251250575
(元),丙的费用为
1825180025
(元),所以需要支付速度最快的队伍
12251518375
(元)

【巩固】 甲、乙两个工程队修路,最终按 工作量分配8400元工资.按两队原计划的工作效率,乙队应获
5040元.实际上从第5天开始,甲 队的工作效率提高了1倍,这样甲队最终可比原计划多获得
960元.那么两队原计划完成修路任务要多 少天?
【考点】工程问题 【难度】3星 【题型】解答
5040
【解析】 开始时甲队拿到
8400
3360:5040336
,甲、乙的工资比等于甲、乙的工效比,即为元
2

:
甲 提高工效后,甲、乙总的工资及工效比为
(3360960):(5040960)18:17< br>.设甲开始时的工效为“2”,那么乙的工效为“3”,设甲在提高工
效后还需
x
天才能完成任务.有
(244x):(343x)18:17
,化简为
2 1654x13668x
,解

x
【答案】
12



【例 9】 一项工程,甲15天做了
11
后,乙加入进来,甲 、乙一起又做了,这时丙也加入进甲、乙、丙
44
4040
.工程总量为
5 4760
,所以原计划
60(23)12
天完成.
77
一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,
问题 中情形下做完整个工程需多少天?
【考点】工程问题 【难度】3星 【题型】解答
【解析】 方法一:先把整个工程分为三个阶段:Ⅰ﹑Ⅱ﹑Ⅲ;且易知甲的工作效率为
1
.
又乙、丙工作的
60
天数之比为(Ⅱ+Ⅲ):Ⅲ=2:1,所以 有Ⅱ阶段和Ⅲ阶段所需的时间相等.即甲、乙合作完成的
1
4
111
的工程与 甲、乙、丙合作完成
1
的工程所需的时间相等.所以对于工作效率有:(甲+
4 42
乙)×2=(甲+乙+丙),甲+乙=丙,那么有丙-乙=
工作效率为
151
.
又有乙、丙的工作效率的比为3:5.易知乙的
60
35
,
丙的工作效率为:
.
那么这种情形下完成整个工程所需的时间为:
120120
113118
()()156627
天.
46


方法二:显然甲的工作效率为
作的天数为
11
 (x3
460
)
1
2
1
设乙的工作效率为
3x
,那么丙的工作效率为
5x
.所以有乙工

60
11111 1
(x3)(x

8

),
作的天数为
(8x).
且有
460260260
(
1
x8
60
1
)2
11111
1


x((8)3 x.)(8x),
解得
x.
所以乙
264060260
12 0
的工作效率为
35
,
丙的工作效率为高
.
那么这种情形下 完成整个工程所需的时间为:
120120
113118
15()() 156627
天.
46
【答案】
27


【巩固】 某工地用
3
种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为
10:7:6
,速度比为
6:8:9
,运送土方的路程之比为
15: 14:14
,三种车的辆数之比为
10:5:7
.工程开始时,乙、丙
两种车 全部投入运输,但甲种车只有一半投入,直到
10
天后,另一半甲种车才投入工作,一共干
25
天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?
【考点】工程问题 【难度】3星 【题型】解答
【关键词】2007年,二中
【解析】 由于甲、乙、丙三种卡车运送土方的路程之比为15:14:14
,速度之比为
6:8:9
,所以它们运送
1

所需的时间之比为
49
相同时间内它们运送的次数比为:
::
.在前
10
天,
::::

6892495714
甲车只有一半 投入使用,因此甲、乙、丙的数量之比为
5:5:7
.由于三种卡车载重量之比为
10 :7:6

所以三种卡车的总载重量之比为
50:35:42
.那么三种卡车 在前
10
天内的工作量之比为:
2

4

9< br>

50

:

35

:< br>
42

20:20:27
.在后
15
天,由于 甲车全部投入使用,所以在后
15
天里
5

7

14

的工作量之比为
40:20:27
.所以在这
25
天内,甲的工作量与总工作量之比为:
2010401532


(202027)10(402027)1579

【答案】


23
【例 10】 一项工程,甲、乙两队合干需2
天,需支付工程款
2208
元;乙、丙两队合干需
3
天,需支 付
54
6
工程款
2400
元;甲、丙两队合干需
2
天,需支付工程款
2400
元.如果要求总工程款尽量少,
7
32

79
应选择哪个工程队?
【考点】工程问题 【难度】4星 【题型】解答


2534
【解析】 甲、乙一天完成工程的
12
;乙、丙一天完成工程的
13
;甲、丙一天完成工程的
512415675741511
.所以,甲的工效为
(12)2
;乙的工效为< br>
;丙的工效为
72
71123
甲、乙一天需工程款
220 82920
(元);乙、丙一天需工程款
24003640
(元);


2041054
6
甲、丙一天需工程款
2400284 0
(元).所以,甲一天的工程款为
(920840640)2560
(元) ;
7
乙一天的工程款为
920560360
(元).丙一天的工程款为< br>840560280
(元).单独完成整个工
程,甲队需工程款
5604 2240
(元);乙队需工程款
36062160
(元);丙队需工程款
280102800
(元).所以应该选择乙队.
【答案】乙队

【巩固】 甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具体情况是 :甲、
1
1
乙两人合作6天完成了工程的,因为甲有事,由乙、丙合作2天完成余下工 程的,以后三人
4
3
合作5天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙 、丙各得多少元?
【考点】工程问题 【难度】4星 【题型】解答
【关键词】2008年,清华附中
11
【解析】 根据题意可知,甲、乙两人的工作效率之和为
6

318
111
乙、丙两人的工作效率之和为
(1)2
; < br>3412
111
甲、乙、丙三人的工作效率之和为
(1)(1)5< br>.
3410
分别可求得甲的工作效率为
111117
,乙的工作效率 为

,丙的工作效率为

1
112111791
,则甲 完成的工程量为:


65


,乙完成的工程量为:< br>

625




1180
丙完成的工程量为:
所以,甲应得
1800
214119114
,三人所 完成的工作量之比为
:

25

:33:91:56

45456018045
339156
330
元,乙应得
3 30910
元,丙应得
330560
元.
339156333 3
【答案】甲应得
330
元,乙应得
910
元,丙应得
56 0




【随练1】 为了创建绿色学校,科学俱乐部的同学设 计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进
水管3小时可以把水池注满,单独打开出水 管4小时可以排完满池水。水池建成后,发现水池漏水。这
时,若同时打开进水管和出水管14小时才能 把水池注满。则当池水注满,并且关闭进水管与出水管时,


经过 小时池水就会漏完。
【考点】工程问题 【难度】4星 【题型】解答
【关键词】希望杯
1111
【解析】 设满水池水位单位“1”, 水池漏水相当于一个工作效率为

的出水管,因此关闭进水管与出
341484< br>水管,经过84小时池水就会漏完
【答案】84小时

【随练2】 公园水 池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、
丙、……的顺序 轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、
甲、乙、丙、甲……的顺 序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按
丙、乙、甲、丙、乙、甲……的顺 序轮流打开1小时,比第一周多用了15分钟.第四周他三个
管同时打开,灌满一池水用了2小时20分 ,第五周他只打开甲管,那么灌满一池水需用________
小时.
【考点】工程问题 【难度】4星 【题型】解答
【关键词】2007年,迎春杯,高年级,初赛
【解析】 考虑水池减去甲乙丙两小时总和后的容积,则此部分按照甲乙丙的顺序灌刚好在整数小时后灌
满,按照乙丙甲的顺序灌少用15分钟,按照丙乙甲的顺序灌多用15分钟,三个一起灌用20分
钟.所以速度应该是乙最快,甲居中,丙最慢.也就是说,此部分是甲灌1个小时后灌满.甲灌
1个小 时的水=乙灌45分钟的水=丙灌1个小时的水+乙灌15分钟的水.所以灌水速度甲乙丙
∶∶
3∶4∶2
,也就是甲刚好是平均数.所以只用甲管灌满需要7小时.
【答案】7小时

【随练3】 一项工程,若请甲工程队单独做需
4
个月完成,每月要耗资< br>9
万元;若请乙工程队单独做此项工
程需
6
个月完成,每月耗资
5
万元.
⑴请问甲、乙两工程队合作需几个月完成?耗资多少万元?
⑵现要求最 迟
5
个月完成此项工程即可,请你设计一种方案,既保证按时完成任务,又最大限度
节 省资金.
【考点】工程问题 【难度】4星 【题型】解答
【解析】 ⑴甲、乙两工程队每月完成的工程量分别占全部工程的
11
、,那么甲、乙 合作所需时间为:
46
11
1()2.4
个月;甲、乙合作
2 .4
个月所耗资金为:
(95)2.433.6
(万元).
46⑵甲工程队完成全部工作要耗资
9436
万元,乙工程队完成全部工作要耗资
5630
万元,乙
工程队耗资较少,为了节省资金,应尽量请乙工程队来做,但是乙工程队 无法单独在五个月内完
成工程,所以还需要请甲工程队来帮助完成一部分工程.所以,在五个月内完成的 最好方案为:


5122
乙工程做
5
个月,甲工程队做
(1)
个月,即:甲、乙两工程队合作个月后,乙工程队
6433
再单独做13
个月.
3
【答案】⑴
33.6
万元
⑵甲、乙两工程队合作

【作业1】 一项工程,甲单独做要12小时完成,乙单独做 要18小时完成.若甲先做1小时,然后乙接
替甲做1小时,再由甲接替乙做1小时,……,两人如此交 替工作,请问:完成任务时,共
用了多少小时?
【考点】工程问题 【难度】4星 【题型】解答
【解析】 ① 若甲、乙两人合作共需多少小时?
1

51

1
7
(小时).
1 



1
8365

121
2
13
个月后,乙工程队再单独做个月

3
3
②甲、乙两人各单独做7小时后,还剩多少?
1

35

1


17



1
121836

1

36
③余下的

1
由甲独做需要多少小时?
36
111

(小时).
36123
④共用了多少小时?
11

7214
(小时).
3 3
在工程问题中,转换条件是常用手法.本题中,甲做1小时,乙做1小时,相当于他们合作1小
时,也就是每2小时,相当于两人合做1小时.这样先算一下一共进行了多少个这样的2小时,
余下部 分问题就好解决了.
1
【答案】
14
小时
3

3
【作业2】 一项工程,甲、乙合作
12
小时可以完成,若第
1< br>小时甲做,第
2
小时乙做,这样交替轮流做,
5
1
恰好整数小 时做完;若第
1
小时乙做,第
2
小时甲做,这样交替轮流做,比上次轮流做要 多小
3
时,那么这项工作由甲单独做,要用多少小时才能完成?
【考点】工程问题 【难度】4星 【题型】解答
【解析】 若第一种做法的最后一小时是乙做的, 那么甲、乙共做了偶数个小时,那么第二种做法中甲、乙


1
用的时间应与第一种 做法相同,不会多小时,与题意不符.所以第一种做法的最后一小时是甲
3
11
1做的,第二种做法中最后小时是甲做的,而这小时之前的一小时是乙做的,所以乙


甲,
3
33
得乙

2355231
甲.甲、 乙工作效率之和为:
112
,甲的工作效率为:
(1)

35636336321
1
21
(小时).
21
所以甲单独做的时间为
1
【答案】
21
小时

【作业3】 一项工程,甲队单独完成需40天。若乙队先做10天,余下的工程由甲、乙两队合作,又 需20
天可完成。如果乙队单独完成此工程,则需______天。
【考点】工程问题 【难度】2星 【题型】解答
【关键词】2008年,希望杯,第六届,六年级,一试
【解析】 甲每天完成
12 0111
,甲乙合作中,甲一共完成

,所以乙也一共完成,乙每天完成,乙单
40402260
独做要60天.
【答案】60天

【作业4】 有一 项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现
在由甲、乙 、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后
完成这项工程也用了整 数天.那么丙休息了 天.
【考点】工程问题 【难度】3星 【题型】解答
【关键词】2007年,十一学校
1

1
1
y1
,化简得
44x15y720
.由【解析】 设甲、乙工作 了
x
天,丙工作了
y
天,则有:



x 
363048


15y
和720都是15的倍数,所以
x
也是15的倍数,而
x7204417
,所以
x15

y4

所以丙休息了
15411
天.
【答案】
11


【作业5】 一个蓄水池装有9根水管,其中1 根为进水管,其余8根为相同的出水管。开始进水管以均匀
的速度不停地向这个蓄水池蓄水。池内注入了 一些水后,有人想把出水管也打开,使池内的水
再全部排光。如果把8根出水管全部打开,需要3小时可 将池内的水排光;而若仅打开3根出
水管,则需要18小时。问如果想要在8小时内将池中的水全部排光 ,最少要打开几根出水管?
【考点】牛吃草问题 【难度】4星 【题型】解答
【关键词】对比思想方法
【解析】 设
1
根排水管
1
小时 排水为“
1
”,进水速度为
(31883)(183)2
,原有 水量为
(82)318


如果想要在
8
小时内 将池中的水全部排光,最少要打开
18824.25
根出水管,每根出水管1
小 时排水1份,又出水管的根数是整数,故最少要打开5根出水管。
【答案】
5


【作业6】 某市有一项工程举行公开招标,有甲、乙、丙三家公司参加竞标.三家公司的竞标条件如下:
公司名称



单独完成工程所需天数
10
15
30
每天工资万元
5.6

3.8

1.7

⑴ 如果想尽快完工,应该选择哪两家公司合作?需要多少天完成?
⑵ 如果想尽量降低工资成本,应该选择哪两家公司合作?完工时要付工资多少元?
【考点】工程问题 【难度】4星 【题型】解答
【关键词】2009年,十三分,入学测试
【解析】 ⑴如果要想尽快完工,应该选择效率较高的两家公司.
由于甲、乙、丙三家公司单独做时,每天完成的工作量分别为
乙这两家公司合作.
11
甲、乙两公司合作,完成工程需要的时间为
1()6
天;
1015
111
、、,所以应该选择甲、
101530
⑵如果想尽量降低工 资成本,应该选择完成全部工程所需总工资较少的两家公司.
由于甲、乙、丙三家公司单独完成全部工 程所需要的工资成本分别为
5.61056
万元、
3.81557
万 元、
1.73051
万元,所以应当选择甲、丙这两家公司合作.
11
甲、丙两公司合作需要
1()7.5
天才能完成工程,完工时要付的工资为:
1030
(5.61.7)100007.5547500
元.
【答案】
547500

个人特长-成都9中


河北电大在线平台-法国知名大学


备年货-毕业实习心得体会


26个汉语拼音字母表-红会郭美美


药士报名时间-研究生招生网


电子设计工程师-澳门回归时间


身边的科学-兰州商学院长青学院


泰国易三仓-上海大专院校