小学四年级奥数知识点(自己整理综合)

玛丽莲梦兔
593次浏览
2020年08月04日 16:28
最佳经验
本文由作者推荐

奥运会的比赛项目-建党100周年是哪一年


小学四年级奥数知识点总复习

1. 常用特殊数的乘积
25×4=100 125×8=1000 625×16=10000 25×8=200 125×4=500
125×3=375 7×11×13=1001 37×3=111
2. 加减法运算性质:
同级运算时,如果交换数的位置,应注意符号搬家。加、去括号时要 注意以
下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;
括号前 面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
100+(21+58)=100+21+ 58
100-(21+58)=100-21- 58
3. 乘除法运算性质
乘法中性质:(1)乘法交换律 (2)乘法结合律 (3)乘法分配律 (4)
乘法性质 (5)积的变化规律:一扩一缩法。
除法中性质:当被 除数为几个数字之和或者差时才可以用除法分配律。积的
变化规律:同扩同缩法。同级运算时,如果有交 换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号 ;括号前
面是除号,去掉或加上括号要变号。
100×(4×5)=100×4×5
100÷(4÷5)=100÷4÷5
4. 最大最小
1、解答最大最小的问题, 可以进行枚举比较。在有限的情况下,通过计算,
将所有情况的结果列举出来,然后比较出最大值或最小 值。
2、运用规律。(1)两个数的和一定,则它们的差越接近,乘积越大;当它
们相等(差 为0)时,乘积最大。
3、考虑极端情况。如“连接两点间的线段最短”、“作对称点”、“联系
实际考虑问题”等。
5. 比较大小
估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度
的方法有两条:一是 分组(分段),并尽可能使每组所对应的标准相同;另一种
方法是按近似数乘除法计算法则,比要求的精 确度多保留一位,进行计算。
6. 平均数


求平均数必须知道总数和份数,常用公式:
平均数=总数÷份数
份数=总数÷平均数
总数=平均数×份数(总数=所有数之和)
7. 余数问题(周期问题,个位数是几)
一个带余数除法算式包含4个数:被除数÷除数=商……余数。相 互关系还
有:被除数=除数×商+余数,或(被除数-余数)÷除数=商。余数小于除数。
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
问题类型:找图形(图形计数),找字符, 找数字(统计),年月日、星期
几问题,个位数是几。
关键问题:确定循环周期。
闰年:一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除。
平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除。
8. 奇数与偶数
加法:偶数+偶数=偶数 奇数+奇数=偶数 偶数+奇数=奇数
减法:偶数-偶数=偶数 奇数-奇数=偶数 偶数-奇数=奇数
乘法:偶数×偶数=偶数 奇数×奇数=奇数 偶数×奇数=偶数
9. 等差数列
数列是指按一定规律顺序排列成一列数。如果一个数列中从第二个数开始,
相邻两个数的差都相 等,我们就把这样的一列数叫做等差数列,等差数列中的每
一个数都叫做项,第一个数叫第一项,通常也 叫“首项”,第二个数叫第二项,
第三个数叫第三项……最后一项叫做“末项”。等差数列中相邻两项的 差叫做
“公差”,等差数列中项的个数叫做“项数”。公式:
和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1
第n项=首项+(n-1)×公差 an = a1+(n-1)d
关键问题:确定已知量和未知量,确定使用的公式;
10. 和倍问题
己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问
题。解答和倍问题, 一般是先确定较小的数为标准数(或称一倍数),再根据其
他几个数与较小数的倍数关系,确定总和相当 于标准数的多少倍,然后用除法求
出标准数,再求出其他各数,最好采用画线段图的方法。


小学四年级奥数知识点总复习
和倍公式:和÷(倍数+1)=小数
11. 差倍问题
己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。
解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍
数关系,确定差 是标准数的多少倍,然后用除法先求出较小数,再求出较大数。
解答这类问题,先画线段图,帮助分析数 量关系。
差倍公式:差÷(倍数-1)=小数
12. 和差问题
和差问题是根据 大小两个数的和与两个数的差求大小两个数各是多少的应
用题。解答和差问题的基本公式是:
(和-差)÷2=较小数 (和+差)÷2=较大数
13. 年龄问题
己知两个 人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些
人年龄之间的数量关系,求他们的年龄 等,这种题称为年龄问题。年龄问题的特
点是:一般用和差或者和倍问题的方法解答。(1)两人的年龄 之差是不变的,
称为定差。(2)两个人的年龄同时都增加同样的数量。(3)两个年龄之间的倍
数关系,年龄增长,倍数缩小。年龄问题的解题方法是:几年后=大小年龄之差
÷倍数差-小年龄 几年前=小年龄-大小年龄差÷倍数差
14. 植树问题
在首尾不相接的路线上植树,段数与棵数关系可分为4类:
(1)两端都种树:段数=棵数-1
(2)一端种一端不种:段数=棵数
(3)两端都不种:段数=棵数+1
(4)在首尾相接的路线上种树(如圆、正方形、闭合曲线等):段数=棵
棵距×段数=总长
关键问题:确定所属类型,从而确定棵数与段数的关系
15. 盈亏问题
通常是 比较法和对应法结合使用。公式是:(同盈同亏用减法,一亏一盈用
加法)即:两次分配结果差÷两次分 配数差=人数(份数)
基本特点:对象总量和总的组数是不变的。
关键问题:分析差量关系,确定对象总量和总的组数。
16. 还原问题(逆推问题)
3


还原问题又叫逆推问题。己知一个数的结果,再经过逆运算反求 原数,叫做
还原问题。解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是
原来 运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。
解题关键:在从后往前推算的过程中 ,每一步都是做同原来相反的运算,原
来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时 用除;原来除
的,运算时用乘。
17. 鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置
换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
18. 归一问题的基本特点:
问题中 有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速
度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量。
19. 定义新运算
基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)
运算。 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运
算,然后按照基本运 算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
20. 加法乘法原理和几何计数
加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,
在第二类方法中有m2种 不同方法……,在第n类方法中有mn种不同方法,那么
完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。


小学四年级奥数知识点总复习
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,
不管第1步用哪一种方 法,第2步总有m2种方法……不管前面n-1步用哪种方
法,第n步总有mn种方法,那么完成这件任 务共有:m1×m2....... ×mn种不
同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
①数线段规律:总数=1+2+3+…+(点数一1);
②数角规律=1+2+3+…+(射线数一1);
③数长方形规律:个数=长的线段数×宽的线段数:
④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数。
21. 逻辑推理
基本方法简介:
①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断 ,
如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情
况是成立的。 例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定
是奇数。
②条件分析—列表 法:当题设条件比较多,需要多次假设才能完成时,就需要进
行列表来辅助分析。列表法就是把题设的条 件全部表示在一个长方形表格中,表
格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运 用逻辑规律
进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线 表示两个
对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的
状态 。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有
表示不认识。
④逻辑 计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的
计算,根据计算的结果为推理提 供一个新的判断筛选条件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方 法,
并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
1. 等价条件的转换
2. 列表法
3. 对阵图:竞赛问题,涉及体育比赛常识
4.假设问题
假设法是解答应用题时经常用到的一种方法。所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出
现的矛盾,再适当调 整,从而找到正确答案。
22. 方阵问题
5


很多的 人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人
数,这类题叫方阵问题。在解决方阵 问题时,要搞清方阵中一些量(如层数,最
外层人数,最里层人数,总人数)之间的关系。方阵问题的基 本特点是:
(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人
数减少 2,每一层就少8。
(2)每层人数=(每边人数-1)×4
(3)每边人数=每层人数÷4+1
(4)外层边长数-2=内层边长数
(5)实心方阵人数=每边人数×每边人数
23. 相遇与追及问题
路程=速度×时间 时间=路程÷速度 速度=路程÷时间。
追及问题运动的物体或人同 向而不同时出发,后出发的速度快,经过一段时
间追上先出发的,这样的问题叫做追及问题,解答追及问 题的基本条件是“追及
路程”和“速度差”。追及问题的公式是:追及时间=追及路程÷速度差 追及
路程=速度差×追及时间 速度差=追及路程÷追及时间
相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而 行,
或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间
=路程 路程÷速度和=相遇时间 速度÷相遇时间=速度和
24. 幻方与数阵
幻方的特点:一 个幻方每行、每列、每条对角线上的几个数的和都相等。这
相相等的和叫“幻和”。两种方法:奇阶:1 、九子排列法2、罗伯法,3、巴舍
法。偶阶:1、对称交换法2、圆心方阵法。数阵有三种基本类型: (1)封闭型,
(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用
的中心数,是解答解数阵类型题的解题关键。一般答案不唯一。
25. 剪纸问题
公式:2对折后剪的次数+1=段数。
26. 一笔画和多笔画
(1)凡是由偶点 组成的连通图,一定可以一笔画成;画时可以任一偶点为
起点,最后能以这个点为终点画完此图。 (2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;
画时必须以一个奇点为起 点,另一个奇点为终点。
(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼 此
无公共线),而且至少要n次画完。


小学四年级奥数知识点总复习

解题方法
(结合杂题的处理)
(1) 假设法(尝试、尝试尝试)
(2) 推理法(推导、找关系)
(3) 代换法(替换)
(4) 画图法(画线段、列表格)
(5) 列表法
(6) 反证法
(7) 消元法
(8) 倒推法
(9) 极值法
(10) 设数法
(11) 整体法
(12) 排除法
(13) 染色法
(14) 构造法
(15) 配对法
(16) 列方程
⑴方程
⑵不定方程
⑶不等方程


以下暂时未学到
27. 圆周率常取数据
3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7
3.15×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26
28. 100内质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
29. 单位换算:
1米=3尺=3.2808英尺=1.0926码 1公里=1000米=2里 1码=3英尺=36
英 寸 1海里=1852米=3.704里=1.15英里 1平方公里=平方米=100公顷 =4
平方里=0.3861平方英里 1平方米=100平方分米=10000平方厘米 1公顷=100
公亩=15亩=2.4711英亩 1立方 米=1000立方分米=立方厘米 1立方米=27立
方尺=1.308立方码=35.3147立方英尺 1吨=1000公斤=1000千 克 1公斤
=1000克=2斤(市制)=2.2046磅
30. 行船问题
7


船在江河里航行,前进的速度与水 流动的速度有关系。船在流水中行程问题,
叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而 上的速度与船速、
水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解
答行船问题有时需要 驼用和差问题的数量关系。船速=(顺水速度+逆水速度)
÷2 水速=(顺水速度-逆水速度)÷2
因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、
速度与时间的关系。 顺水路程=顺水速度×时间逆水路程=逆水速度×时间
31. 过桥问题
过桥问题的一般数 量关系是:路程=桥长+车长车速=(桥长+车长)÷通过
时间通过时间=(桥长+车长)÷车速车长= 车速×通过时间-桥长桥长=车速×
通过时间-车长
32. 抽屉原理
抽屉原则一 :把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽
屉里有两个或两个以上的苹果。 抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个
抽屉里有(m+1) 个(或更多的)苹果。
说明:应用抽屉原则解题,要从最坏的情况去思考。
33. 牛吃草问题
牛吃草问题涉及三种数量:A.原有的草。B.新长出的草。C.牛吃掉的草。牛
吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求
出最终的问题。(类似于 行程问题中的追及问题)
34. 分解因式
把一个合数写成几个质数相乘的形式,叫做分解 质因数。一个自然数的约数
的个数,恰为各个质因数的指数加1后的乘积。一个数的完全平方数,各个质 因
数的个数,恰好是平方前这个数各个质因数个数的2倍。一个完全平方数各个质
因数的个数都 是偶数。
35. 最大公约数与最小公倍数
求两个数的最大公约数一般有三种方法:(1)分解质因数法(2)短除法(3)
辗转相除法
36. 分数的比较
分母相同的分数比较大小,分子大的分数比较大。分子相同的分数比较大 小,
分母大的分数反而小。分子和分母都不相同的分数比较大小,可以把它们转化成
分母相同的 分数比较大小;也可以把它们转化成分子相同的分数比较大小。性质:


小学四年级奥数知识点总复习
1.一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。 2.
一个真分 数的分子、分母都减去同一个自然数(这个自然数小于真分数的分子),
所得的新分数比原分数小。 3 .一个假分数的分子、分母都减去同一个自然数(这
个自然数小于假分数分母),所得的新分数比原分数 大。 4.一个假分数的分子、
分母都加上同一个自然数,所得的新分数比原分数小。
37. 钟表问题
解答钟表问题,我们首先想办法把有些能转化成相遇或追及问题的转化为相
遇或追及 问题来解答。需记住以下常用数据:钟表上有12大格,60小格,每大
格30度,每小格6度。分针每 分钟走:6度;时针每分钟走:0.5度;速度差:
5.5度。2解答钟表上的时间快慢问题,关键是抓 住单位时间内的误差,然后根
据某一时间段内含多少个单位时间,就可以求出这一时间段内的误差。
38. 分数应用题的计算
解答较复杂的分数应用题,一定要找准单位“1”,如果单位“1 ”的量是变
化的,就要从题目中找出不变的量,把不变的量看作单位“1”,将己知条件进
行转 化,找出所求数量相当于单位“1”的几分之几,再列式解答。 2还可以借
助线段图来帮助理解题意,列式解答。 3对较复杂的分数应用题,还可以列方
程来解答。
39. 利润问题
解答利润问题你必须理解以下的关系式。
(1)利润=卖价-成本
(2)利润的百分数=(卖价-成本)÷成本×100﹪
(3)卖价=成本×(1+利润率)
(4)成本=卖价÷(1+利润率)
(5)折扣=实际售价÷原售价×100%(折扣<1)
(6)利息=本金×利率×时间
(7)税后利息=本金×利率×时间×(1-20%)
40. 浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量 ×100%
=浓度 溶液的重量×浓度=溶质的重量

9

湖南劳动保障网-胜似亲人


满分作文开头结尾-江苏注册会计师协会


将改革进行到底第六集-全国公办三本大学排名


重庆市公务员局公众信息网-宁波工程学院招生网


清泉山-山东教育招生考试院


建党伟业观后感范文-中秋慰问


李伟菘-春水读后感


白手起家的创业故事-教师节祝福语图片