小学奥数学主要内容

萌到你眼炸
530次浏览
2020年08月04日 09:35
最佳经验
本文由作者推荐

北镇中学-论文总结


小学奥数学习的主要内容
1.和差倍问题


已知条件
公式适用
范围
和差问题 和倍问题 差倍问题
几个数的和与差 几个数的和与倍数 几个数的差与倍数
已知两个数的和,差,倍数关系
①(和-差)÷2=较小数
较小数+差=较大数
公式
和-较小数=较大数
和÷(倍数+1)=小数 差÷(倍数-1)=小数
小数×倍数=大数
和-小数=大数
小数×倍数=大数
小数+差=大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
关键问题

和与差
求出同一条件下的
和与倍数 差与倍数
2.年龄问题的三个基本特征:①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3.归一问题的基本特点:问题中有一个不变的量,一 般是那个“单
一量”,题目一般用“照这样的速度”„„等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

4.植树问题
在直线或者不封在直线或者不封闭在直线或者不封闭
基本类型 闭的曲线上植树,的曲线上植树,两的曲线上植树,只
两端都植树
棵数=段数+1
端都不植树
棵数=段数-1
有一端植树
棵数=段数
棵距×段数=总长
封闭曲线上植

基本公式
棵距×段数=总长 棵距×段数=总长
关键问题

确定所属类型,从而确定棵数与段数的关系


5.鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问 题,就是把假设错
的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷
(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷
(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

6.盈亏问题

基本概念 :一定量的对象,按照某种标准分组,产生一种结果:
按照另一种标准分组,又产生一种结果,由于分组 的标准不同,造成
结果的差异,由它们的关系求对象分组的组数或对象的总量.

基本 思路:先将两种分配方案进行比较,分析由于标准的差异造成结
果的变化,根据这个关系求出参加分配的 总份数,然后根据题意求出
对象的总量.

基本题型:


①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数
的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题

基本思路 :假设每头牛吃草的速度为“1”份,根据两次不同的吃法,
求出其中的总草量的差;再找出造成这种差 异的原因,即可确定草的
生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长
时间- 短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

8.周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。


关键问题:确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400
整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数


总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算.

②基准数法:根据给出的数之 间的关系,确定一个基准数;一般选与
所有数比较接近的数或者中间数为基准数;以基准数为标准,求所 有
给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;
最后求这个差的平均数和 基准数的和,就是所求的平均数,具体关系
见基本公式②。

10.抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个
抽屉中至少放有2个物体 。


例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,
那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同 特点:总有那么一
个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有
2个物体 。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有
一个抽屉至 少有:

①k=[nm ]+1个物体:当n不能被m整除时。

②k=nm个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题: 构造物体和抽屉。也就是找到代表物体和抽屉的量,而后
依据抽屉原则进行运算。

11.定义新运算

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基
本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加
减乘除的运算,然后按照基 本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。


12.数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列
数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a
1
表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用a
n
表示;

数列的和:这一数列全部数字的和,一般用
Sn
表示.

基本思路:等差数列中涉及五个量:a
1
,a
n
, d, n,s
n
,,通项公式中涉
及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及 四
个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:a
n
= a
1
+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:s
n
,= (a
1
+ a
n
)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (a
n
+ a
1
)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(a
n
-a
1


÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

13.二进制及其应用


十进制:用0~9十个数字表示,逢10进1;不同数位上的数字
表示不同的含 义,十位上的2表示20,百位上的2表示200。所以
234=200+30+4=2×10
2
+3×10+4。

=A
n
×10
n-1
+A< br>n-1
×10
n-2
+A
n-2
×10
n-3
+A
n-3
×10
n-4
+A
n-4
×10
n- 5
+A
n-6
×10
n-7
+„„+
A
3
×10
2
+A
2
×10
1
+A
1
×10< br>0

注意:N
0
=1;N

=N(其中N是任意自然数)

二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表
示不同的含义。

(2)
= A
n
×2
n-1
+A
n-1
× 2
n-2
+A
n-2
×2
n-3
+A
n-3
×2
n-4
+A
n-4
×2
n-5
+A
n-6< br>×2
n-7

+„„+A
3
×2
2
+A2
×2
1
+A
1
×2
0

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满 2进1的特点,用2连续去除这个数,直到商为0,
然后把每次所得的余数按自下而上依次写出即可。< br>
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个
差的2的n次方, 依此方法一直找到差为0,按照二进制展开式特点
即可写出。

14.加法乘法原理和几何计数

加法原理:如果完成一件任务有n类方法,在第一类 方法中有m
1
种不
同方法,在第二类方法中有m
2
种不同方法„„, 在第n类方法中有
m
n
种不同方法,那么完成这件任务共有:m
1
+ m
2
....... +m
n
种不同的
方法。


关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步 骤进行,做第1步有
m
1
种方法,不管第1步用哪一种方法,第2步总有m
2
种方法„„不管
前面n-1步用哪种方法,第n步总有m
n
种方法,那么完成 这件任务共
有:m
1
×m
2
....... ×m
n
种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+„+(点数一1);

②数角规律=1+2+3+„+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+„+行数×列数

15.质数与合数

质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,
也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。


质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的
质因数。

分解 质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。任何一个合 数分解质因数的结果是唯一
的。

分解质因数的标准表示形式:N=,其中a
1、
a
2、
a
3
„„a
n
都是合数N的
质 因数,且a
1
2
3
<„„n


求约数个数的公式:P=(r
1
+1)×(r
2
+1) ×(r
3
+1)ׄ„×(r
n
+1)

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a
的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一
个,叫做这几个数的最大公约数。

最大公约数的性质:

1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

2、 几个数的最大公约数都是这几个数的约数。

3、 几个数的公约数,都是这几个数的最大公约数的约数。

4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几
个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;


那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数 相除,能够整除的那个余数,
就是所求的最大公约数。

公倍数:几个数公有的倍数, 叫做这几个数的公倍数;其中最小的一
个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48„„;

18的倍数有:18、36、54、72„„;

那么12和18的公倍数有:36、72、108„„;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的
方法

17.数的整除

一、基本概念和符号:

1、整除:如果一个整数 a,除以一个自然数b,得到一个整数商c,
而且没有余数,那么叫做a能被b整除或b能整除a,记作 b|a。


2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵ ”,
所以的符号“∴”;

二、整除判断方法:

1.能被2、5整除:末位上的数字能被2、5整除。

2.能被4、25整除:末两位的数字所组成的数能被4、25整除。

3.能被8、125整除:末三位的数字所组成的数能被8、125整除。

4.能被3、9整除:各个数位上数字的和能被3、9整除。

5.能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7
整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6.能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能
被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7.能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能
被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:

1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。


2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18.余数及其应用

基本概念:对任意自然数a、b、q、r,如果使得a÷b=q „„r,且
0
余数的性质:
①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数
的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的
积除以c的余数。
19.余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记
作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);


④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),
a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡
b×d(mod m);
⑥乘方性:若a≡b(mod m),则a
n
≡b
n
(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则M
A
=M
a×b
=(M
a
)< br>b

②若B=c+d则M
B
=M
c+d
=M
c
×M
d

四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)
或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各
个偶数数位上数字 的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数( 素数),a是自然数,且a不能
被p整除,则a
p-1
≡1(mod p)。
20.分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),
分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。


百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关
系。
③转化思维方 法:把一类应用题转化成另一类应用题进行解答。最常
见的是转换成比例和转换成倍数关系;把不同的标 准(在分数中一般
指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法
是确定不 同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成
相等 或者假设某种情况成立,计算出相应的结果,然后再进行调整,
求出最后结果。
⑤量不变思维 方法:在变化的各个量当中,总有一个量是不变的,不
论其他量如何变化,而这个量是始终固定不变的。 有以下三种情况:
A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不
变。C 、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、
量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
21.分数大小的比较
基本方法:


①通分分子法:使所有分数的分子相同,根据同分子分数大小和分 母
的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子
的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越
大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了
运用以上方法外,可以用同倍率的 变化关系比较分数的大小。(具体
运用见同倍率变化规律)
⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比
较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
22.分数拆分
一、 将一个分数单位分解成两个分数之和的公式:
①=+;
②=+(d为自然数);
23.完全平方数
完全平方数特征:


1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
平方差公式:X
2
-Y
2
=(X-Y)(X+Y)
完全平 方和公式:(X+Y)
2
=X
2
+2XY+Y
2

完全平方差公式:(X-Y)
2
=X
2
-2XY+Y
2

24.比和比例
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后
面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比
值不变。
比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),
则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),
则A与B成反比。


比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
25.综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、
路程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追
及时间)、速度(速度和、速度差) 中任意两个量,求第三个量。
26.工程问题
基本公式:


①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
基本思路:
①假设工作总量为“1”(和总工作量无关);
②假设一个方便的数为工作总量(一般是它们 完成工作总量所用时间
的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效
率及 工作时间.
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
27.逻辑推理
基本方法简介:
①条 件分析—假设法:假设可能情况中的一种成立,然后按照这个假
设去判断,如果有与题设条件矛盾的情况 ,说明该假设情况是不成立
的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判
断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:当题设条件比较多,需要多次假设才 能完成时,
就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一
个长方形表格中 ,表格的行、列分别表示不同的对象与情况,观察表
格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连
线表示两个对象之间的关系,有连 线则表示“是,有”等肯定的状态,


没有连线则表示否定的状态。例如A和B两人之间有 认识或不认识两
种状态,有连线表示认识,没有表示不认识。
④逻辑计算:在推理的过程中除 了要进行条件分析的推理之外,还要
进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条< br>件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规
律和方法,并 从特殊情况推广到一般情况,并递推出相关的关系式,
从而得到问题的解决。
28.几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形
进行 割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图
形变为规则的图形进行计算;另外需要掌 握和记忆一些常规的面积规
律。
常用方法:
1.连辅助线方法
2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点
设置在特殊位置上)。
4.利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除
以4等于等腰直角三角形的面积)


②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
29.立体图形
名称 图形特征 表面积

8个顶点;6个面;相对的面相
方 S=2(ab+ah+bh)
等;12条棱;相对的棱相等;


8个顶点;6个面;所有面相等;
方 S=6a
2

12条棱;所有棱相等;


上下两底是平行且相等的圆;侧S=S

+2S



面展开后是长方形; S

=Ch

圆 下底是圆;只有一个顶点;l:
S=S

+S


锥 母线,顶点到底圆周上任意一点
S

=rl
体 的距离;
球 圆心到圆周上任意一点的距离
S=4r
2

体 是球的半径。
体积
V=abh
=Sh
V=a
3




V=Sh
V=Sh
V=r
3



30.时钟问题—快慢表问题
基本思路:
1、 按照行程问题中的思维方法解题;
2、 不同的表当成速度不同的运动物体;
3、 路程的单位是分格(表一周为60分格);
4、 时间是标准表所经过的时间;合理利用行程问题中的比例关系;


小学奥数学习的主要内容
1.和差倍问题


已知条件
公式适用
范围
和差问题 和倍问题 差倍问题
几个数的和与差 几个数的和与倍数 几个数的差与倍数
已知两个数的和,差,倍数关系
①(和-差)÷2=较小数
较小数+差=较大数
公式
和-较小数=较大数
和÷(倍数+1)=小数 差÷(倍数-1)=小数
小数×倍数=大数
和-小数=大数
小数×倍数=大数
小数+差=大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
关键问题

和与差
求出同一条件下的
和与倍数 差与倍数
2.年龄问题的三个基本特征:①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3.归一问题的基本特点:问题中有一个不变的量,一 般是那个“单
一量”,题目一般用“照这样的速度”„„等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

4.植树问题
在直线或者不封在直线或者不封闭在直线或者不封闭
基本类型 闭的曲线上植树,的曲线上植树,两的曲线上植树,只
两端都植树
棵数=段数+1
端都不植树
棵数=段数-1
有一端植树
棵数=段数
棵距×段数=总长
封闭曲线上植

基本公式
棵距×段数=总长 棵距×段数=总长
关键问题

确定所属类型,从而确定棵数与段数的关系


5.鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问 题,就是把假设错
的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷
(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷
(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

6.盈亏问题

基本概念 :一定量的对象,按照某种标准分组,产生一种结果:
按照另一种标准分组,又产生一种结果,由于分组 的标准不同,造成
结果的差异,由它们的关系求对象分组的组数或对象的总量.

基本 思路:先将两种分配方案进行比较,分析由于标准的差异造成结
果的变化,根据这个关系求出参加分配的 总份数,然后根据题意求出
对象的总量.

基本题型:


①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数
的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题

基本思路 :假设每头牛吃草的速度为“1”份,根据两次不同的吃法,
求出其中的总草量的差;再找出造成这种差 异的原因,即可确定草的
生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;

关键问题:确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长
时间- 短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

8.周期循环与数表规律

周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。


关键问题:确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400
整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9.平均数

基本公式:①平均数=总数量÷总份数

总数量=平均数×总份数


总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算.

②基准数法:根据给出的数之 间的关系,确定一个基准数;一般选与
所有数比较接近的数或者中间数为基准数;以基准数为标准,求所 有
给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;
最后求这个差的平均数和 基准数的和,就是所求的平均数,具体关系
见基本公式②。

10.抽屉原理

抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个
抽屉中至少放有2个物体 。


例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,
那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同 特点:总有那么一
个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有
2个物体 。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有
一个抽屉至 少有:

①k=[nm ]+1个物体:当n不能被m整除时。

②k=nm个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;

关键问题: 构造物体和抽屉。也就是找到代表物体和抽屉的量,而后
依据抽屉原则进行运算。

11.定义新运算

基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基
本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加
减乘除的运算,然后按照基 本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。


12.数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列
数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a
1
表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用a
n
表示;

数列的和:这一数列全部数字的和,一般用
Sn
表示.

基本思路:等差数列中涉及五个量:a
1
,a
n
, d, n,s
n
,,通项公式中涉
及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及 四
个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:a
n
= a
1
+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:s
n
,= (a
1
+ a
n
)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (a
n
+ a
1
)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(a
n
-a
1


÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

13.二进制及其应用


十进制:用0~9十个数字表示,逢10进1;不同数位上的数字
表示不同的含 义,十位上的2表示20,百位上的2表示200。所以
234=200+30+4=2×10
2
+3×10+4。

=A
n
×10
n-1
+A< br>n-1
×10
n-2
+A
n-2
×10
n-3
+A
n-3
×10
n-4
+A
n-4
×10
n- 5
+A
n-6
×10
n-7
+„„+
A
3
×10
2
+A
2
×10
1
+A
1
×10< br>0

注意:N
0
=1;N

=N(其中N是任意自然数)

二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表
示不同的含义。

(2)
= A
n
×2
n-1
+A
n-1
× 2
n-2
+A
n-2
×2
n-3
+A
n-3
×2
n-4
+A
n-4
×2
n-5
+A
n-6< br>×2
n-7

+„„+A
3
×2
2
+A2
×2
1
+A
1
×2
0

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满 2进1的特点,用2连续去除这个数,直到商为0,
然后把每次所得的余数按自下而上依次写出即可。< br>
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个
差的2的n次方, 依此方法一直找到差为0,按照二进制展开式特点
即可写出。

14.加法乘法原理和几何计数

加法原理:如果完成一件任务有n类方法,在第一类 方法中有m
1
种不
同方法,在第二类方法中有m
2
种不同方法„„, 在第n类方法中有
m
n
种不同方法,那么完成这件任务共有:m
1
+ m
2
....... +m
n
种不同的
方法。


关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步 骤进行,做第1步有
m
1
种方法,不管第1步用哪一种方法,第2步总有m
2
种方法„„不管
前面n-1步用哪种方法,第n步总有m
n
种方法,那么完成 这件任务共
有:m
1
×m
2
....... ×m
n
种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+„+(点数一1);

②数角规律=1+2+3+„+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+„+行数×列数

15.质数与合数

质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,
也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。


质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的
质因数。

分解 质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。任何一个合 数分解质因数的结果是唯一
的。

分解质因数的标准表示形式:N=,其中a
1、
a
2、
a
3
„„a
n
都是合数N的
质 因数,且a
1
2
3
<„„n


求约数个数的公式:P=(r
1
+1)×(r
2
+1) ×(r
3
+1)ׄ„×(r
n
+1)

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

16.约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a
的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一
个,叫做这几个数的最大公约数。

最大公约数的性质:

1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

2、 几个数的最大公约数都是这几个数的约数。

3、 几个数的公约数,都是这几个数的最大公约数的约数。

4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几
个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;


那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数 相除,能够整除的那个余数,
就是所求的最大公约数。

公倍数:几个数公有的倍数, 叫做这几个数的公倍数;其中最小的一
个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48„„;

18的倍数有:18、36、54、72„„;

那么12和18的公倍数有:36、72、108„„;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的
方法

17.数的整除

一、基本概念和符号:

1、整除:如果一个整数 a,除以一个自然数b,得到一个整数商c,
而且没有余数,那么叫做a能被b整除或b能整除a,记作 b|a。


2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵ ”,
所以的符号“∴”;

二、整除判断方法:

1.能被2、5整除:末位上的数字能被2、5整除。

2.能被4、25整除:末两位的数字所组成的数能被4、25整除。

3.能被8、125整除:末三位的数字所组成的数能被8、125整除。

4.能被3、9整除:各个数位上数字的和能被3、9整除。

5.能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7
整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6.能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能
被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7.能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能
被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:

1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。


2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18.余数及其应用

基本概念:对任意自然数a、b、q、r,如果使得a÷b=q „„r,且
0
余数的性质:
①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数
的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的
积除以c的余数。
19.余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记
作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);


④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),
a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡
b×d(mod m);
⑥乘方性:若a≡b(mod m),则a
n
≡b
n
(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则M
A
=M
a×b
=(M
a
)< br>b

②若B=c+d则M
B
=M
c+d
=M
c
×M
d

四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)
或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各
个偶数数位上数字 的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数( 素数),a是自然数,且a不能
被p整除,则a
p-1
≡1(mod p)。
20.分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),
分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。


百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关
系。
③转化思维方 法:把一类应用题转化成另一类应用题进行解答。最常
见的是转换成比例和转换成倍数关系;把不同的标 准(在分数中一般
指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法
是确定不 同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成
相等 或者假设某种情况成立,计算出相应的结果,然后再进行调整,
求出最后结果。
⑤量不变思维 方法:在变化的各个量当中,总有一个量是不变的,不
论其他量如何变化,而这个量是始终固定不变的。 有以下三种情况:
A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不
变。C 、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、
量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
21.分数大小的比较
基本方法:


①通分分子法:使所有分数的分子相同,根据同分子分数大小和分 母
的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子
的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越
大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了
运用以上方法外,可以用同倍率的 变化关系比较分数的大小。(具体
运用见同倍率变化规律)
⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比
较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
22.分数拆分
一、 将一个分数单位分解成两个分数之和的公式:
①=+;
②=+(d为自然数);
23.完全平方数
完全平方数特征:


1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
平方差公式:X
2
-Y
2
=(X-Y)(X+Y)
完全平 方和公式:(X+Y)
2
=X
2
+2XY+Y
2

完全平方差公式:(X-Y)
2
=X
2
-2XY+Y
2

24.比和比例
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后
面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比
值不变。
比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),
则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),
则A与B成反比。


比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
25.综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、
路程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追
及时间)、速度(速度和、速度差) 中任意两个量,求第三个量。
26.工程问题
基本公式:


①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
基本思路:
①假设工作总量为“1”(和总工作量无关);
②假设一个方便的数为工作总量(一般是它们 完成工作总量所用时间
的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效
率及 工作时间.
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
27.逻辑推理
基本方法简介:
①条 件分析—假设法:假设可能情况中的一种成立,然后按照这个假
设去判断,如果有与题设条件矛盾的情况 ,说明该假设情况是不成立
的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判
断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:当题设条件比较多,需要多次假设才 能完成时,
就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一
个长方形表格中 ,表格的行、列分别表示不同的对象与情况,观察表
格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连
线表示两个对象之间的关系,有连 线则表示“是,有”等肯定的状态,


没有连线则表示否定的状态。例如A和B两人之间有 认识或不认识两
种状态,有连线表示认识,没有表示不认识。
④逻辑计算:在推理的过程中除 了要进行条件分析的推理之外,还要
进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条< br>件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规
律和方法,并 从特殊情况推广到一般情况,并递推出相关的关系式,
从而得到问题的解决。
28.几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形
进行 割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图
形变为规则的图形进行计算;另外需要掌 握和记忆一些常规的面积规
律。
常用方法:
1.连辅助线方法
2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点
设置在特殊位置上)。
4.利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除
以4等于等腰直角三角形的面积)


②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
29.立体图形
名称 图形特征 表面积

8个顶点;6个面;相对的面相
方 S=2(ab+ah+bh)
等;12条棱;相对的棱相等;


8个顶点;6个面;所有面相等;
方 S=6a
2

12条棱;所有棱相等;


上下两底是平行且相等的圆;侧S=S

+2S



面展开后是长方形; S

=Ch

圆 下底是圆;只有一个顶点;l:
S=S

+S


锥 母线,顶点到底圆周上任意一点
S

=rl
体 的距离;
球 圆心到圆周上任意一点的距离
S=4r
2

体 是球的半径。
体积
V=abh
=Sh
V=a
3




V=Sh
V=Sh
V=r
3



30.时钟问题—快慢表问题
基本思路:
1、 按照行程问题中的思维方法解题;
2、 不同的表当成速度不同的运动物体;
3、 路程的单位是分格(表一周为60分格);
4、 时间是标准表所经过的时间;合理利用行程问题中的比例关系;

沈阳航空航天-shuoshuo


湖北三峡职业技术-应急管理工作总结


遇到困难的作文-土建技术员工作总结


行政管理学毕业论文-小学校长述职报告


英国中央兰开夏大学-东营银行


繁星冰心-手抄报大全简单又漂亮


母鸡孵蛋-银行从业资格证书打印


apec会议-农业谚语大全