小学数学奥数测试题染色与覆盖_人教版
怀孕四个月注意事项-我尝到了失败的滋味
2019年小学奥数组合问题专题——染色与覆盖
1.六年级一班全班有35名同学,
共分成5排,每排7人,坐在教室里,每个座位的前
后左右四个位置都叫做它的邻座.如果要让这35名
同学各人都恰好坐到他的邻座上去,
能办到吗?为什么?
2.右图是某一湖泊的平面图,图中所有曲线都是湖岸.
(1)如果P点在岸上,那么A点是在岸上还是在水中?
(2)某人过此湖泊,他下水时脱鞋
,上岸时穿鞋.如果他从A点出发走到某点B,他穿鞋
与脱鞋的总次数是奇数,那么B点是在岸上还是在
水中?为什么?
3.某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右
)
上去,问这能否办到?
4.右图是某一套房子的平面图,共12个房间,每相邻两房间都有
门相通.请问:你能
从某个房间出发,不重复地走完每个房间吗?
5.有一次车展共6×6=
36个展室,如右图,每个展室与相邻的展室都有门相通,入口
和出口如图所示.参观者能否从入口进去
,不重复地参观完每个展室再从出口出来?
6.在一个正方形的果园里,种有63棵果树,加上右下角
的一间小屋,整齐地排列成八
行八列,如图(1).守园人从小屋出发经过每一棵树,不重复也不遗漏(
不许斜走),最
后又回到小屋,行吗?如果有80棵果树,如图(2),连小屋排成九行九列呢?
7.右图是半张中国象棋盘,棋盘上已放有一只马. 众所周知,马是走“日”字的.
请
问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?
8.右图是由14个大小相同的方格组成的图形.
试问能不能剪裁成7个由相邻两方格组
成的长方形?
9.右图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?
10.下面的三个图形都是从4×4的正方形纸片上剪去两个1×1的小方格后得到的.
问:
能否把它们分别剪成1×2的七个小矩形.
11.用11个和5个能否盖住8×8的大正方形?
12.能否用9个所示的卡片拼成一个6×6的棋盘?
13.9个1×4的长方形不能拼成一个6×6的正方形,请你说明理由!
14.用若干个2
×2和3×3的小正方形不能拼成一个11×11的大正方形,请你说明理
由!
15.对于表
(1),每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各
次减去或加上的数可以不
同),变为表(2)?为什么?
16.右图是一个圆盘,中心轴固定在黑板上.开始时,圆盘上每个数
字所对应的黑板处
均写着0.然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别
正
对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上.问:经过若干次后,
黑板
上的四个数是否可能都是999?
17.有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样
分?
18.有一位老人,他有三个儿子和十七匹马.他在临终前对他的儿子们说:“我已经写
好了遗
嘱,我把马留给你们,你们一定要按我的要求去分.”老人去世后,三兄弟看到
了遗嘱.遗嘱上写着:“
我把十七匹马全都留给我的三个儿子.长子得
给幼子
11
,次子得,
231
.不许流血,不许杀马.你们必须遵从父亲的遗愿!”请你帮助他们分分马吧!
9
第 1 页
19.甲、乙、丙、丁分29头羊.
甲、乙、丙、丁分别得
1111
,,,
,应如何分?
25610
2
0.8个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无
砝码)?
21.9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无
砝码)? <
br>22.据说有一天,韩信骑马走在路上,看见两个人正在路边为分油发愁.这两个人有一
只容量1
0斤的篓子,里面装满了油;还有一只空的罐和一只空的葫芦,罐可装7斤油,
葫芦可装3斤油.要把这
10斤油平分,每人5斤. 但是谁也没有带秤,只能拿手头的三
个容器倒来倒去.应该怎样分呢?
23.大桶能装5千克油,小桶能装4千克油,你能用这两只桶量出6千克油吗?怎么量?
24.有一个小朋友叫小满,他学会了韩信分油的方法,心里很是得意.
一天,他遇到了
两位农妇. 两位农妇有两个各装满了10升奶的罐子,还有一个5升和一个4升的小桶
,
她们请求小满就用这些容器将罐子中的奶给两个小桶中各倒入2升奶.小满按照韩信分
油的方
法,略加变通,就将奶分好了!你说说具体的做法!
25.有大,中,小3个瓶子,最多分别可以装入
水1000克,700克和300克.现在大瓶
中装满水,希望通过水在3个瓶子间的流动使得中瓶和小
瓶上标出100克水的刻度线,
问最少要倒几次水
26.老师在黑板上画了9个点,要求同学
们用一笔画出一条通过这9个点的折线(只许
拐三个弯儿).你能办到吗?
27.你有四个装
药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重
量+1.只称量一次,如何判断哪
个罐子的药被污染了?
28.如右图所示,将1~12顺次排成一圈.
如果报出一个数a(在1~12之间),那么
就从数a的位置顺时针走a个数的位置. 例如a=3,就
从3的位置顺时针走3个数的位
置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到
达10的位置. 问:a
是多少时,可以走到7的位置?
29.对于任意一个自然数 n,当
n为奇数时,加上121;当n为偶数时,除以2,这算
一次操作现在对231连续进行这种操作,在操
作过程中是否可能出现100?为什么?
30.一只电动老鼠从左下图的A点出发,沿格线奔跑,并且
每到一个格点不是向左转就
是向右转。当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共
转了82次
弯。如果甲、乙二人有一人说对了,那么谁正确?
31.如图(1),对相邻的两
格内的数同时加上1或同时减去1叫做一次操作.经过若干
次操作后由1变成图2,则图2中A处的数是
多少?
32.一个大桶装了12升水,另外有恰好能装8升和5升水的桶各一个.利用这三个桶最少倒几次才能把这12升水平均分成两份?
33.一个正方形果园里种有48棵果树,加上右下角
的一间小屋,整齐地排列成七行七
列(见右图).守园人从小屋出发经过每一棵树,不重复也不遗漏(不
许斜走),最后又
回到小屋. 可以做到吗?
34.如右图,缺两格的8×8方格有62个格,能否用31个
且不留空隙?
35.
只有5升和8升的容器,要怎样量出2升的水呢?
图不重复地盖住它
参考答案
1.不能。见解析
【解析】划一个5×7的方格表,其中每一个方格表示一个座位.将方格黑
白相间地染上颜
色,这样黑色座位与白色座位都成了邻座.因此每位同学都坐到他的邻座相当于所有白格
的
坐到黑格,所有黑格的坐到白格.而实际图中有17个黑格18个白格,个数不等,故不能办
到.
2.(1)在水中 (2)在岸上。见解析
【解析】(1)已知P点在陆地上,如果在图上用阴影表示陆地,就可以看出A点在水中.
(
2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数的和为2,由于A点在水中,所以不
管怎么走,走在
水中时,脱鞋、穿鞋的次数的和总是偶数.既然题中说“脱鞋的次数与穿鞋
的次数的和是个奇数”,那么
B点必定在岸上.
3.不能
【解析】将5×9长方形自然染色,发现黑格的邻座都是白格,
白格的邻座都是黑格,因此
每位同学都坐到他的邻座相当于所有白格的坐到黑格,所有黑格的坐到白格.
而实际图中有
23个黑格22个白格,个数不等,故不能办到.
4.不能
【解析】
如图所示,将房间黑白相间染色,发现只有5个白格,7个黑格.因为每次只能由
黑到白或由白到黑,路
线必然黑白相问,显然应该从多的白格开始.但路线上1白1黑1
白1黑……直到5白5黑后还余2黑,
不可能从黑格到黑格,故无法实现不重复走遍.
5.不能
【解析】如右下图,对每个展室黑
白相间染色,同样每次只能黑格到白格或白格到黑格.入
口和出口处都是白格,故路线黑白相间,首尾都
是白格,于是应该白格比黑格多1个,而实
际上白格、黑格都是18个,故不可能做到不重复走遍每个展
室.
6.图1中可以回到小屋,图2中无法直接回到小木屋。
【解析】图(1)中可以回到
小屋,守园人只能黑白相间地走,走到的第奇数棵树是白的,第
偶数棵树是黑的,走到第63棵树应是白
的,在小屋相邻的树都标注白色,所以可以回到小
屋.图(2)不行,从小屋出发,当走到80棵树应是
黑色, 而黑树与小木屋不相邻,无法直接回
到小木屋.
7.不能
【解析】马走“
日”字,在中国象棋盘上走有什么规律呢?为方便研究规律,如下图所示,
先在棋盘各交点处相间标上○
和●,图中共有22个○和23个● . 因为马走“日”字,每
步只能从○跳到●,或由●跳到○,所
以马从某点跳到同色的点(指○或●),要跳偶数步;
跳到不同色的点,要跳奇数步。现在马在○点,要
跳回这一点,应跳偶数步,可是棋盘上共
有23+22=45(个)点,不可能做到不重复地走遍所有的
点后回到出发点.
如果马的出发点不是在○点上而是在●点上,那么这只马能不能不重复地走遍这半张
棋盘上
的每个点,最后回到出发点上呢?按照上面的分析,显然也是不可能的.
但是如果放弃“回
到出发点”的要求,那么情况就不一样了. 从某点出发,跳遍半张棋盘上除起点以外
的其它
44点,要跳44步,44是偶数,所以起点和终点应是同色的点(指○或●).
因为44步跳
过的点○与点●各22个,所以起点必是●,终点也是●.
也就说是,当不要求回到出发点
时,只要从●出发,就可以不重复地走遍半张棋盘上的所有点.
8.不能
【解析】将这14个小方格黑白相间染色(见右下图),有8个黑格,6个白格.
相邻两个方
格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实<
br>际情况不符,所以不能剪裁成7个由相邻两个方格组成的长方形.
第 1 页
9.不能
【解析】将40个小正方形想剪裁成20个相同的长方形,就是将图
形分割成20个1×2的长
方形,将其黑白相间染色后,发现有21黑,19白,黑白格数不等,而1×
2的小矩形一次
覆盖黑白格各一个.
10.(1)能,(2)、(3)不能
【解析】
如右上图,(1)能,黑白格数相等;(2)(3)不能,黑白格数不等,而1×2
的小矩形一次
覆盖黑白格各一个.
11.不能
【解析】如右图,对8×8正方形黑
白相问染色后,发现必然盖住2白2黑,5个
则盖住10白10黑.则盖住了3白1黑或3黑1白,从奇
偶性考虑,都是奇数.而
这种形状共11个,奇数个奇数相加仍为奇数,故这种形状盖住的黑格和白格都
是奇数,加
另一种形状的10白10黑,两种形状共盖住奇数个白格奇数个黑格.但实际染色后共32个
白格32个黑格,故不可能按题目要求盖住.本题中每个盖3白1黑或3黑1白,11
个这种形
状盖住的不一定是33白11黑或33黑11白,因为可能一部分盖3白1黑,另一部
分盖3黑1白.这
是一个容易犯错的地方.
12.不能
【解析】将6×6的棋盘黑白相间染色(见右图),有18个黑格.
每张卡片盖住的黑格数不
是1就是3,9张卡片盖住的黑格数之和是奇数,不可能盖住18个黑格.
13.见解析
【解析】本题若用传统的自然染色法,不能说明问题. 我们对6×6正方形用
四种颜色染色,
因为要用1×4来覆盖.为了方便起见,这里用1、2、3、4分别代表四种颜色.也为
了使每
个1×4长方形在任何位置盖住的都一样,我们采用沿对角线染色,如右图.这样,可以发
现无论将1×4长方形放于何处,盖住的必然是1、2、3、4各一个.要不重叠地拼出6×6,
需9
个1×4长方形,则必然盖住1、2、3、4各9个.但实际上图中一共是9个l、10个2、
9个3、
8个4,因而不可能用9个1×4长方形拼出6×6正方形.
14.见解析
【解析】如右图
所示,将2×2或3×3的小正方形沿格线摆在右图的任何位置,必定盖住偶
数个阴影方格,而阴影方格
共有77个,是奇数,所以只用2×2和3×3的小正方形,不可
能拼成11×11的大正方形.
15.不能。见解析
【解析】因为每次有两个数同时被加上或减去同一个数,所以表中九个数
码的总和经过变化
后,等于原来的总和加上或减去那个数的2倍,因此总和的奇偶性没有改变。原来九个
数的
总和为1+2+…+9=45,是奇数,经过若干次变化后,总和仍应是奇数,与右上表九个数的总
和是4矛盾。所以不可能变成右上表.
16.不可能
【解析】因为每次加上的数之和是
1+2+3+4=10,所以黑板上的四个数之和永远是10的
整数倍.
999×4=3996,不是10的倍数,所以黑板上的四个数不可都是999.
17.先拿4个苹果
,每个苹果3等分,每人一片;再拿3个苹果,每个苹果4等分,每人一
片。
【解析】显然每人应该分
11
743
=+=+.
12121234
于是,拿4个苹果,每个苹果3等分;拿3个苹果,每个苹果4等分.
18.见解析
【解析】这三个兄弟迷惑不解,尽管他们在学校里学习成绩都不错,可是他们还是不会用
17除
以2、用17除以3、用17除以9,又不让马流血.于是他们就去请教当地一位公认的智
者.这位智者
看了遗嘱以后说:“我借给你们一匹马,去按你们父亲的遗愿分吧!”老人原
有17匹马,加上智者借给
的一匹,一共18匹.于是三兄弟按照18匹马的
111
、和,分
239
别得
到了九匹、六匹和两匹.9+6+2=17(匹).还剩下一匹,是智者借给的那匹,还给智者.
19.见解析
【解析】借一头羊,甲、乙、丙、丁依次分得15,6,5,3头羊,再将借得1头羊还回去.
20.能
【解析】将8个金币分成:3+3+2,3组,把3和3进行称量,如果重量相同,
称剩下的2
个金币即可找到假币;如果重量不同,将比较重的3个金币拿出,用天平称量2个,剩下1<
br>个,天平不平衡易得答案,若此时天平平衡则剩下的那个是假的.
21.能
【解析】
第一次在左右两托盘各放置3个:(一)如果不平衡,那么较轻的一侧的3个中有一
个是假的.从中任取
两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②
如果平衡,剩下的一个是假的;(
二)如果平衡,剩下的三个中必有一个为假的.从中任取两
个分别放在两托盘内:①如果不平衡,较低的
一侧的那个是假的;②如果平衡,剩下的那个
是假的.这类称量找假币的问题,一定要会分类,并尽量是
每一类对应天平称量时的不同状
态(轻,重,平),所以分成3堆是很常见的分法.
22.见解析
【解析】韩信给两人说了一句话:“葫芦归篓,篓归罐”,两人按此分油,果然
把油分成了两
半.具体做法如下表:
韩信的话指明了倒油的方向,始终按从篓向罐中倒,从罐
向葫芦中倒,从葫芦向篓中倒的方
向操作.按照相反的方向倒,即“葫芦归罐,罐归篓”怎样?我们试试
.
看来也行,只是多倒了一次.要注意的是:保持一定的方向很重要. 如果在倒油的过程中,
出现从甲倒向乙,又从乙倒回甲(这两步不一定挨着),那么这两步相互抵消,肯定可以简化
掉,所以
最佳的倒油方法是始终按一个方向倒.
23.能。见解析
【解析】先将5千克的桶倒满油;
再用大桶将小桶倒满,大桶中还有5-4=1(千克)油;然后
将小桶倒空,将大桶中1千克倒到小桶中
;最后注满大桶,连小桶中共是5+1=6(千克).这
道题要学会借助于大桶小桶容积的差量出想获得
的中间量(1千克).
24.见解析
【解析】答案如表所示
25.6次
【解析】通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100<
br>的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:
1.大瓶往中瓶中倒满水.
2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.
3.小瓶中水倒回大瓶.
第 3 页
4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记.
5.小瓶中水倒回大瓶.
6.中瓶中100水倒入小瓶,标记.所以最少要倒6次水.
本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.
26.能
【
解析】大家开始尝试多次之后可能会得出“不可能”的结论,但是大家不要忽略一点,题
中并没要求所有
折线只能限定在这9个点的范围之内.我们把折线的范围冲破本题9个点所
限定的正方形,那么问题就容
易解决了。
27.见解析
【解析】第一瓶拿一个药丸,第二瓶拿两个药丸,第三瓶拿三个,
第四瓶拿四个,称一下比
标准的10个药丸重多少,重多少就是第几个瓶子里的药丸被污染.
28.不存在
【解析】不存在.当1≤a≤6时,从a的位置顺时针走a个数的位置,应到达
2a的位置;当
7≤a≤12时,从a的位置顺时针走a个数的位置,应到达2a-12的位置.由上面
的分析知,
不论a是什么数,结果总是走到偶数的位置,不会走到7的位置.
29.不可能。见解析
【解析】同学们碰到这种题,可能会“具体操作”一下,得到
这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100.当然,连续操
作下
去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100.
因为这一过程
很长,所以这不是好方法.因为231和121都是11的倍数,2不是11的倍数,
所以在操作过程中
产生的数也应当是11的倍数. 100不是11的倍数,所以不可能出现.
操
作问题不要一味地去“操作”,而要找到解决问题的窍门.
30.甲
【解析】如
右下图所示,将格点黑白相间染色,因为老鼠遇到格点必须转弯,所以经过多少
格点就转了多少次弯。如
左下图所示,老鼠从黑点出发,到达任何一个黑点都转了奇数次弯,
所以甲正确 .
31.5
【解析】按图中要求操作,图3中阴影方格的数字之和与空白方格的数字之和的差不变.所
以A
=(1+1+1+1+1)-(0+0+0+0)=5.
32.7次
【解析】答案如表所示
33.不可以
【解析】如下图所示. 守园人只能黑白相间地走,走到的第奇数棵树是白的,
第偶数棵树是
黑的,走到第48棵树应是黑的,而黑树与小木屋不相邻,无法直接回到小木屋.
34.不能
【解析】这种覆盖问题是典型的用染色方法解决的问题之一.用来覆盖,则用黑<
br>白相间染色,可以发现它无论横放、竖放,必然盖住一白一黑.要不重复不留空白,那总共
能盖住
的黑格数、白格数应该相等.但从染色后整个图看,黑格30个,白格32个,故不可
能将整个图不重不
漏地盖住.
35.见解析
【解析】将5升的容器装满水,倒在8升的容器中去,8升的容器
中装入了5升的水,再一
次将5升的容器装满水,倒在8升的容器里,这次8升的容器装不下5升的水了
,只能装入
3升的水。而5升的容器中就剩下2升的水了.