三年级奥数-逻辑推理 (1)

巡山小妖精
540次浏览
2020年08月04日 13:39
最佳经验
本文由作者推荐

大学生职业生涯规划-语句赏析











第十一讲:逻辑推理

教学目标

1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析法等
2. 培养学生的逻辑推理能力,掌握解不同题型的突破口.
3. 能够利用所学的数论等知识解复杂的逻辑推理题

知识精讲

逻辑推理作 为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作
为专项的内容出 现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既
有趣又可以开发 智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。

一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选 准突破口,层层剖析,
一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表 的方式,把错综复杂的
约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件 变得一目了然,答案也
就容易找到了.

二、假设推理
用假设法解逻辑推 理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成
立;如果推不出矛盾, 而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设

模块一、列表推理法
【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓 球混合双打比赛.事先规定:兄妹
二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小 红对刘刚和马辉的妹妹.问:
三个男孩的妹妹分别是谁?
【解析】 因为兄妹二人不许搭伴, 所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由
第二盘看出,小红不是马辉的 妹妹.将这些关系画在左下表中,由左下表可得右下表.
小丽
刘刚
马辉
李强
小英小红
小丽
刘刚
马辉
李强
小英小红
×
×
×
×
×
×

×

×

×
×

刘刚与小红、马辉与小英、李强与小丽分别是兄妹.

【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运
动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断
王文、张贝、李丽各是什么运动员?
【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,



“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”
王文 张贝 李丽
跳伞
田径
游泳



×


×
×

由⑴⑶可知张贝、李丽都不是跳伞运动员 ,可填出第一行,即王文是跳伞运动员;由⑶可知,李
丽也不是田径运动员,可填出第三列,即李丽是游 泳运动员,则张贝是田径运动员.

【巩固】 李波、顾锋、刘英三位老师共同担负六年级某 班的语文、数学、政治、体育、音乐和图画六门
课的教学,每人教两门.现知道:
⑴ 顾锋最年轻;
⑵ ⑵李波喜欢与体育老师、数学老师交谈;
⑶ ⑶体育老师和图画老师都比政治老师年龄大;
⑷ ⑷顾锋、音乐老师、语文老师经常一起去游泳;
⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?
【解析】 李波教语文、图画,顾 锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;
由⑵推知刘英教体育;由⑶⑸推 知李波教图画、语文.

【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是 大队长,一个是中队长,一个是小队
长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好. ⑵王平和中队长的成绩不
相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大 队长呢?
【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断 定,王平不是
中队长,宋丹也不是中队长,只有韩涛当中队长了.
大队长 中队长 小队长
王平
宋丹
韩涛



×
×




王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长 的成绩好,中队长比宋丹的成绩差,可
以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成 绩好,韩涛的成绩比大队长的
成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.

【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师, 已知:⑴张明
不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷ 席
辉不是农民.问:这三人各住哪里?各是什么职业?
【解析】 这道题的关系要复杂一些, 要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三
者的关系需要两两构造三个表,即人 物与地点,人物与职业,地点与职业三个表.
我们先将题目条件中所给出的关系用下面的 表来表示,由条件⑴得到表
1
,由条件⑵、⑶得到表
2

由条件⑷得 到表
3


因为各表中,每行每列只能有一个“√”,所以表
2
可填全为表
5




由表
5
知农民在北京工作,又知席辉 不是农民,所以席辉不在北京工作,可以将表
1
可填全完为表
4

由 表
4
和表
5
知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住 在北京,是农民.

方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人, 所以席辉不是工人,又不
是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明 在上海工作,是工
人。李刚在北京,是农民。

【巩固】 甲、乙、丙三人,他们的 籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已
知:⑴甲不是辽宁人,乙不是广 西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.
求这三人各自的籍贯和职业.
【解析】 由题意可画出下面三个表:


将表
3
补全为 表
4
.由表
4
知,工人是辽宁人,而乙不是工人,所以乙不是辽宁人,由此可 将表
1

全为表
5


所以,甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人.
方法 二:将能判断的条件先列入图表中,广西人是教师,但是乙不是广西人,所以乙不是教师,乙
又不是工人 ,所以乙为演员。在对应的地方打上“√”,对应的行列均打“×”。但是辽宁人不是演
员,所以乙不是 辽宁人,乙就是山东人,所以甲是广西人,职业是教师;乙是山东人,职业是演员;
丙是辽宁人,职业是 工人。





【巩固】 小明、小芳、小花各爱 好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所
小学上学。现知道:(1)小明 不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)
爱好游泳的在一小;(5)爱好游 泳的不是小芳。问:三人上各爱好什么运动?各上哪所小学?
【解析】 这道题比上例复杂,因为要判 断人、学校和爱好三个内容。先将题目条件中给出的关系用下面的
表1、表2、表3表示:

因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。

由表 4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。于是可将表1补全为表
5。对照 表5和表4,得到:小明在二小上学,爱好打乒乓球;小芳在三小上学,爱好打羽毛球;小花在一
小上学 ,爱好游泳。

【巩固】 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只 知道:小李比教师年龄大;
小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师 ?
【解析】 这道题目并不难,聪明的小朋友思考一下就能得到答案,但是今天我们通过这道题目一起
来学习一个十分有用的方法:列表分析法。由题目条件可以知道:小李不是教师,小王不
是农民 ,小张不是农民。由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。

因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,
于是得到右上表。
因为农民小李比小张年龄小,又小李比教师年龄大,所以小张 比教师年龄大,即小张不是
教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王 是教师。

例题中采用列表法,使得各种关系更明确。为了讲解清楚,例题中画了几个表,实际解题



时,不用画这么多表,只在一个表中先后画出各种关系即可。
需要 注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的
关系画在表上;②每 行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的
其余格中都应画“×”。


【例 3】 甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知 :⑴教师不知道甲的职业;
⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师; ⑸乙和丙从未见过
面.那么甲、乙、丙、丁的职业依次是: .
【解析】 律师、 教师、警察.由⑶可以知道丙不是律师,但是他见过律师,再由⑸知乙不是律师,又由⑷
可知甲是律师. 于是由⑴和⑶知丙不是教师,由⑵和⑸知丙不是医生,从而丙是警察.再由⑵知
乙是教师,丁是医生.
列表如下(列表的好处在于直观明了,不会犯错误):





教师
×⑴

×⑴⑶
×
医生
×
×⑵
×⑵,⑸

律师

×⑸
×⑶
×⑷
警察
×
×

×

【巩固】 甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地.
甲说:“我和乙都住在北京,丙住在天津.”
乙说:“我和丁都住在上海,丙住在天津.”
丙说:“我和甲都不住在北京,何伟住在南京.”
丁说:“甲和乙都住在北京,我住在广州.”
假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?
【解析】 因为甲 、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真
话,推出乙既住 在北京又住在上海,矛盾.所以假设不成立,即“丙住在天津”是真话.
因为甲的前两句 话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广
州”是真的.由此知乙的 第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而
推知甲的第二句是假话,第一句“ 我住在北京”是真话;最后推知丙的第二句话是假话,第三句
“何伟住在南京”是真话.所以,何伟住在 南京.

【例 4】 甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一 种语言只有一人会说.他
们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵ 甲会日语,丁
不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日 、
法两种语言.请问:甲、乙、丙、丁各会哪两种语言?
【解析】 由⑴⑵⑷可得下表,其中 丙不会日语是因为甲会日语,且甲与丙交谈需要翻译.由下表看出,甲
会的另一种语言不是中文就是英语 .








×

×
×
×

先假设甲会说中文.由⑵知,丁也会中文;由 ⑴知丙不会中文,再由每人会两种语言,知丙会英、
法语(见左下表:由⑴⑷推知乙会中文和法语;再由 ⑶及每人会两种语言,推知丁会英语(见右
下表).结果符合题意.



















√××< br>√
×
×



×
×

再假设甲会说英语.由⑵知,丁也会英语;由⑴知丙不会英语,再由每人会两种语言,知丙会中
文和法语 (见左下表);由⑴⑷ 推知,乙会中文和日语;再由⑶及每人会两种语言,推知丁会
法语(见右下表) .右下表与“有一种语言只有一人会说”矛盾.假设不成立.







√××


×

×
×


×


×
×








×
√×

×

×

×

×
×
√×


×
×


×

×
×


×

所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语.

【巩固】 宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“ 跳高冠军”、
“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳 高
冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好
⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号
吗?
【解析】 由⑵知,宝宝不是跳高冠军和大作家;由 ⑸知,贝贝不是大作家;由⑹知,贝贝、聪聪都不是
小画家,可以得到下表:
数学博士 短跑健将 跳高冠军 小画家 大作家 歌唱家
宝宝 × √ ×
贝贝 × ×
聪聪 × √
因为宝宝是小画家,所以由⑶⑷知宝宝不是短跑健将和数学博士 ,推知宝宝是歌唱家,因为聪聪
是大作家,所以由⑵知聪聪不是跳高冠军,推知贝贝是跳高冠军,因为贝 贝是跳高冠军,所以由
⑴知贝贝不是数学博士,将上面结论依次填入上表,得到下表:

数学博士 短跑健将 跳高冠军 小画家 大作家 歌唱家
宝宝 × × × √ × √
贝贝 × √ √ × × ×
聪聪 √ × × × √ ×
所以,宝宝是小画家和歌唱家,贝贝是短跑健将和跳高冠军,聪聪是数学博士和大作家.

【例 5】 (
2007
年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明 猜想比赛的结果是:
3

第一名,
2
班第二名,
1
班第三名,
4
班第四名.小华猜想比赛的结果是:
2
班第一名,
4
班第
二名,
3
班第三名,
1
班第四名.结果只有小华猜到的
4
班为第二名是正确的.那么这次竞赛的
名次是 班第一名, 班第二名, 班第三名, 班第四名。
【解析】 方法一:依题意,
3班不为第一名也不为第三名,那么
3
班为第四名.同样,
2
班不为第二名 也
不为第一名,那么
2
班为第三名.
1
班不为第三名也不为第四名, 那么
1
班为第一名.故第一名到
第四名依次为
1
班,
4班,
2
班,
3
班.
方法二:我们可以将两人的猜测结果列成表 格形式,将小明猜想结果用“▲”表示,小华猜测结
果用“★”表示,列表如下:



第一名 第二名 第三名 第四名
▲ ★
1


2
班 ★
3
班 ▲ ★
★ ▲
4

由题意知只有小华猜到的
4
班为第二名 正确,其他的全是错误的,所以很容易确定各班名次
(打√的即为正确的名次)
第一名 第二名 第三名 第四名
▲ ★
1
班 √
▲ √
2
班 ★
3
班 ▲ ★ √
★√ ▲
4

方法二:题目中只有小华猜到4班为第二名是正确的,那么其他的猜想均为错 误的。在其对应的
地方打“×”,正确的则打“√”。
第一名 第二名 第三名 第四名
× × ×
1
班 √
× √ ×
2
班 ×
3
班 × × × √
√ × ×
4
班 ×

【巩固】 甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人 都
对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第
四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜
中,则 出赛顺序中,第一是__________;第三是__________.
【解析】 题中每个人都 猜了另外两个人的出场顺序,每个人的出场顺序也都被另外两个人猜过,其中戊被
乙和丙猜的都是第四, 由于每人的出赛顺序都至少被一人所猜中,所以戊是第四(否则戊的出赛
顺序没有人猜中),以此为突破 口。由于戊是第四,则在第四列其余地方均打“×”则丁不能第
四,所以丁的出赛顺序被乙猜中,为第五 ,则丙不能是第五,丙只能是第一,甲不能是第一,故
甲是第三,乙是第二,所以答案为:第一是丙,第 三是甲.






第一
丙猜的×
×
丁猜的√
×
×
第二
×
丁猜的√
×
×
×
第三
戊猜的√
甲猜的×
×
×
×
第四
×
×
×
戊猜的×
第五
×
×
甲猜的×
乙猜的√
乙猜的,丙猜的√ ×

【例 6】 红、黄、蓝、白、紫五种 颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有
A

B

C

D

E
五个人,猜各包珠子的颜色,每人只猜两包.
A
猜:第二包是紫的,第三包是黄的;
B
猜:第二包是蓝的,第四包是红的;
C
猜:第一包是红的,第五包是白的;
D
猜:第三包是蓝的,第四包是白的;
E
猜:第二包是黄的,第五包是紫的.
猜完后,打开各纸包一看发现每人都只猜对了 一包,并且每包只有一人猜对.请你判断他们各
猜对了其中的哪一包?
【解析】 方法一:题 目要求
A

B

C

D

E五个人在猜每包珠子的颜色时每人只猜两包且每人都只猜
对了一包每包只有一人猜对,所以观察五包 珠子中第一包只有
C
猜,所以
C
猜对了第一包,又根
据每人只猜对了 一种,所以
C
猜第五包是白的,猜错了;第五包只有
C

E
两人猜,所以
E
猜第
五包是紫的,猜对了;那么
E
猜第二包是黄的, 猜错了;紫颜色的珠子,只有
A

E
两人猜,那




A
猜第二包是紫的,猜错了;第二包有
A

B

E
三人猜,其中
A

E
都猜错了 ,所以
B
猜第
二包是蓝的,猜对了;那么
B
猜第四包是红的,猜错了 ;所以
D
猜对的是第四包,是白的.
D

第三包是蓝的,也猜错了; 所以
A
猜对的是第三包,是黄的;
总结以上推理判断,
A
猜对了第 三包是黄的,
B
猜对了第二包是蓝的,
C
猜对了第一包是红的,
D< br>猜对了第四包是白的,
E
猜对了第五包是紫的.
方法二:分析同方法一,第一 包只有一人猜对,所以第一包为红色,在第一行的其余地方打上
“×”第四包不为红色,第四包为白色, 白色不能为第五包,第五包就为紫色,同理可知其余各
包颜色。
红色 黄色 蓝色 白色 紫色






×
×
×
×
×
×

×
×
×

×
×
×
×
×
×

×
×
×
×
×


【巩固】 五封信,信封完全相同,里面分别夹着红、蓝、黄、白、紫五种颜色的卡片.现在把它们按顺
序排成一行 ,让
A

B

C

D

E
五人猜每只信封内所装卡片的颜色.

A
猜:第2封内是紫色,第3封是黄色;

B
猜:第2封内是蓝色,第4封是红色;

C
猜:第1封内是红色,第5封是白色;
D
猜:第3封内是蓝色,第4封是白色;

E
猜:第2封内是黄色,第5封是紫色.
然后,拆开信封一看,每人都猜对 一种颜色,而且每封都有一人猜中.请你根据这些条件,再猜
猜,每封信中夹什么颜色的卡片?
【解析】 把已知条件简明地记录在表格中.选择其中一只信封作为“突破口”.比如第3封,
A
猜的是黄
色,
D
猜的却是蓝色.由已知条件,这只信封内的卡片不是蓝色, 就是黄色.假如第3封是蓝色,
那么逐步推理可导出矛盾:白色卡片没人猜对.这说明假设不正确,第3 封内应是黄色.由此推
出其它各封内的颜色.

【巩固】 (2008年北京“数学 解题能力展示”读者评选活动)老师在3个小箱中各放一个彩色球,让小
明、小强、小亮、小佳四人猜一 下各个箱子中放了什么颜色的球.
小明说:“
1
号箱中放的是黄色的,
2< br>号箱中放的是黑色的,
3
号箱中放的是红色的.”
小亮说:“
1号箱中放的是橙色的,
2
号箱中放的是黑色的,
3
号箱中放的是绿色的. ”
小强说:“
1
号箱中放的是紫色的,
2
号箱中放的是黄色的,< br>3
号箱中放的是蓝色的.”
小佳说:“
1
号箱中放的是橙色的,< br>2
号箱中放的是绿色的,
3
号箱中放的是紫色的.”
老师说:“你们中有一个人恰好猜对了两个,其余的三人都只猜对一个.”
那么
3
号箱子中放的是________色的球.
【解析】 由于猜中的总 次数为
5
次,所以有一个箱子至少被猜中了
2
次以上,从而这个箱子只能是< br>2
号箱,
推理得出只能是小亮对了
2
次,其他人只对一次,所以
1
号箱只能是橙色的,那么
3
号箱的颜色是
蓝色的.

【巩固】 四张卡片上分别写着奥、林、匹、克四个字(一张上写一个字),取出三张字朝下放在桌上,
A

B

C
三人分别猜每张卡片上是什么字,猜的情况见下 表:
第一张 第二张 第三张
林 奥 克
A

林 匹 克
B

C
匹 奥 林
结果,有一人一张也没猜中,一人猜中两张,另一人猜中三张.问:这三张卡片上各写着什么字.
【解析】
A

B
有两张猜的相同,必有一人全对,一人对两张,因 此,
C
全错,推知
B
全对.



【例 7】 老师让小新把小胖、小贝、小丸子、小淘气、小马虎的作业本带回去,小新见到这五人后就 一
人给了一本,结果全发错了.现在知道:⑴小胖拿的不是小贝的,也不是小淘气的;⑵小贝拿
的不是小丸子的,也不是小淘气的;⑶小丸子拿的不是小贝的,也不是小马虎的;⑷小淘气拿
的不是小丸 子的,也不是小马虎的;⑸小马虎拿的不是小淘气的,也不是小胖的.另外,没有
两人相互拿错(例如小 胖拿小贝的,小贝拿小胖的).问:小丸子拿的是谁的本?小丸子的本被
谁拿走了?
【解析】 根据“全发错了”及条件⑴~⑸,可以得到下表:
小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × ×
小贝 × × ×
小丸子 × × ×
小淘气 × × ×
小马虎 × × ×
由表1看出,小淘气的本被 小丸子拿了.此时,再继续推理分析不大好下手,我们可用假设法.由
上表知,小胖拿的本不是小丸子的 就是小马虎的.
先假设小胖拿了小丸子的本.于是得到下表,表中小贝拿小马虎的本,小马虎拿小贝的 本.两人
相互拿错,不合题意.

小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × √ × ×
小贝 × × × × √
小丸子 × × × √ ×
小淘气 √ × × × ×
小马虎 × √ × × ×
再假设小胖拿小马虎的本.于是又可得表,经检验,下表符合题意.
小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × × × √
小贝 √ × × × ×
小丸子 × × × √ ×
小淘气 × √ × × ×
小马虎 × × √ × ×
所以小丸子拿了小淘气的本,小丸子的本被小马虎拿去了.


模块二、假设推理

【例 8】 甲、乙、丙三人,一个总说谎,一个从不说谎,一 个有时说谎.有一次谈到他们的职业.甲说:
“我是油漆匠,乙是钢琴师,丙是建筑师.”乙说:“我是 医生,丙是警察,你如果问甲,甲
会说他是油漆匠.”丙说:“乙是钢琴师,甲是建筑师,我是警察.” 你知道谁总说谎吗?
【解析】 甲.如果甲从不说谎,那么乙的最后一句、丙的第一句都对,没有总说 谎的人,矛盾;同理,如
果丙从不说谎,也将推出矛盾.

【巩固】 在神话王国内 ,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的
居民小白、小黑、小蓝, 小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一
个是骑士,一个是骗子.”国王 很快判断出谁是骑士,谁是骗子.你能判断出吗?
【解析】 假设小白是骑士(说实话),则小蓝是骑 士,小黑是骗子;又因为小蓝是骑士,那么小白、小蓝
不同,一个是骑士,一个是骗子,与小白、小蓝均 为骑士矛盾.假设小白是骗子(说假话),那
么小蓝是骗子,小黑是骑士,又因为小蓝是骗子,所以小白 、小蓝不同是假话.因此,小白、小
蓝是骗子,小黑是骑士.

【巩固】 一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话.请提一个尽量简单的



问题,使两人的回答相同.这个问题可以是 .
【解析】 这个问题可以是:你是老实人吗?如果问的问题是客观的,也就是说对于这两个人来说真 正的答
案是一样的话,那么他们的回答肯定不一样.所以要问一个与他们自身相关的问题,例如你是老< br>实人吗?或者问你是骗子吗?这样他们的回答才会一样.

【巩固】 甲说:“乙和丙 都说谎。”乙说:“甲和丙都说谎。”丙说:“甲和乙都说谎。”根据三人所说,你
判断一下,下面的结 论哪一个正确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一
人说谎;(4)三人中只 有一人不说谎。
【解析】 (4)正确。

【例 9】 某地质学院的学生对一种 矿石进行观察和鉴别。甲判断:不是铁,也不是铜。乙判断:不是铁,
而是锡。丙判断:不是锡,而是铁 。经化验证明:有一个人的判断完全正确,有一个人说对了
一半,而另一个人完全说错了。你知道三人中 谁是对的,谁是错的,谁是只对一半的吗?
【解析】 丙全说对了,甲说对了一半,乙全说错了。先假 设甲全对,推出矛盾后,再设乙全对,又推出矛
盾,则说明丙全对,甲说对了一半,乙全说错了。

【巩固】 三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判 断:不是苹
果,也不是梨.淘淘判断:不是苹果,而是桃子.皮皮判断:不是桃子,而是苹果.老猴子告
诉他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另一只小猴子完全说错
了 .你知道三只小猴中谁是对的,谁是错的,谁是只对一半的吗?
【解析】 先设聪聪全对,不是苹果, 也不是梨只能是桃子,那么淘淘两句也都说对了,推出矛盾;再设淘
淘全对,不是苹果,而是桃子,推出 这个水果是桃子,那么聪聪说的也都对了,又推出矛盾;则
说明皮皮全对,那么这种水果是苹果,聪聪说 对了一半,淘淘全说错了.

【例 10】 (
2007
年太原福布斯迎奥 运数学展示活动)
4
名运动员参加一项比赛,赛前,甲说:“我肯定
是最后一名.”乙 说:“我不可能是第一名,也不可能是最后一名.”丙说:“我绝对不会得最后
一名.”丁说:“我肯定 得第一名.”赛后,发现他们
4
人的预测中只有一人是错误的.请问谁的
预测是错误的 ?
【解析】 假设甲的预测是错的,那么其他三人的预测都是对的,那么甲不是最后一名,乙和丙也不 是最后
一名,丁是第一名,这样的话没有人是最后一名,矛盾.所以甲的预测是对的,甲是最后一名,< br>那么丙的预测也是对的.如果乙的预测是错的,那么乙是第一名,而丁的预测是对的,丁也是第
一 名,矛盾.所以乙的预测是对的,丁的预测是错的.

【巩固】 甲、乙、丙、丁在比较他们 的身高,甲说:“我最高.”乙说:“我不最矮.”丙说:“我没甲高,
但还有人比我矮.”丁说:“我 最矮.”实际测量的结果表明,只有一人说错了.请将他们按身高
次序从高到矮排列出来.
【解析】 丁不可能说错,否则就没有人最矮了.由此知乙没有说错.若甲也没有说错,则没有人说错, 矛
盾.所以只有甲一人说错.所以丁是最矮的,甲不是最高的,丙没甲高,但还有人比他矮,那么
只能是甲第二高,丙第三高,乙最高.所以他们的身高次序为乙、甲、丙、丁.

【巩固】 (
2009
年第七届希望杯一试试题)百米决赛前,小芳对参赛的五名选手的名次作了预测,比 赛
的结果同她预测的名次全不相同.由下图知小芳预测为第一名的选手的实际名次是第
名.



我预测的第二名、第三名、
第四名中有1 人高出3个名次,
有1人高出1个名次,另一人
低1个名次.

【解析】 假设小芳预测第一名、第二名、第三名、第四名、第五名对应的人分别是甲、乙、丙、丁、戊,
由小芳说 的话知第四名丁就是实际名次的第一名, 预测的第二名乙就是实际名次的第三名, 预
测的第三名丙就 是实际名次的第二名,因此实际的第一名、第二名、第三名的人分别是丁、丙、
乙,又知道比赛的结果同 她预测的名次全不相同,所以小芳预测的第五名戊只能是实际的第四名
了,这样实际名次的第五名只能是 小芳预测的第一名甲了.(如下表所述)

实际名次对应的人
第一名 第二名 第三名 第四名 第五名







甲 丁
小芳预测名次对应的人 甲

【巩固】 (
2007
年台湾第一届小学数学世界邀请赛)在期末考试前,学生
W

X
Y

Z
分别预测他们
的成绩是
A

B

C

D
,评分标准是
A

B
好,
B

C
好,
C

D
好.
W
说:“我们的成绩都将不相同.若我的成绩得
A
,则
Y
将得
D
.”
“若
Y
的成绩得
C
,则
W
将得< br>D

W
的成绩将比
Z
好.”
X
说:
“若
X
的成绩不是得到
A
,则
W
将得
C
.若我的成绩得到
B
,则
Z
的成绩将不是
D
.”
Y
说:
“若
Y
的成绩得到
A
,则我将得到
B
.若
X
的成绩不是得到
B
,则我也将不会得到
B
.” < br>Z
说:
当期末考试的成绩公布,每位学生所得到的成绩都完全符合他们的预测.请问这四 位学生的成绩
分别是什么?
【解析】 由于每位学生所得到的成绩都完全符合他们的预测,所 以
X
说:“
W
的成绩将比
Z
好”是正确的,
这样< br>W
将不可能得
D

Z
不可能得
A
.这样Y
不可能得
C
(否则
W

D
).
⑴ 如果
W

A
,那么
Y
将得
D
.由于
X
的成绩不是得到
A
,那么
W
将得
C
,这与W

A
矛盾.所

W
不得
A
⑵如果
Y

A
,那么
Z
将得到
B
.但 这样
W
的成绩将不可能比
Z
好,矛盾.所以
Y
不得
A

⑶由于
W

Y

Z
均不得
A
,那么只有
X

A

⑷如果
Y
B
,那么
Z
的成绩将不是
D
.这样
Z
的成绩将 是
C

W
的成绩将是
D
,矛盾.所以
Y
不 得
B
.由于
Y
不得
A

B

C< br>,所以
Y

D

⑸由于
W
的成绩比
Z
好,所以剩下的
B

C
只能是
W

B

Z

C

所以
W

X

Y

Z
的成绩分别是
B

A

D

C


【巩固】 (
2008
年第十二届 香港保良局小学数学世界邀请赛个人赛)三位女孩
A

B

C
进行百米赛
跑,裁判
D

E

F
在赛前猜测她们 之间的名次。
D
说:“我猜
A
是第一名。”
E
说:“我猜< br>C
不会是最后一名。”
F
说:“我猜
B
不会是第一名。”成绩 揭晓后已知恰只有一位裁判的猜
测是正确的,请问哪位女孩得第一名?
【解析】 假设
A
是第一名,那么
D
猜测正确,
F
猜测正确,出现矛盾。假设B
是第一名,那么
D

F

测错误,而当
C< br>为第二名时,
E
猜测正确。假设
C
为第一名,那么
E

F
猜测正确,出现矛盾,
所以第一名是
B


【巩固】 小强、小明、小勇三人参加数学竞赛,他们分别来自甲、乙、丙三个学校,并分别获得一、二 、
三等奖.已知:⑴小强不是甲校选手;⑵小明不是乙校选手;⑶甲校的选手不是一等奖;⑷乙
校的选手得二等奖;⑸小明不是三等奖.根据上述情况,可判断出小勇是 校的选手,他
得的是 等奖.



【解析】 甲校;三等奖.由⑵、小明得的不是二等奖, 由⑸知小明得的不是三等奖,所以小明得的是-等
奖,由⑶、⑷知小明是丙校的,由⑴知小强是乙校的, 所以小勇是甲校的,他得的是三等奖.

【例 11】 一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问.四人分别
供述如下:
甲说:“罪犯在乙、丙、丁三人之中.”
乙说:“我没有作案,是丙偷的.”
丙说:“在甲和丁中间有一人是罪犯.”
丁说:“乙说的是事实.”
经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话.
同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?
【解析】 如果甲说的是 假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话.可是乙和丁两
人的观点一致,所以在 剩下的三人中只能是丙说了假话,乙和丁说的都是真话.即“丙是盗窃
犯”.这样一来,甲说的也是对的 ,不是假话.这样,前后就产生了矛盾.所以甲说的不可能是
假话,只能是真话.同理,剩下的三人中只 能是丙说真话.乙和丁说的是假话,即丙不是罪犯,
乙是罪犯.又由甲所述为真话,即甲不是罪犯.再由 丙所述为真话,即丁是罪犯.所以乙和丁是
盗窃犯.

【巩固】 四个小朋友宝宝、 星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,
陆老师跑出来查看,发现一块 窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”
宝宝说:“是星星无意打破的。”
星星说:“是乐乐打破的。”
乐乐说:“星星说谎。”
强强说:“反正不是我打破的。”
如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?
【解析】 因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。
假设星星说 得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了
实话”矛盾,所以星星说错 了。
假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破 的。
宝宝、星星确实都说错了。符合题意。
所以是强强打破了玻璃。

【巩固】 (
2007
年春武汉明心奥数挑战赛)
5
名谋杀案的嫌疑 人,在犯罪现场被警察询问,其中有一名
是凶手.下面
5
个人的供述中,只有
3
句是对的:
A
说:
D
是杀人犯;
B
说:我是无辜的;
C
说:
E
不是杀人犯;
D
说:
A
在说谎;
E
说:
B
说的是实话.
在这
5
个人中, 是凶手.
【解析】
B

E
判断相同,要么都对,要么都错. < br>假设
B

E
都错,即凶手是
B
,那么
A也错,就出现了
3
句错的,与“有
3
句是对的”矛盾.所
B

E
都是对的.
余下的
3
人中还有
1人判断是对的,由于
A

D
互相矛盾,所以这两个人中必有一个是对的, 一
个是错的,由于只有
3
句是对的,那么
C
必定是错的,所以
E
是凶手.

【巩固】 甲,乙,丙,丁四个同学中有两个同学在假日为街道做好 事,班主任把这四人找来了解情况,
四人分别回答如下.甲:“丙、丁两人中有人做了好事.”
乙:“丙做了好事,我没做.”
丙:“甲、丁中只有一人做了好事.”



丁:“乙说的是事实.”
最后通过仔细分析调查,发现四人中有两 人说的是事实,另两人说的与事实有出入.到底是谁做了
好事?
【解析】 我们用假设法来解 决.题目说四人中有两人说的是事实,另两人说的与事实有出入.注意,此处
的“与事实有出入”表示不 完全与事实相符,比如,当乙、丙都做了好事,或乙、丙都没做好事,
或乙做了好事而丙没做好事时,乙 说的话都与事实有出入.
因为乙与丁说的是一样的,所以只有两种可能,要么乙与丁正确 ,甲与丙错;要么乙与丁错,甲
与丙正确.
⑴假设乙与丁说的话正确.这时丙做了好事,甲说 丙、丁两人中有人做了好事,甲说的话也正确,
这与题目条件只有“两人说的是事实”相矛盾.所以假设 错误.
⑵假设甲与丙说的话正确.那么做好事的是甲与丙,或乙与丁,或丙与丁.若做好 事的是甲与丙,
或丙与丁,则乙说的话也正确,与题意不符;若做好事的是乙与丁,则乙说的话与事实不 符,符
合题意.
综上所述,做好事的是乙与丁.

【例 12】 甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。甲说:“丙

1
名,我第
3
名。”乙说:“我第
1
名,丁第
4
名。”丙说:“丁第
2
名,我第
3
名。”成绩揭晓后,
发现他们每人只说对了一半,你能说出他们的名次吗?
【解析】 我们以“他们每人只说对了一半”作为前提,进行逻辑推理。
假设甲说的第一句话“丙第
1
名”是对的,第二句话“我第
3
名”是错的。由此推知乙说的“我

1
名”是错的,“丁第
4
名”是对的;丙说的“丁第
2
名 ”是错的,“丙第
3
名”是对的。这与假
设“丙第
1
名是对的”矛盾 ,所以假设不成立。
再假设甲的第二句话“我第
3
名”是对的,那么丙 说的第二句“我第
3
名”是错的,从而丙说的
第一句话“丁第
2
名” 是对的;由此推出乙说的“丁第
4
名”是错的,“我第
1
名”是对的。至此< br>可以排出名次顺序:乙第
1
名、丁第
2
名、甲第
3
名 、丙第
4
名。


【例 13】 传说有个说谎国,这个国家的男 人在星期四、五、六、日说真话,在星期一、二、三说假话;
女人在星期一、二、三、日说真话,在星期 四、五、六说假话.有一天,一个人到说谎国去旅
游,他在那里认识了一男一女.男人说:“昨天我说的 是假话”,女人说:“昨天也是我说假
话的日子”.这下,那个外来的游人可发愁了,到底今天星期几呢 ?请同学们根据他们说的话,
判断一下今天是星期几呢?
【解析】 假设男人今天说的是真话 ,那么今天是星期四、五、六、日其中的一天,而且今天的前一天男人
说的是假话,所以,根据男人的话 ,确定今天是星期四,所以女人说的话是假话,昨天也就是星
期三女人说的是真话,符合题意,所以,今 天是星期四.


【巩固】 从A,B,C,D,E,F六种产品中挑选出部分产品 去参加博览会。根据挑选规则,参展产品满足
下列要求:(1)A,B两种产品中至少选一种;(2)A ,D两种产品不能同时入选;(3)A,E,F
三种产品中要选两种;(4)B,C两种产品都入选或都 不能入选;(5)C,D两种产品中选一种;
(6)若D种产品不入选,则E种也不能入选。 问:哪几种产品被选中参展?
【解析】 用假设法。从条件(1)开始,有三种情况:
①假 设选A不B选,由(2)知D不能入选,再由(5)知C入选,再由(4)推知C,B同时入选,
与前面 假设不选B矛盾。假设不成立。
②假设选B不选A,由(3)知选E,F,由(6)知D入选,再由( 5)知C不入选,再由(4)推
知B,C都不入选,与假设选B矛盾。假设不成立。
③假设A ,B都入选,由(2)知D不入选,由(6)知E也不入选,再由(3)知F入选,由(4)
知C入选。 符合题意。因此,A,B,C,F选中参展。

【例 14】 三年级一班新转来三名学生, 班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,
比李丽大1岁.”陈红说:“我不是年 龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:



“我比刘 强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,
都有一句是错的. 请你帮助班主任分析出他们三人各是多少岁?
【解析】 经过审题,仔细分析这九句话,不难发现有两 句话是相互矛盾的.一句话是刘强说的第一句话:
“我12岁”,另一句话是李丽说的第二句话:“刘强 13岁”.这两句话不能都真,必有一句是假
的.为了确定这两句话的真假性.可以先假设某一句为真, 如果推不出矛盾,本题就获得了解决;
如果推出矛盾,就说明这句话是假的,从而也就找到了突破口.先 假设刘强说的第一句话“我12
岁”为真,那么李丽说的第二句话“刘强13岁”就为假,因此李丽的另 外两句话就应该是真话,
从“陈红比刘强大3岁”就推出陈红是15岁;又从“我比刘强年岁小”推出李 丽小于12岁.可
是这样一来,陈红说的三句话中,“李丽和我差3岁”和“李丽15岁”这两句话都不 能成立,这
与本题中的要求(“每人说的三句话中,都有一句是错的”,即三句话中有两句话是真的)相 矛盾.因
此,刘强说的“我12岁”这句话是假的.由于刘强说的第一句话是假的,所以后两句话就是真
的.因此,李丽说的第三句话“陈红比刘强大3岁”就是假的,所以,李丽说的第二句话“刘强
13岁”就是真的.于是就可以推出:李丽12岁,陈红15岁,刘强13岁.

【例 15】 (2008年日本小学算术奥林匹克大赛决赛)甲和乙做猜数的游戏。首先,甲在纸上写
1个各位数
字都不同的四位数,写好后将纸翻过来。不让乙看到,然后让乙猜这个四位数的各位数字。 如
果数字和位数都猜对了就是○,如果数字对而位数不对就是△。
例如:甲写的是
1 234
,乙猜的是
1354
,那么就是
2
个○,
1
个△。
请阅读以下对话并回答问题:
乙:“我猜
9856
”,甲:“< br>1
个○,
1
个△。”
乙:“
6972
?”,甲:“ 也是
1
个○,
1
个△。”
乙:“
3058
?”, 甲:“也是
1
个○,
1
个△。”
乙:“
4732
呢?”,甲:“
2
个△。”
乙:“哇,猜不着呀,
8369
呢?”甲:“也是
2
个△。”
(1):请从以上的对话中答出甲最可能写的
4
个四位数。
后来,甲发现自己刚才的回答中对四位数的判断有误。
甲:“对不起,刚才有搞错的。”乙:“啊!那么


甲“只是
1
个数字搞错了,在刚才说到的数字中,只是对
4732
的判断有误,正确的回答应该 是
1
个○,
1
个△。”
乙“稍等一会儿

,啊!我知道啦!甲写的四位数是 吗”?
甲:“对啦!你真棒!”
(2):请问甲写的这个四位数是什么?
【解析】 如下表:

由1、4次猜测结果知,2到9中包含了正确数字中的全部四位数字,也即甲写的 数字各位都不是
0或1;由2、3次猜测结果,同理知甲写的数字各位都不是1或4;再考察第3、4次 猜测结果,
由于其中的0和4一定是错的,而且两次各猜对了正确数字四位数中的两位,可以先假设甲写 的
数字各位上没有3,那么甲写的数字各位就是2、5、7、8,那么第5次猜测的结果就应该是(0,
1)或者(1,0)而非(0,2)。因此甲写的数字一定有一位是3;再由第5次猜测结果,甲所写< br>的数字各位有且只有6、8、9中的一个;于是由第1次猜测结果,甲所写的数字中一定有一位是
5
再综合第3、5次猜测结果,知甲所写的数字各位上没有8,而一定有且只有6、9其一
根据第2次的猜测结果,甲所写的数字应该有一位是2、7其一。
假定第1、3次猜测中位数对的数字是5,那么根据第3、5次的猜测结果



可以判断出3在甲所写的数字的个位上
于是由第2次猜测结果,2 或7一定是数字对而位数不对的,那么6或9一定是数字对且位数对
的,于是甲可能写的数字是:625 3、2953或7953
假定第1、3次猜测中位数对的数字不是5,那么第3次猜测中位数对的数字一定是3,
第1次猜测中位数对的数字只能是6而不能是9,于是只能第百位是5,十位是7,
这时甲可能写的数字只有3576
综上所述,甲可能写的四位数是6253、2953、7953或3576
(2)由上述前半部分推理,仍然能判断出甲写的数字各位上一定有3和5,
且仍然6、9中有其一,而2、7中有其一。
仍然先假设第3次猜测中数字对且位数对的是3,那么第1次猜测中数字对且位数对的只能是6,
而不能是5或9。那么由于第1次猜测中5是数字对而位数不对的,则5只能放在百位,
又由于第2次猜测中有一位数字对且位数对,所以只能是十位上为7,这时这个四位数是3576,
但这时第4次猜测将没有数字对且位数对的数,与甲的叙述不附,因此最开始的假设不成立。
那么第3次猜测中数字对且位数对的数只能是5,由第3、5次猜测结果可以推知,
3不在千位也不在百位,那么3只能在个位。
考虑到第四次猜测中要有一位数字对且位数对,只能是百位上的7,
再由第1次猜测的结果推出千位上不能是9而只能是6,
于是这个四位数是6753,经过检 验可知,这个四位数满足所有五个条件,因此甲写的四位数就是
6753。

【巩固】 一只皮箱的密码是一个三位数。小光说:“它是954。”小明说:“它是358。”小亮说 :“它
是214。”小强说:“你们每人都只猜对了位置不同的一个数字。”这只皮箱的密码是 。
【解析】 每个人只猜了位置不同的一个数字,也就是说一样的数字必然不对,“5、4”第一位肯 定是9,
第三位是8,第二位是1,密码就是918。

【例 16】 一次数学考 试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“

”.记分的方
法 是:答对一题给2分;不答的给1分;答错的不给分.已知
A

B

C

D

E

F

G

人的答案及前六个人的得分记录在表中,请在表中填出
G
的得分.并简单说明你的思路.
考生
C

G

A

B

E

D

F

题号
1
2
3
4
5
6
得分






7


×

×

5

×

×

×
5

×



×
5
×

×
×

×
9
×
×
×

×

7

×
×


×


【解析】 由 于
E
得了9分,说明他只答错了一道题.先假定答错的是第1题,这样就有一个标准答案,并< br>由此可分析其他人的得分.如出现矛盾,再假定
E
答错的是第2题„„直到判断出
E
答错的题号
为止.有了正确的答案,就可以写出
G
的得分.
假 设
E
的第1题答错,那么
A
至少错3道题,一题未答,最多得5分,与
A
得7分矛盾.所以
E
第1题答对.
假设
E
第2题答错 ,可知
A
最多得3分,矛盾.所以
E
第2题答对.
假设
E
第3题答错,则
B
最多得3分,矛盾.所以
E
第3题答对.
假设
E
第6题答错,则
D
最多得3分,矛盾.所以
E
第6 题答对.
由于
E
得9分,因此
E
只答错一题,因此
E第4题答错,于是
A
的第2,4两题对,3,6两题错.而



A
得7分,说明
A
的第5题是对的.由
A

E
两人的答案,可得一标准答案如下表:
题号 1 2 3 4 5 6
答案 × √ × √ √ ×
按此标准评分,与题中所给
A

B

C

D

E

F
得分相符合, 所以
E
的第4题确实答错了.上表的
答案是正确的.故可知
G
得8分 .

【例 17】 有六个大小相同的彩球,三个红,三个白,分别放入三个罐子里,一个罐 里放两红球,一个罐
里放两白球,另一罐放一红一白.然后将写有“两红”、“两白”、“红白”的三个 标签贴在
三个罐子上,由于粗心,三个标签全贴错了.试问此时最少要从罐子中取出几个球,才能确定< br>三个罐分别装的是什么彩球?
【解析】 因为所有罐子上的标签都和罐中实物不符,所以在贴有 “红白”标签的罐子中只能是两红或两
白.那么只需在“红白”罐子中取出一个彩球,若是红色球,则可 知罐中是两红,那么标有“两
白”的罐子中就是“一红一白”,标有“两红”的罐子中就是“两白”;若 是白色球,则可知罐中
是“两白”,那么标有“两红”的罐子中就是“一红一白”,而标有“两白”的罐 子中就是“两红”.

模块四、计算中的逻辑推理

【例 18】 学校 组织了一次投篮比赛,规定投进一球得
3
分,投不进倒扣
1
分,如果大明得< br>30
分,且知他

6
个球没有投进,那么大明共投了几个球?
【解析】 大明有
6
个球没有投进,要被扣掉
6
分,如果不考虑这< br>6
个球,大明应该得
30636
(分),规定
投进一球得
3
分,
36312
(个),所以,大明投进了
12
个球,加上未 投进的
6
个球,大明共投

12618
个球.

【例 19】 小华在一个文具店里买了5支铅笔,4块橡皮,8个练习本,付给售货员2元钱,售货员 叔叔找
给他5角5分.小华看了看铅笔的价格是每支8分,就说:“叔叔,您把帐算错啦!”请问:小< br>华怎么知道这笔帐算错了?
【解析】 因为每支铅笔的价格是8分,所以5支铅笔的价钱是8540
(分),40是4的倍数;4块橡皮和
8个笔记本,不管它们各自的单价是多 少,总共应付的钱也是4的倍数.但是小华给了售货员2
元钱,找回5角5分,实际付给售货员1元4角 5分,因为145(分)不是4的倍数,所以小华断
定售货员把这笔帐算错了.

【例 20】 张红因病在家休息了几天,这期间的气候是:⑴下了8次雨,时间是上午或下午;⑵当下 午下
雨时,当天上午是晴天;⑶有9个下午是晴天;⑷有13个上午是晴天。问她一共在家休息了几天?
【解析】 因为(2)当下午下雨时,当天上午恰好是晴天,如果上午下雨,下午也必定是晴 天因此每天只
可能上午或者下午下雨。
设他休息了X天,(X-9)为下午下雨的次数,(X-13)为上午下雨的次数
(X-9)+(X-13)=8,2X=30,X=15,休息了15天

【例 21】 五号楼住着四个女孩和两个男孩,他们的年龄各不相同,最大的
10
岁,最小的
4
岁,最大的女
孩比最小的男孩大
4
岁,最大的男孩比最小的女孩也大4
岁,求最大的男孩的岁数.
【解析】 假设最小的男孩
4
岁,那么最 大的女孩有
448
(岁),四个女孩年龄都不同,最小的女孩应是
5
岁, 那么最大的男孩为
549
(岁),与题目说最大的孩子
10
岁矛盾.所以 假设不成立.再假
设最小的女孩
4
岁,那么最大的男孩为
448
岁,最大的女孩
10
岁,最小的男孩
1046
岁,
符合题意.所 以最大男孩是
8
岁.

【例 22】 四对夫妇坐在一起闲谈.四个女人中 ,
A
吃了
3
个梨,
B
吃了
2
个,
C
吃了
4
个,
D
吃了
1
个;
四个男人中, 甲吃的梨和他妻子一样多,乙吃的是妻子的
2
倍,丙吃的是妻子的
3
倍,丁吃 的是



妻子的
4
倍.四对夫妇共吃了
32
个梨.问:丙的妻子是谁?
【解析】 分别设
A

B

C

D
的丈夫吃梨的个数为
3a

2b

4c

d,则有:

3a2b4cd32(3241)22

由题意知,
a

b

c

d
分别等于
1
2

3

4
四个数之一,且互不相同.所以
abcd10
,得到
2ab3c12
.所以
b
与< br>c
的奇偶性相同.
由于
2abaaba121124
,所以
3c8

c
只能为
1

2

如果
c1
,那么
b3
,由
2ab3c12
得到
a3
,矛盾.所以
c2

b4

a1

d3
.因
为丙吃的梨是妻子的
3
倍,而
d3
,所以丙的妻子是
D


课后练习

练习1.
A

B

C

D
分别 是中国、日本、美国和法国人.已知:⑴
A
和中国人是医生;⑵
B
和法国人< br>是教师;⑶
C
和日本人职业不同;⑷
D
不会看病.问:
A
B

C

D
各是哪国人,
【解析】 有⑴ ⑵可知,
A

B
都不是中国人和法国人,再由⑴⑷知,
D
也 不是中国人,所以,
C
是中国人,
由⑶,日本人也是教师,从而推知,
D是法国人,得下表:,
中国人 日本人 美国人 法国人
A

B

C

×
×



×


×
×
×
×
× × × √
D

最后由
C
是中国人及⑴⑶,推知日本人是教师,再由⑵知< br>B
是日本人.


练习2. 班里举行投篮比赛,规定投中一个球得
5
分,投不进扣
2
分.小立一共投了
6
个球,得了
16
分,
那么小立投中了几个球?
【解析】 如果小立
6
个球全部 投中,应该得
6530
(分),实际上少了
301614
(分),投 中一个球得
5
分,投不进扣
2
分,投不进一个球就少
527(分),所以一共没投进
1472
(个),投中

624
(个)球.


练习3. 学校新来了一位老师,五个学生分别听到如下的情况: ⑴是一位姓王的中年女老师,教语文课;
⑵是一位姓丁的中年男老师,教数学课;⑶是一位姓刘的青年男 老师,教外语课;⑷是一位姓李
的青年男老师,教数学课;⑸是一位姓王的老年男老师,教外语课.他们 每人听到的四项情况中
各有一项正确.问:真实情况如何?
【解析】 真实情况是姓刘的老年 女老师,教数学.假设是男老师,由⑵、⑶、⑸知,他既不是青年、中年,
也不是老年,矛盾,所以是女 老师.再由⑴知,她不教语文,不是中年人.假设她教外语,由⑶、
⑸知她必是中年人,矛盾,所以她教 数学.由⑵、⑷知她是老年人,由⑶知她姓刘.


练习4. 在一次数学竞赛中,
A

B

C

D

E
五 位同学分别得了前五名(没有并列同一名次的),关
于各人的名次大家作出了下面的猜测:
A< br>说:“第二名是
D
,第三名是
B
.”
B
说:“第二名是
C

第四名是
E
.”
C
说:“第一名是
E
,第五名是
A
.”
D
说:“第三名是
C
,第四名是
A
.”
E
说:
“第二名是
B
,第五名是
D
.”结果每人都只猜对了一半,他 们的名次如何?
【解析】 假设
A
猜的第一句是真的,那么
B
猜的 第二句是真的,即第四名是
E
,那么
C
猜的“
E
是第一名”
是错的,
A
是第五名,那么
D
猜的
C
是第三名是对 的,那么
B
就是第一名,从而
E
说的全是错的,
所以假设不成立.所 以
A
猜的第二句是真的,即
B
是第三名,那么
D
猜的第一句 是错的,从而
A
是第四名,所以
C
猜的第二句是错的,
E
是 第一名,从而
B
猜的
C
是第二名是对的,
E
猜的第五
名是
D
正确,所以,第一名是
E
,第二名是
C
,第三名是
B
,第四名是
A
,第五名是
D





练习5. 甲、乙、丙三个小学生都是少先队的干部,一个是大队 长,一个是中队长,一个是小队长.一次
数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和 中队长的成绩不相同.⑶中队长
比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?
【解析】 根据条件⑵和⑶,甲和中队长的成绩不相同,中队长比乙的成绩差,可以断定,甲不
是中队长,乙也不是中队长,只有丙是中队长了(也可以列表确定中队长).甲和乙两人谁是大队
长呢 ?由⑴和⑶,丙比大队长的成绩好,中队长比乙的成绩差,可以推断出按成绩高低排列的话,
乙的成绩比 中队长(丙)的成绩好,丙的成绩比大队长的成绩好.这样,乙、丙就都不是大队长,
那么,大队长肯定 是甲.


月测备选

测试1、根据条件判断旅游团去了
A

B

C

D

E
中的哪几 个地方?
⑴如果去
A
,就必须去
B


D

E
两地至少去一地;

B

C
两地只能去一地;

C

E
两地要去都去,要不去都不去;
⑸若去
D
,则
A

E
两地必须去.
【解析】 从⑶入手,分别假设去
B

C
:⑶若去
B
则不能去
C
,⑷也不能去
E
,⑵只能去
D
.⑸必须去A

E
,与不能去
E
矛盾.所以不能去
B
假设 去
C
:⑷必去
E
,⑵需去
D
,⑸必须去
A

E
,⑴去
A
必须去
B
,与⑶
B

C
不能同去矛盾,所以不能去
D
.综上只能去
C

E.


测试2、徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工 ,他们都是象棋迷。(1)电工只
和车工下棋;(2)王、陈两位师傅经常与木工下棋;(3)徐师傅与 电工下棋互有胜负;(4)陈师傅比钳工
下得好。问:徐、王、陈、赵四位师傅各从事什么工种?
【解析】 徐是车工,王是钳工,陈是木工,赵是电工。


测试3、振华 小学组织了一次投篮比赛,规定投进一球得
3
分,投不进倒扣
1
分.小亮投了
5
个球,投进了
3
个.那么,他应该得多少分?
【解析】 小亮投 的
5
个球中,投进的
3
个球得到
339
(分),而没有 投进的
2
个球被扣掉
122
(分),
于是他应得
92 7
(分).


测试4、有三个盒子,甲盒装了两个
1
克的砝码,乙盒装了两个
2
克的砝码,丙盒装了一个
1
克、一个
2< br>克
的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一个盒子里取出一 个砝
码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?
【解析】 其实不用那么麻烦,我们发现“每只盒子外面所贴的标明砝码重量的标签都是错的”这句话说明
标签的可 能只有两种:
标注 两个1克 两个2克 一个1克一个两克
可能1: 两个2克 一个1克一个两克 两个1克
可能2:一个1克一个两克 两个1克 两个2克
所以我们可以从标注“一个1克一个两克”里面拿一个,如果是“1克”的就是上面那种情况 ,
否则就是下面那种情况.


测试5、编号分别为1,2,3,4的四位 同学参加了学校的110米栏比赛,获得了全校的前四名,1号同学
说:“3号比我先到达终点.”得第 三名的同学说:“1号不是第四名.”而另一位同学说:“我们的号码与我



们所得的名次都不相同.”聪明的同学们,你们能说出这四位同学各自所得到的名次吗?
【解析】 从得第三名同学的话中可以推知:1号不是第三名,也不是第四名;而1号同学又说“3号比 我
先到终点”,这说明1号同学不是第一名,这样我们可以得知1号同学是第二名,于是3号同学
是第一名, 而另一位同学说:“我们的号码与我们所得的名次都不相同.”,这样4号不是第四名,
只能是第三名,所以获得第四名的同学是2号.














第十一讲:逻辑推理

教学目标

1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析法等
2. 培养学生的逻辑推理能力,掌握解不同题型的突破口.
3. 能够利用所学的数论等知识解复杂的逻辑推理题

知识精讲

逻辑推理作 为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作
为专项的内容出 现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既
有趣又可以开发 智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。

一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选 准突破口,层层剖析,
一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表 的方式,把错综复杂的
约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件 变得一目了然,答案也
就容易找到了.

二、假设推理
用假设法解逻辑推 理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成
立;如果推不出矛盾, 而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设

模块一、列表推理法
【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓 球混合双打比赛.事先规定:兄妹
二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小 红对刘刚和马辉的妹妹.问:
三个男孩的妹妹分别是谁?
【解析】 因为兄妹二人不许搭伴, 所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由
第二盘看出,小红不是马辉的 妹妹.将这些关系画在左下表中,由左下表可得右下表.
小丽
刘刚
马辉
李强
小英小红
小丽
刘刚
马辉
李强
小英小红
×
×
×
×
×
×

×

×

×
×

刘刚与小红、马辉与小英、李强与小丽分别是兄妹.

【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运
动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断
王文、张贝、李丽各是什么运动员?
【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,



“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”
王文 张贝 李丽
跳伞
田径
游泳



×


×
×

由⑴⑶可知张贝、李丽都不是跳伞运动员 ,可填出第一行,即王文是跳伞运动员;由⑶可知,李
丽也不是田径运动员,可填出第三列,即李丽是游 泳运动员,则张贝是田径运动员.

【巩固】 李波、顾锋、刘英三位老师共同担负六年级某 班的语文、数学、政治、体育、音乐和图画六门
课的教学,每人教两门.现知道:
⑴ 顾锋最年轻;
⑵ ⑵李波喜欢与体育老师、数学老师交谈;
⑶ ⑶体育老师和图画老师都比政治老师年龄大;
⑷ ⑷顾锋、音乐老师、语文老师经常一起去游泳;
⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?
【解析】 李波教语文、图画,顾 锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;
由⑵推知刘英教体育;由⑶⑸推 知李波教图画、语文.

【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是 大队长,一个是中队长,一个是小队
长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好. ⑵王平和中队长的成绩不
相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大 队长呢?
【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断 定,王平不是
中队长,宋丹也不是中队长,只有韩涛当中队长了.
大队长 中队长 小队长
王平
宋丹
韩涛



×
×




王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长 的成绩好,中队长比宋丹的成绩差,可
以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成 绩好,韩涛的成绩比大队长的
成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.

【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师, 已知:⑴张明
不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷ 席
辉不是农民.问:这三人各住哪里?各是什么职业?
【解析】 这道题的关系要复杂一些, 要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三
者的关系需要两两构造三个表,即人 物与地点,人物与职业,地点与职业三个表.
我们先将题目条件中所给出的关系用下面的 表来表示,由条件⑴得到表
1
,由条件⑵、⑶得到表
2

由条件⑷得 到表
3


因为各表中,每行每列只能有一个“√”,所以表
2
可填全为表
5




由表
5
知农民在北京工作,又知席辉 不是农民,所以席辉不在北京工作,可以将表
1
可填全完为表
4

由 表
4
和表
5
知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住 在北京,是农民.

方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人, 所以席辉不是工人,又不
是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明 在上海工作,是工
人。李刚在北京,是农民。

【巩固】 甲、乙、丙三人,他们的 籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已
知:⑴甲不是辽宁人,乙不是广 西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.
求这三人各自的籍贯和职业.
【解析】 由题意可画出下面三个表:


将表
3
补全为 表
4
.由表
4
知,工人是辽宁人,而乙不是工人,所以乙不是辽宁人,由此可 将表
1

全为表
5


所以,甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人.
方法 二:将能判断的条件先列入图表中,广西人是教师,但是乙不是广西人,所以乙不是教师,乙
又不是工人 ,所以乙为演员。在对应的地方打上“√”,对应的行列均打“×”。但是辽宁人不是演
员,所以乙不是 辽宁人,乙就是山东人,所以甲是广西人,职业是教师;乙是山东人,职业是演员;
丙是辽宁人,职业是 工人。





【巩固】 小明、小芳、小花各爱 好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所
小学上学。现知道:(1)小明 不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)
爱好游泳的在一小;(5)爱好游 泳的不是小芳。问:三人上各爱好什么运动?各上哪所小学?
【解析】 这道题比上例复杂,因为要判 断人、学校和爱好三个内容。先将题目条件中给出的关系用下面的
表1、表2、表3表示:

因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。

由表 4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。于是可将表1补全为表
5。对照 表5和表4,得到:小明在二小上学,爱好打乒乓球;小芳在三小上学,爱好打羽毛球;小花在一
小上学 ,爱好游泳。

【巩固】 小王、小张和小李一位是工人,一位是农民,一位是教师,现在只 知道:小李比教师年龄大;
小王与农民不同岁;农民比小张年龄小。问:谁是工人?谁是农民?谁是教师 ?
【解析】 这道题目并不难,聪明的小朋友思考一下就能得到答案,但是今天我们通过这道题目一起
来学习一个十分有用的方法:列表分析法。由题目条件可以知道:小李不是教师,小王不
是农民 ,小张不是农民。由此得到左下表。表格中打“√”表示肯定,打“×”表示否定。

因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,
于是得到右上表。
因为农民小李比小张年龄小,又小李比教师年龄大,所以小张 比教师年龄大,即小张不是
教师。因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王 是教师。

例题中采用列表法,使得各种关系更明确。为了讲解清楚,例题中画了几个表,实际解题



时,不用画这么多表,只在一个表中先后画出各种关系即可。
需要 注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的
关系画在表上;②每 行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的
其余格中都应画“×”。


【例 3】 甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知 :⑴教师不知道甲的职业;
⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师; ⑸乙和丙从未见过
面.那么甲、乙、丙、丁的职业依次是: .
【解析】 律师、 教师、警察.由⑶可以知道丙不是律师,但是他见过律师,再由⑸知乙不是律师,又由⑷
可知甲是律师. 于是由⑴和⑶知丙不是教师,由⑵和⑸知丙不是医生,从而丙是警察.再由⑵知
乙是教师,丁是医生.
列表如下(列表的好处在于直观明了,不会犯错误):





教师
×⑴

×⑴⑶
×
医生
×
×⑵
×⑵,⑸

律师

×⑸
×⑶
×⑷
警察
×
×

×

【巩固】 甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地.
甲说:“我和乙都住在北京,丙住在天津.”
乙说:“我和丁都住在上海,丙住在天津.”
丙说:“我和甲都不住在北京,何伟住在南京.”
丁说:“甲和乙都住在北京,我住在广州.”
假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?
【解析】 因为甲 、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真
话,推出乙既住 在北京又住在上海,矛盾.所以假设不成立,即“丙住在天津”是真话.
因为甲的前两句 话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广
州”是真的.由此知乙的 第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而
推知甲的第二句是假话,第一句“ 我住在北京”是真话;最后推知丙的第二句话是假话,第三句
“何伟住在南京”是真话.所以,何伟住在 南京.

【例 4】 甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一 种语言只有一人会说.他
们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵ 甲会日语,丁
不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日 、
法两种语言.请问:甲、乙、丙、丁各会哪两种语言?
【解析】 由⑴⑵⑷可得下表,其中 丙不会日语是因为甲会日语,且甲与丙交谈需要翻译.由下表看出,甲
会的另一种语言不是中文就是英语 .








×

×
×
×

先假设甲会说中文.由⑵知,丁也会中文;由 ⑴知丙不会中文,再由每人会两种语言,知丙会英、
法语(见左下表:由⑴⑷推知乙会中文和法语;再由 ⑶及每人会两种语言,推知丁会英语(见右
下表).结果符合题意.



















√××< br>√
×
×



×
×

再假设甲会说英语.由⑵知,丁也会英语;由⑴知丙不会英语,再由每人会两种语言,知丙会中
文和法语 (见左下表);由⑴⑷ 推知,乙会中文和日语;再由⑶及每人会两种语言,推知丁会
法语(见右下表) .右下表与“有一种语言只有一人会说”矛盾.假设不成立.







√××


×

×
×


×


×
×








×
√×

×

×

×

×
×
√×


×
×


×

×
×


×

所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语.

【巩固】 宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“ 跳高冠军”、
“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳 高
冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好
⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号
吗?
【解析】 由⑵知,宝宝不是跳高冠军和大作家;由 ⑸知,贝贝不是大作家;由⑹知,贝贝、聪聪都不是
小画家,可以得到下表:
数学博士 短跑健将 跳高冠军 小画家 大作家 歌唱家
宝宝 × √ ×
贝贝 × ×
聪聪 × √
因为宝宝是小画家,所以由⑶⑷知宝宝不是短跑健将和数学博士 ,推知宝宝是歌唱家,因为聪聪
是大作家,所以由⑵知聪聪不是跳高冠军,推知贝贝是跳高冠军,因为贝 贝是跳高冠军,所以由
⑴知贝贝不是数学博士,将上面结论依次填入上表,得到下表:

数学博士 短跑健将 跳高冠军 小画家 大作家 歌唱家
宝宝 × × × √ × √
贝贝 × √ √ × × ×
聪聪 √ × × × √ ×
所以,宝宝是小画家和歌唱家,贝贝是短跑健将和跳高冠军,聪聪是数学博士和大作家.

【例 5】 (
2007
年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明 猜想比赛的结果是:
3

第一名,
2
班第二名,
1
班第三名,
4
班第四名.小华猜想比赛的结果是:
2
班第一名,
4
班第
二名,
3
班第三名,
1
班第四名.结果只有小华猜到的
4
班为第二名是正确的.那么这次竞赛的
名次是 班第一名, 班第二名, 班第三名, 班第四名。
【解析】 方法一:依题意,
3班不为第一名也不为第三名,那么
3
班为第四名.同样,
2
班不为第二名 也
不为第一名,那么
2
班为第三名.
1
班不为第三名也不为第四名, 那么
1
班为第一名.故第一名到
第四名依次为
1
班,
4班,
2
班,
3
班.
方法二:我们可以将两人的猜测结果列成表 格形式,将小明猜想结果用“▲”表示,小华猜测结
果用“★”表示,列表如下:



第一名 第二名 第三名 第四名
▲ ★
1


2
班 ★
3
班 ▲ ★
★ ▲
4

由题意知只有小华猜到的
4
班为第二名 正确,其他的全是错误的,所以很容易确定各班名次
(打√的即为正确的名次)
第一名 第二名 第三名 第四名
▲ ★
1
班 √
▲ √
2
班 ★
3
班 ▲ ★ √
★√ ▲
4

方法二:题目中只有小华猜到4班为第二名是正确的,那么其他的猜想均为错 误的。在其对应的
地方打“×”,正确的则打“√”。
第一名 第二名 第三名 第四名
× × ×
1
班 √
× √ ×
2
班 ×
3
班 × × × √
√ × ×
4
班 ×

【巩固】 甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人 都
对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第
四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜
中,则 出赛顺序中,第一是__________;第三是__________.
【解析】 题中每个人都 猜了另外两个人的出场顺序,每个人的出场顺序也都被另外两个人猜过,其中戊被
乙和丙猜的都是第四, 由于每人的出赛顺序都至少被一人所猜中,所以戊是第四(否则戊的出赛
顺序没有人猜中),以此为突破 口。由于戊是第四,则在第四列其余地方均打“×”则丁不能第
四,所以丁的出赛顺序被乙猜中,为第五 ,则丙不能是第五,丙只能是第一,甲不能是第一,故
甲是第三,乙是第二,所以答案为:第一是丙,第 三是甲.






第一
丙猜的×
×
丁猜的√
×
×
第二
×
丁猜的√
×
×
×
第三
戊猜的√
甲猜的×
×
×
×
第四
×
×
×
戊猜的×
第五
×
×
甲猜的×
乙猜的√
乙猜的,丙猜的√ ×

【例 6】 红、黄、蓝、白、紫五种 颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有
A

B

C

D

E
五个人,猜各包珠子的颜色,每人只猜两包.
A
猜:第二包是紫的,第三包是黄的;
B
猜:第二包是蓝的,第四包是红的;
C
猜:第一包是红的,第五包是白的;
D
猜:第三包是蓝的,第四包是白的;
E
猜:第二包是黄的,第五包是紫的.
猜完后,打开各纸包一看发现每人都只猜对了 一包,并且每包只有一人猜对.请你判断他们各
猜对了其中的哪一包?
【解析】 方法一:题 目要求
A

B

C

D

E五个人在猜每包珠子的颜色时每人只猜两包且每人都只猜
对了一包每包只有一人猜对,所以观察五包 珠子中第一包只有
C
猜,所以
C
猜对了第一包,又根
据每人只猜对了 一种,所以
C
猜第五包是白的,猜错了;第五包只有
C

E
两人猜,所以
E
猜第
五包是紫的,猜对了;那么
E
猜第二包是黄的, 猜错了;紫颜色的珠子,只有
A

E
两人猜,那




A
猜第二包是紫的,猜错了;第二包有
A

B

E
三人猜,其中
A

E
都猜错了 ,所以
B
猜第
二包是蓝的,猜对了;那么
B
猜第四包是红的,猜错了 ;所以
D
猜对的是第四包,是白的.
D

第三包是蓝的,也猜错了; 所以
A
猜对的是第三包,是黄的;
总结以上推理判断,
A
猜对了第 三包是黄的,
B
猜对了第二包是蓝的,
C
猜对了第一包是红的,
D< br>猜对了第四包是白的,
E
猜对了第五包是紫的.
方法二:分析同方法一,第一 包只有一人猜对,所以第一包为红色,在第一行的其余地方打上
“×”第四包不为红色,第四包为白色, 白色不能为第五包,第五包就为紫色,同理可知其余各
包颜色。
红色 黄色 蓝色 白色 紫色






×
×
×
×
×
×

×
×
×

×
×
×
×
×
×

×
×
×
×
×


【巩固】 五封信,信封完全相同,里面分别夹着红、蓝、黄、白、紫五种颜色的卡片.现在把它们按顺
序排成一行 ,让
A

B

C

D

E
五人猜每只信封内所装卡片的颜色.

A
猜:第2封内是紫色,第3封是黄色;

B
猜:第2封内是蓝色,第4封是红色;

C
猜:第1封内是红色,第5封是白色;
D
猜:第3封内是蓝色,第4封是白色;

E
猜:第2封内是黄色,第5封是紫色.
然后,拆开信封一看,每人都猜对 一种颜色,而且每封都有一人猜中.请你根据这些条件,再猜
猜,每封信中夹什么颜色的卡片?
【解析】 把已知条件简明地记录在表格中.选择其中一只信封作为“突破口”.比如第3封,
A
猜的是黄
色,
D
猜的却是蓝色.由已知条件,这只信封内的卡片不是蓝色, 就是黄色.假如第3封是蓝色,
那么逐步推理可导出矛盾:白色卡片没人猜对.这说明假设不正确,第3 封内应是黄色.由此推
出其它各封内的颜色.

【巩固】 (2008年北京“数学 解题能力展示”读者评选活动)老师在3个小箱中各放一个彩色球,让小
明、小强、小亮、小佳四人猜一 下各个箱子中放了什么颜色的球.
小明说:“
1
号箱中放的是黄色的,
2< br>号箱中放的是黑色的,
3
号箱中放的是红色的.”
小亮说:“
1号箱中放的是橙色的,
2
号箱中放的是黑色的,
3
号箱中放的是绿色的. ”
小强说:“
1
号箱中放的是紫色的,
2
号箱中放的是黄色的,< br>3
号箱中放的是蓝色的.”
小佳说:“
1
号箱中放的是橙色的,< br>2
号箱中放的是绿色的,
3
号箱中放的是紫色的.”
老师说:“你们中有一个人恰好猜对了两个,其余的三人都只猜对一个.”
那么
3
号箱子中放的是________色的球.
【解析】 由于猜中的总 次数为
5
次,所以有一个箱子至少被猜中了
2
次以上,从而这个箱子只能是< br>2
号箱,
推理得出只能是小亮对了
2
次,其他人只对一次,所以
1
号箱只能是橙色的,那么
3
号箱的颜色是
蓝色的.

【巩固】 四张卡片上分别写着奥、林、匹、克四个字(一张上写一个字),取出三张字朝下放在桌上,
A

B

C
三人分别猜每张卡片上是什么字,猜的情况见下 表:
第一张 第二张 第三张
林 奥 克
A

林 匹 克
B

C
匹 奥 林
结果,有一人一张也没猜中,一人猜中两张,另一人猜中三张.问:这三张卡片上各写着什么字.
【解析】
A

B
有两张猜的相同,必有一人全对,一人对两张,因 此,
C
全错,推知
B
全对.



【例 7】 老师让小新把小胖、小贝、小丸子、小淘气、小马虎的作业本带回去,小新见到这五人后就 一
人给了一本,结果全发错了.现在知道:⑴小胖拿的不是小贝的,也不是小淘气的;⑵小贝拿
的不是小丸子的,也不是小淘气的;⑶小丸子拿的不是小贝的,也不是小马虎的;⑷小淘气拿
的不是小丸 子的,也不是小马虎的;⑸小马虎拿的不是小淘气的,也不是小胖的.另外,没有
两人相互拿错(例如小 胖拿小贝的,小贝拿小胖的).问:小丸子拿的是谁的本?小丸子的本被
谁拿走了?
【解析】 根据“全发错了”及条件⑴~⑸,可以得到下表:
小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × ×
小贝 × × ×
小丸子 × × ×
小淘气 × × ×
小马虎 × × ×
由表1看出,小淘气的本被 小丸子拿了.此时,再继续推理分析不大好下手,我们可用假设法.由
上表知,小胖拿的本不是小丸子的 就是小马虎的.
先假设小胖拿了小丸子的本.于是得到下表,表中小贝拿小马虎的本,小马虎拿小贝的 本.两人
相互拿错,不合题意.

小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × √ × ×
小贝 × × × × √
小丸子 × × × √ ×
小淘气 √ × × × ×
小马虎 × √ × × ×
再假设小胖拿小马虎的本.于是又可得表,经检验,下表符合题意.
小胖的本 小贝的本 小丸子的本 小淘气的本 小马虎
小胖 × × × × √
小贝 √ × × × ×
小丸子 × × × √ ×
小淘气 × √ × × ×
小马虎 × × √ × ×
所以小丸子拿了小淘气的本,小丸子的本被小马虎拿去了.


模块二、假设推理

【例 8】 甲、乙、丙三人,一个总说谎,一个从不说谎,一 个有时说谎.有一次谈到他们的职业.甲说:
“我是油漆匠,乙是钢琴师,丙是建筑师.”乙说:“我是 医生,丙是警察,你如果问甲,甲
会说他是油漆匠.”丙说:“乙是钢琴师,甲是建筑师,我是警察.” 你知道谁总说谎吗?
【解析】 甲.如果甲从不说谎,那么乙的最后一句、丙的第一句都对,没有总说 谎的人,矛盾;同理,如
果丙从不说谎,也将推出矛盾.

【巩固】 在神话王国内 ,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的
居民小白、小黑、小蓝, 小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一
个是骑士,一个是骗子.”国王 很快判断出谁是骑士,谁是骗子.你能判断出吗?
【解析】 假设小白是骑士(说实话),则小蓝是骑 士,小黑是骗子;又因为小蓝是骑士,那么小白、小蓝
不同,一个是骑士,一个是骗子,与小白、小蓝均 为骑士矛盾.假设小白是骗子(说假话),那
么小蓝是骗子,小黑是骑士,又因为小蓝是骗子,所以小白 、小蓝不同是假话.因此,小白、小
蓝是骗子,小黑是骑士.

【巩固】 一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话.请提一个尽量简单的



问题,使两人的回答相同.这个问题可以是 .
【解析】 这个问题可以是:你是老实人吗?如果问的问题是客观的,也就是说对于这两个人来说真 正的答
案是一样的话,那么他们的回答肯定不一样.所以要问一个与他们自身相关的问题,例如你是老< br>实人吗?或者问你是骗子吗?这样他们的回答才会一样.

【巩固】 甲说:“乙和丙 都说谎。”乙说:“甲和丙都说谎。”丙说:“甲和乙都说谎。”根据三人所说,你
判断一下,下面的结 论哪一个正确:(1)三人都说谎;(2)三人都不说谎;(3)三人中只有一
人说谎;(4)三人中只 有一人不说谎。
【解析】 (4)正确。

【例 9】 某地质学院的学生对一种 矿石进行观察和鉴别。甲判断:不是铁,也不是铜。乙判断:不是铁,
而是锡。丙判断:不是锡,而是铁 。经化验证明:有一个人的判断完全正确,有一个人说对了
一半,而另一个人完全说错了。你知道三人中 谁是对的,谁是错的,谁是只对一半的吗?
【解析】 丙全说对了,甲说对了一半,乙全说错了。先假 设甲全对,推出矛盾后,再设乙全对,又推出矛
盾,则说明丙全对,甲说对了一半,乙全说错了。

【巩固】 三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判 断:不是苹
果,也不是梨.淘淘判断:不是苹果,而是桃子.皮皮判断:不是桃子,而是苹果.老猴子告
诉他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另一只小猴子完全说错
了 .你知道三只小猴中谁是对的,谁是错的,谁是只对一半的吗?
【解析】 先设聪聪全对,不是苹果, 也不是梨只能是桃子,那么淘淘两句也都说对了,推出矛盾;再设淘
淘全对,不是苹果,而是桃子,推出 这个水果是桃子,那么聪聪说的也都对了,又推出矛盾;则
说明皮皮全对,那么这种水果是苹果,聪聪说 对了一半,淘淘全说错了.

【例 10】 (
2007
年太原福布斯迎奥 运数学展示活动)
4
名运动员参加一项比赛,赛前,甲说:“我肯定
是最后一名.”乙 说:“我不可能是第一名,也不可能是最后一名.”丙说:“我绝对不会得最后
一名.”丁说:“我肯定 得第一名.”赛后,发现他们
4
人的预测中只有一人是错误的.请问谁的
预测是错误的 ?
【解析】 假设甲的预测是错的,那么其他三人的预测都是对的,那么甲不是最后一名,乙和丙也不 是最后
一名,丁是第一名,这样的话没有人是最后一名,矛盾.所以甲的预测是对的,甲是最后一名,< br>那么丙的预测也是对的.如果乙的预测是错的,那么乙是第一名,而丁的预测是对的,丁也是第
一 名,矛盾.所以乙的预测是对的,丁的预测是错的.

【巩固】 甲、乙、丙、丁在比较他们 的身高,甲说:“我最高.”乙说:“我不最矮.”丙说:“我没甲高,
但还有人比我矮.”丁说:“我 最矮.”实际测量的结果表明,只有一人说错了.请将他们按身高
次序从高到矮排列出来.
【解析】 丁不可能说错,否则就没有人最矮了.由此知乙没有说错.若甲也没有说错,则没有人说错, 矛
盾.所以只有甲一人说错.所以丁是最矮的,甲不是最高的,丙没甲高,但还有人比他矮,那么
只能是甲第二高,丙第三高,乙最高.所以他们的身高次序为乙、甲、丙、丁.

【巩固】 (
2009
年第七届希望杯一试试题)百米决赛前,小芳对参赛的五名选手的名次作了预测,比 赛
的结果同她预测的名次全不相同.由下图知小芳预测为第一名的选手的实际名次是第
名.



我预测的第二名、第三名、
第四名中有1 人高出3个名次,
有1人高出1个名次,另一人
低1个名次.

【解析】 假设小芳预测第一名、第二名、第三名、第四名、第五名对应的人分别是甲、乙、丙、丁、戊,
由小芳说 的话知第四名丁就是实际名次的第一名, 预测的第二名乙就是实际名次的第三名, 预
测的第三名丙就 是实际名次的第二名,因此实际的第一名、第二名、第三名的人分别是丁、丙、
乙,又知道比赛的结果同 她预测的名次全不相同,所以小芳预测的第五名戊只能是实际的第四名
了,这样实际名次的第五名只能是 小芳预测的第一名甲了.(如下表所述)

实际名次对应的人
第一名 第二名 第三名 第四名 第五名







甲 丁
小芳预测名次对应的人 甲

【巩固】 (
2007
年台湾第一届小学数学世界邀请赛)在期末考试前,学生
W

X
Y

Z
分别预测他们
的成绩是
A

B

C

D
,评分标准是
A

B
好,
B

C
好,
C

D
好.
W
说:“我们的成绩都将不相同.若我的成绩得
A
,则
Y
将得
D
.”
“若
Y
的成绩得
C
,则
W
将得< br>D

W
的成绩将比
Z
好.”
X
说:
“若
X
的成绩不是得到
A
,则
W
将得
C
.若我的成绩得到
B
,则
Z
的成绩将不是
D
.”
Y
说:
“若
Y
的成绩得到
A
,则我将得到
B
.若
X
的成绩不是得到
B
,则我也将不会得到
B
.” < br>Z
说:
当期末考试的成绩公布,每位学生所得到的成绩都完全符合他们的预测.请问这四 位学生的成绩
分别是什么?
【解析】 由于每位学生所得到的成绩都完全符合他们的预测,所 以
X
说:“
W
的成绩将比
Z
好”是正确的,
这样< br>W
将不可能得
D

Z
不可能得
A
.这样Y
不可能得
C
(否则
W

D
).
⑴ 如果
W

A
,那么
Y
将得
D
.由于
X
的成绩不是得到
A
,那么
W
将得
C
,这与W

A
矛盾.所

W
不得
A
⑵如果
Y

A
,那么
Z
将得到
B
.但 这样
W
的成绩将不可能比
Z
好,矛盾.所以
Y
不得
A

⑶由于
W

Y

Z
均不得
A
,那么只有
X

A

⑷如果
Y
B
,那么
Z
的成绩将不是
D
.这样
Z
的成绩将 是
C

W
的成绩将是
D
,矛盾.所以
Y
不 得
B
.由于
Y
不得
A

B

C< br>,所以
Y

D

⑸由于
W
的成绩比
Z
好,所以剩下的
B

C
只能是
W

B

Z

C

所以
W

X

Y

Z
的成绩分别是
B

A

D

C


【巩固】 (
2008
年第十二届 香港保良局小学数学世界邀请赛个人赛)三位女孩
A

B

C
进行百米赛
跑,裁判
D

E

F
在赛前猜测她们 之间的名次。
D
说:“我猜
A
是第一名。”
E
说:“我猜< br>C
不会是最后一名。”
F
说:“我猜
B
不会是第一名。”成绩 揭晓后已知恰只有一位裁判的猜
测是正确的,请问哪位女孩得第一名?
【解析】 假设
A
是第一名,那么
D
猜测正确,
F
猜测正确,出现矛盾。假设B
是第一名,那么
D

F

测错误,而当
C< br>为第二名时,
E
猜测正确。假设
C
为第一名,那么
E

F
猜测正确,出现矛盾,
所以第一名是
B


【巩固】 小强、小明、小勇三人参加数学竞赛,他们分别来自甲、乙、丙三个学校,并分别获得一、二 、
三等奖.已知:⑴小强不是甲校选手;⑵小明不是乙校选手;⑶甲校的选手不是一等奖;⑷乙
校的选手得二等奖;⑸小明不是三等奖.根据上述情况,可判断出小勇是 校的选手,他
得的是 等奖.



【解析】 甲校;三等奖.由⑵、小明得的不是二等奖, 由⑸知小明得的不是三等奖,所以小明得的是-等
奖,由⑶、⑷知小明是丙校的,由⑴知小强是乙校的, 所以小勇是甲校的,他得的是三等奖.

【例 11】 一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问.四人分别
供述如下:
甲说:“罪犯在乙、丙、丁三人之中.”
乙说:“我没有作案,是丙偷的.”
丙说:“在甲和丁中间有一人是罪犯.”
丁说:“乙说的是事实.”
经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话.
同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?
【解析】 如果甲说的是 假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话.可是乙和丁两
人的观点一致,所以在 剩下的三人中只能是丙说了假话,乙和丁说的都是真话.即“丙是盗窃
犯”.这样一来,甲说的也是对的 ,不是假话.这样,前后就产生了矛盾.所以甲说的不可能是
假话,只能是真话.同理,剩下的三人中只 能是丙说真话.乙和丁说的是假话,即丙不是罪犯,
乙是罪犯.又由甲所述为真话,即甲不是罪犯.再由 丙所述为真话,即丁是罪犯.所以乙和丁是
盗窃犯.

【巩固】 四个小朋友宝宝、 星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,
陆老师跑出来查看,发现一块 窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”
宝宝说:“是星星无意打破的。”
星星说:“是乐乐打破的。”
乐乐说:“星星说谎。”
强强说:“反正不是我打破的。”
如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?
【解析】 因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。
假设星星说 得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了
实话”矛盾,所以星星说错 了。
假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破 的。
宝宝、星星确实都说错了。符合题意。
所以是强强打破了玻璃。

【巩固】 (
2007
年春武汉明心奥数挑战赛)
5
名谋杀案的嫌疑 人,在犯罪现场被警察询问,其中有一名
是凶手.下面
5
个人的供述中,只有
3
句是对的:
A
说:
D
是杀人犯;
B
说:我是无辜的;
C
说:
E
不是杀人犯;
D
说:
A
在说谎;
E
说:
B
说的是实话.
在这
5
个人中, 是凶手.
【解析】
B

E
判断相同,要么都对,要么都错. < br>假设
B

E
都错,即凶手是
B
,那么
A也错,就出现了
3
句错的,与“有
3
句是对的”矛盾.所
B

E
都是对的.
余下的
3
人中还有
1人判断是对的,由于
A

D
互相矛盾,所以这两个人中必有一个是对的, 一
个是错的,由于只有
3
句是对的,那么
C
必定是错的,所以
E
是凶手.

【巩固】 甲,乙,丙,丁四个同学中有两个同学在假日为街道做好 事,班主任把这四人找来了解情况,
四人分别回答如下.甲:“丙、丁两人中有人做了好事.”
乙:“丙做了好事,我没做.”
丙:“甲、丁中只有一人做了好事.”



丁:“乙说的是事实.”
最后通过仔细分析调查,发现四人中有两 人说的是事实,另两人说的与事实有出入.到底是谁做了
好事?
【解析】 我们用假设法来解 决.题目说四人中有两人说的是事实,另两人说的与事实有出入.注意,此处
的“与事实有出入”表示不 完全与事实相符,比如,当乙、丙都做了好事,或乙、丙都没做好事,
或乙做了好事而丙没做好事时,乙 说的话都与事实有出入.
因为乙与丁说的是一样的,所以只有两种可能,要么乙与丁正确 ,甲与丙错;要么乙与丁错,甲
与丙正确.
⑴假设乙与丁说的话正确.这时丙做了好事,甲说 丙、丁两人中有人做了好事,甲说的话也正确,
这与题目条件只有“两人说的是事实”相矛盾.所以假设 错误.
⑵假设甲与丙说的话正确.那么做好事的是甲与丙,或乙与丁,或丙与丁.若做好 事的是甲与丙,
或丙与丁,则乙说的话也正确,与题意不符;若做好事的是乙与丁,则乙说的话与事实不 符,符
合题意.
综上所述,做好事的是乙与丁.

【例 12】 甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。甲说:“丙

1
名,我第
3
名。”乙说:“我第
1
名,丁第
4
名。”丙说:“丁第
2
名,我第
3
名。”成绩揭晓后,
发现他们每人只说对了一半,你能说出他们的名次吗?
【解析】 我们以“他们每人只说对了一半”作为前提,进行逻辑推理。
假设甲说的第一句话“丙第
1
名”是对的,第二句话“我第
3
名”是错的。由此推知乙说的“我

1
名”是错的,“丁第
4
名”是对的;丙说的“丁第
2
名 ”是错的,“丙第
3
名”是对的。这与假
设“丙第
1
名是对的”矛盾 ,所以假设不成立。
再假设甲的第二句话“我第
3
名”是对的,那么丙 说的第二句“我第
3
名”是错的,从而丙说的
第一句话“丁第
2
名” 是对的;由此推出乙说的“丁第
4
名”是错的,“我第
1
名”是对的。至此< br>可以排出名次顺序:乙第
1
名、丁第
2
名、甲第
3
名 、丙第
4
名。


【例 13】 传说有个说谎国,这个国家的男 人在星期四、五、六、日说真话,在星期一、二、三说假话;
女人在星期一、二、三、日说真话,在星期 四、五、六说假话.有一天,一个人到说谎国去旅
游,他在那里认识了一男一女.男人说:“昨天我说的 是假话”,女人说:“昨天也是我说假
话的日子”.这下,那个外来的游人可发愁了,到底今天星期几呢 ?请同学们根据他们说的话,
判断一下今天是星期几呢?
【解析】 假设男人今天说的是真话 ,那么今天是星期四、五、六、日其中的一天,而且今天的前一天男人
说的是假话,所以,根据男人的话 ,确定今天是星期四,所以女人说的话是假话,昨天也就是星
期三女人说的是真话,符合题意,所以,今 天是星期四.


【巩固】 从A,B,C,D,E,F六种产品中挑选出部分产品 去参加博览会。根据挑选规则,参展产品满足
下列要求:(1)A,B两种产品中至少选一种;(2)A ,D两种产品不能同时入选;(3)A,E,F
三种产品中要选两种;(4)B,C两种产品都入选或都 不能入选;(5)C,D两种产品中选一种;
(6)若D种产品不入选,则E种也不能入选。 问:哪几种产品被选中参展?
【解析】 用假设法。从条件(1)开始,有三种情况:
①假 设选A不B选,由(2)知D不能入选,再由(5)知C入选,再由(4)推知C,B同时入选,
与前面 假设不选B矛盾。假设不成立。
②假设选B不选A,由(3)知选E,F,由(6)知D入选,再由( 5)知C不入选,再由(4)推
知B,C都不入选,与假设选B矛盾。假设不成立。
③假设A ,B都入选,由(2)知D不入选,由(6)知E也不入选,再由(3)知F入选,由(4)
知C入选。 符合题意。因此,A,B,C,F选中参展。

【例 14】 三年级一班新转来三名学生, 班主任问他们三人的年龄.刘强说:“我12岁,比陈红小2岁,
比李丽大1岁.”陈红说:“我不是年 龄最小的,李丽和我差3岁,李丽是15岁.”李丽说:



“我比刘 强年岁小,刘强13岁,陈红比刘强大3岁.”这三位学生在他们每人说的三句话中,
都有一句是错的. 请你帮助班主任分析出他们三人各是多少岁?
【解析】 经过审题,仔细分析这九句话,不难发现有两 句话是相互矛盾的.一句话是刘强说的第一句话:
“我12岁”,另一句话是李丽说的第二句话:“刘强 13岁”.这两句话不能都真,必有一句是假
的.为了确定这两句话的真假性.可以先假设某一句为真, 如果推不出矛盾,本题就获得了解决;
如果推出矛盾,就说明这句话是假的,从而也就找到了突破口.先 假设刘强说的第一句话“我12
岁”为真,那么李丽说的第二句话“刘强13岁”就为假,因此李丽的另 外两句话就应该是真话,
从“陈红比刘强大3岁”就推出陈红是15岁;又从“我比刘强年岁小”推出李 丽小于12岁.可
是这样一来,陈红说的三句话中,“李丽和我差3岁”和“李丽15岁”这两句话都不 能成立,这
与本题中的要求(“每人说的三句话中,都有一句是错的”,即三句话中有两句话是真的)相 矛盾.因
此,刘强说的“我12岁”这句话是假的.由于刘强说的第一句话是假的,所以后两句话就是真
的.因此,李丽说的第三句话“陈红比刘强大3岁”就是假的,所以,李丽说的第二句话“刘强
13岁”就是真的.于是就可以推出:李丽12岁,陈红15岁,刘强13岁.

【例 15】 (2008年日本小学算术奥林匹克大赛决赛)甲和乙做猜数的游戏。首先,甲在纸上写
1个各位数
字都不同的四位数,写好后将纸翻过来。不让乙看到,然后让乙猜这个四位数的各位数字。 如
果数字和位数都猜对了就是○,如果数字对而位数不对就是△。
例如:甲写的是
1 234
,乙猜的是
1354
,那么就是
2
个○,
1
个△。
请阅读以下对话并回答问题:
乙:“我猜
9856
”,甲:“< br>1
个○,
1
个△。”
乙:“
6972
?”,甲:“ 也是
1
个○,
1
个△。”
乙:“
3058
?”, 甲:“也是
1
个○,
1
个△。”
乙:“
4732
呢?”,甲:“
2
个△。”
乙:“哇,猜不着呀,
8369
呢?”甲:“也是
2
个△。”
(1):请从以上的对话中答出甲最可能写的
4
个四位数。
后来,甲发现自己刚才的回答中对四位数的判断有误。
甲:“对不起,刚才有搞错的。”乙:“啊!那么


甲“只是
1
个数字搞错了,在刚才说到的数字中,只是对
4732
的判断有误,正确的回答应该 是
1
个○,
1
个△。”
乙“稍等一会儿

,啊!我知道啦!甲写的四位数是 吗”?
甲:“对啦!你真棒!”
(2):请问甲写的这个四位数是什么?
【解析】 如下表:

由1、4次猜测结果知,2到9中包含了正确数字中的全部四位数字,也即甲写的 数字各位都不是
0或1;由2、3次猜测结果,同理知甲写的数字各位都不是1或4;再考察第3、4次 猜测结果,
由于其中的0和4一定是错的,而且两次各猜对了正确数字四位数中的两位,可以先假设甲写 的
数字各位上没有3,那么甲写的数字各位就是2、5、7、8,那么第5次猜测的结果就应该是(0,
1)或者(1,0)而非(0,2)。因此甲写的数字一定有一位是3;再由第5次猜测结果,甲所写< br>的数字各位有且只有6、8、9中的一个;于是由第1次猜测结果,甲所写的数字中一定有一位是
5
再综合第3、5次猜测结果,知甲所写的数字各位上没有8,而一定有且只有6、9其一
根据第2次的猜测结果,甲所写的数字应该有一位是2、7其一。
假定第1、3次猜测中位数对的数字是5,那么根据第3、5次的猜测结果



可以判断出3在甲所写的数字的个位上
于是由第2次猜测结果,2 或7一定是数字对而位数不对的,那么6或9一定是数字对且位数对
的,于是甲可能写的数字是:625 3、2953或7953
假定第1、3次猜测中位数对的数字不是5,那么第3次猜测中位数对的数字一定是3,
第1次猜测中位数对的数字只能是6而不能是9,于是只能第百位是5,十位是7,
这时甲可能写的数字只有3576
综上所述,甲可能写的四位数是6253、2953、7953或3576
(2)由上述前半部分推理,仍然能判断出甲写的数字各位上一定有3和5,
且仍然6、9中有其一,而2、7中有其一。
仍然先假设第3次猜测中数字对且位数对的是3,那么第1次猜测中数字对且位数对的只能是6,
而不能是5或9。那么由于第1次猜测中5是数字对而位数不对的,则5只能放在百位,
又由于第2次猜测中有一位数字对且位数对,所以只能是十位上为7,这时这个四位数是3576,
但这时第4次猜测将没有数字对且位数对的数,与甲的叙述不附,因此最开始的假设不成立。
那么第3次猜测中数字对且位数对的数只能是5,由第3、5次猜测结果可以推知,
3不在千位也不在百位,那么3只能在个位。
考虑到第四次猜测中要有一位数字对且位数对,只能是百位上的7,
再由第1次猜测的结果推出千位上不能是9而只能是6,
于是这个四位数是6753,经过检 验可知,这个四位数满足所有五个条件,因此甲写的四位数就是
6753。

【巩固】 一只皮箱的密码是一个三位数。小光说:“它是954。”小明说:“它是358。”小亮说 :“它
是214。”小强说:“你们每人都只猜对了位置不同的一个数字。”这只皮箱的密码是 。
【解析】 每个人只猜了位置不同的一个数字,也就是说一样的数字必然不对,“5、4”第一位肯 定是9,
第三位是8,第二位是1,密码就是918。

【例 16】 一次数学考 试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“

”.记分的方
法 是:答对一题给2分;不答的给1分;答错的不给分.已知
A

B

C

D

E

F

G

人的答案及前六个人的得分记录在表中,请在表中填出
G
的得分.并简单说明你的思路.
考生
C

G

A

B

E

D

F

题号
1
2
3
4
5
6
得分






7


×

×

5

×

×

×
5

×



×
5
×

×
×

×
9
×
×
×

×

7

×
×


×


【解析】 由 于
E
得了9分,说明他只答错了一道题.先假定答错的是第1题,这样就有一个标准答案,并< br>由此可分析其他人的得分.如出现矛盾,再假定
E
答错的是第2题„„直到判断出
E
答错的题号
为止.有了正确的答案,就可以写出
G
的得分.
假 设
E
的第1题答错,那么
A
至少错3道题,一题未答,最多得5分,与
A
得7分矛盾.所以
E
第1题答对.
假设
E
第2题答错 ,可知
A
最多得3分,矛盾.所以
E
第2题答对.
假设
E
第3题答错,则
B
最多得3分,矛盾.所以
E
第3题答对.
假设
E
第6题答错,则
D
最多得3分,矛盾.所以
E
第6 题答对.
由于
E
得9分,因此
E
只答错一题,因此
E第4题答错,于是
A
的第2,4两题对,3,6两题错.而



A
得7分,说明
A
的第5题是对的.由
A

E
两人的答案,可得一标准答案如下表:
题号 1 2 3 4 5 6
答案 × √ × √ √ ×
按此标准评分,与题中所给
A

B

C

D

E

F
得分相符合, 所以
E
的第4题确实答错了.上表的
答案是正确的.故可知
G
得8分 .

【例 17】 有六个大小相同的彩球,三个红,三个白,分别放入三个罐子里,一个罐 里放两红球,一个罐
里放两白球,另一罐放一红一白.然后将写有“两红”、“两白”、“红白”的三个 标签贴在
三个罐子上,由于粗心,三个标签全贴错了.试问此时最少要从罐子中取出几个球,才能确定< br>三个罐分别装的是什么彩球?
【解析】 因为所有罐子上的标签都和罐中实物不符,所以在贴有 “红白”标签的罐子中只能是两红或两
白.那么只需在“红白”罐子中取出一个彩球,若是红色球,则可 知罐中是两红,那么标有“两
白”的罐子中就是“一红一白”,标有“两红”的罐子中就是“两白”;若 是白色球,则可知罐中
是“两白”,那么标有“两红”的罐子中就是“一红一白”,而标有“两白”的罐 子中就是“两红”.

模块四、计算中的逻辑推理

【例 18】 学校 组织了一次投篮比赛,规定投进一球得
3
分,投不进倒扣
1
分,如果大明得< br>30
分,且知他

6
个球没有投进,那么大明共投了几个球?
【解析】 大明有
6
个球没有投进,要被扣掉
6
分,如果不考虑这< br>6
个球,大明应该得
30636
(分),规定
投进一球得
3
分,
36312
(个),所以,大明投进了
12
个球,加上未 投进的
6
个球,大明共投

12618
个球.

【例 19】 小华在一个文具店里买了5支铅笔,4块橡皮,8个练习本,付给售货员2元钱,售货员 叔叔找
给他5角5分.小华看了看铅笔的价格是每支8分,就说:“叔叔,您把帐算错啦!”请问:小< br>华怎么知道这笔帐算错了?
【解析】 因为每支铅笔的价格是8分,所以5支铅笔的价钱是8540
(分),40是4的倍数;4块橡皮和
8个笔记本,不管它们各自的单价是多 少,总共应付的钱也是4的倍数.但是小华给了售货员2
元钱,找回5角5分,实际付给售货员1元4角 5分,因为145(分)不是4的倍数,所以小华断
定售货员把这笔帐算错了.

【例 20】 张红因病在家休息了几天,这期间的气候是:⑴下了8次雨,时间是上午或下午;⑵当下 午下
雨时,当天上午是晴天;⑶有9个下午是晴天;⑷有13个上午是晴天。问她一共在家休息了几天?
【解析】 因为(2)当下午下雨时,当天上午恰好是晴天,如果上午下雨,下午也必定是晴 天因此每天只
可能上午或者下午下雨。
设他休息了X天,(X-9)为下午下雨的次数,(X-13)为上午下雨的次数
(X-9)+(X-13)=8,2X=30,X=15,休息了15天

【例 21】 五号楼住着四个女孩和两个男孩,他们的年龄各不相同,最大的
10
岁,最小的
4
岁,最大的女
孩比最小的男孩大
4
岁,最大的男孩比最小的女孩也大4
岁,求最大的男孩的岁数.
【解析】 假设最小的男孩
4
岁,那么最 大的女孩有
448
(岁),四个女孩年龄都不同,最小的女孩应是
5
岁, 那么最大的男孩为
549
(岁),与题目说最大的孩子
10
岁矛盾.所以 假设不成立.再假
设最小的女孩
4
岁,那么最大的男孩为
448
岁,最大的女孩
10
岁,最小的男孩
1046
岁,
符合题意.所 以最大男孩是
8
岁.

【例 22】 四对夫妇坐在一起闲谈.四个女人中 ,
A
吃了
3
个梨,
B
吃了
2
个,
C
吃了
4
个,
D
吃了
1
个;
四个男人中, 甲吃的梨和他妻子一样多,乙吃的是妻子的
2
倍,丙吃的是妻子的
3
倍,丁吃 的是



妻子的
4
倍.四对夫妇共吃了
32
个梨.问:丙的妻子是谁?
【解析】 分别设
A

B

C

D
的丈夫吃梨的个数为
3a

2b

4c

d,则有:

3a2b4cd32(3241)22

由题意知,
a

b

c

d
分别等于
1
2

3

4
四个数之一,且互不相同.所以
abcd10
,得到
2ab3c12
.所以
b
与< br>c
的奇偶性相同.
由于
2abaaba121124
,所以
3c8

c
只能为
1

2

如果
c1
,那么
b3
,由
2ab3c12
得到
a3
,矛盾.所以
c2

b4

a1

d3
.因
为丙吃的梨是妻子的
3
倍,而
d3
,所以丙的妻子是
D


课后练习

练习1.
A

B

C

D
分别 是中国、日本、美国和法国人.已知:⑴
A
和中国人是医生;⑵
B
和法国人< br>是教师;⑶
C
和日本人职业不同;⑷
D
不会看病.问:
A
B

C

D
各是哪国人,
【解析】 有⑴ ⑵可知,
A

B
都不是中国人和法国人,再由⑴⑷知,
D
也 不是中国人,所以,
C
是中国人,
由⑶,日本人也是教师,从而推知,
D是法国人,得下表:,
中国人 日本人 美国人 法国人
A

B

C

×
×



×


×
×
×
×
× × × √
D

最后由
C
是中国人及⑴⑶,推知日本人是教师,再由⑵知< br>B
是日本人.


练习2. 班里举行投篮比赛,规定投中一个球得
5
分,投不进扣
2
分.小立一共投了
6
个球,得了
16
分,
那么小立投中了几个球?
【解析】 如果小立
6
个球全部 投中,应该得
6530
(分),实际上少了
301614
(分),投 中一个球得
5
分,投不进扣
2
分,投不进一个球就少
527(分),所以一共没投进
1472
(个),投中

624
(个)球.


练习3. 学校新来了一位老师,五个学生分别听到如下的情况: ⑴是一位姓王的中年女老师,教语文课;
⑵是一位姓丁的中年男老师,教数学课;⑶是一位姓刘的青年男 老师,教外语课;⑷是一位姓李
的青年男老师,教数学课;⑸是一位姓王的老年男老师,教外语课.他们 每人听到的四项情况中
各有一项正确.问:真实情况如何?
【解析】 真实情况是姓刘的老年 女老师,教数学.假设是男老师,由⑵、⑶、⑸知,他既不是青年、中年,
也不是老年,矛盾,所以是女 老师.再由⑴知,她不教语文,不是中年人.假设她教外语,由⑶、
⑸知她必是中年人,矛盾,所以她教 数学.由⑵、⑷知她是老年人,由⑶知她姓刘.


练习4. 在一次数学竞赛中,
A

B

C

D

E
五 位同学分别得了前五名(没有并列同一名次的),关
于各人的名次大家作出了下面的猜测:
A< br>说:“第二名是
D
,第三名是
B
.”
B
说:“第二名是
C

第四名是
E
.”
C
说:“第一名是
E
,第五名是
A
.”
D
说:“第三名是
C
,第四名是
A
.”
E
说:
“第二名是
B
,第五名是
D
.”结果每人都只猜对了一半,他 们的名次如何?
【解析】 假设
A
猜的第一句是真的,那么
B
猜的 第二句是真的,即第四名是
E
,那么
C
猜的“
E
是第一名”
是错的,
A
是第五名,那么
D
猜的
C
是第三名是对 的,那么
B
就是第一名,从而
E
说的全是错的,
所以假设不成立.所 以
A
猜的第二句是真的,即
B
是第三名,那么
D
猜的第一句 是错的,从而
A
是第四名,所以
C
猜的第二句是错的,
E
是 第一名,从而
B
猜的
C
是第二名是对的,
E
猜的第五
名是
D
正确,所以,第一名是
E
,第二名是
C
,第三名是
B
,第四名是
A
,第五名是
D





练习5. 甲、乙、丙三个小学生都是少先队的干部,一个是大队 长,一个是中队长,一个是小队长.一次
数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和 中队长的成绩不相同.⑶中队长
比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?
【解析】 根据条件⑵和⑶,甲和中队长的成绩不相同,中队长比乙的成绩差,可以断定,甲不
是中队长,乙也不是中队长,只有丙是中队长了(也可以列表确定中队长).甲和乙两人谁是大队
长呢 ?由⑴和⑶,丙比大队长的成绩好,中队长比乙的成绩差,可以推断出按成绩高低排列的话,
乙的成绩比 中队长(丙)的成绩好,丙的成绩比大队长的成绩好.这样,乙、丙就都不是大队长,
那么,大队长肯定 是甲.


月测备选

测试1、根据条件判断旅游团去了
A

B

C

D

E
中的哪几 个地方?
⑴如果去
A
,就必须去
B


D

E
两地至少去一地;

B

C
两地只能去一地;

C

E
两地要去都去,要不去都不去;
⑸若去
D
,则
A

E
两地必须去.
【解析】 从⑶入手,分别假设去
B

C
:⑶若去
B
则不能去
C
,⑷也不能去
E
,⑵只能去
D
.⑸必须去A

E
,与不能去
E
矛盾.所以不能去
B
假设 去
C
:⑷必去
E
,⑵需去
D
,⑸必须去
A

E
,⑴去
A
必须去
B
,与⑶
B

C
不能同去矛盾,所以不能去
D
.综上只能去
C

E.


测试2、徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工 ,他们都是象棋迷。(1)电工只
和车工下棋;(2)王、陈两位师傅经常与木工下棋;(3)徐师傅与 电工下棋互有胜负;(4)陈师傅比钳工
下得好。问:徐、王、陈、赵四位师傅各从事什么工种?
【解析】 徐是车工,王是钳工,陈是木工,赵是电工。


测试3、振华 小学组织了一次投篮比赛,规定投进一球得
3
分,投不进倒扣
1
分.小亮投了
5
个球,投进了
3
个.那么,他应该得多少分?
【解析】 小亮投 的
5
个球中,投进的
3
个球得到
339
(分),而没有 投进的
2
个球被扣掉
122
(分),
于是他应得
92 7
(分).


测试4、有三个盒子,甲盒装了两个
1
克的砝码,乙盒装了两个
2
克的砝码,丙盒装了一个
1
克、一个
2< br>克
的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的小明只从一个盒子里取出一 个砝
码,放到天平上称了一下,就把所有标签都改正过来了.你知道这是为什么吗?
【解析】 其实不用那么麻烦,我们发现“每只盒子外面所贴的标明砝码重量的标签都是错的”这句话说明
标签的可 能只有两种:
标注 两个1克 两个2克 一个1克一个两克
可能1: 两个2克 一个1克一个两克 两个1克
可能2:一个1克一个两克 两个1克 两个2克
所以我们可以从标注“一个1克一个两克”里面拿一个,如果是“1克”的就是上面那种情况 ,
否则就是下面那种情况.


测试5、编号分别为1,2,3,4的四位 同学参加了学校的110米栏比赛,获得了全校的前四名,1号同学
说:“3号比我先到达终点.”得第 三名的同学说:“1号不是第四名.”而另一位同学说:“我们的号码与我



们所得的名次都不相同.”聪明的同学们,你们能说出这四位同学各自所得到的名次吗?
【解析】 从得第三名同学的话中可以推知:1号不是第三名,也不是第四名;而1号同学又说“3号比 我
先到终点”,这说明1号同学不是第一名,这样我们可以得知1号同学是第二名,于是3号同学
是第一名, 而另一位同学说:“我们的号码与我们所得的名次都不相同.”,这样4号不是第四名,
只能是第三名,所以获得第四名的同学是2号.




七夕搞笑-清明节资料


出差补助-加拿大硕士留学


中学生淘课网-四川省教育考试院


美丽的长发-茄子的英文


四级联考-这就是我作文800字


里德学院-七夕节活动


副校长-相声台词大全


冬天的诗-枣庄三中分数线