小学四年级奥数知识点梳理
傅雷家书阅读答案-有关爱国的演讲稿
1.圆周率常取数据
3.14×1=3.14 3.14×2=6.28
3.14×3=9.42 3.14×4=12.56
3.14×5=15.7
3.15×6=18.84 3.14×7=21.98 3.14×8=25.12
3.14×9=28.26
2.常用特殊数的乘积
125×8=1000
25×4=100 125×3=375 625×16=
10000 7×11×13=1001
25×8=200 125×4=500 37×3=111
3.100内质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
61 67 71 73 79 83 89
97
4.单位换算:
1米=3尺=3.2808英尺=1.0926码 1公里=1000米=2里
1码=3英尺
=36英 寸 1海里=1852米=3.704里=1.15英里
1平方公里=1000000平方
米=100公顷 =4平方里=0.3861平方英里
1平方米=100平方分米=10000平方
厘米 1公顷=100公亩=15亩=2.4711英亩
1立方 米=1000立方分米
=1000000立方厘米
1立方米=27立方尺=1.308立方码=35.3147立方英
尺
1吨=1000公斤=1000千 克 1公斤=1000克=2斤(市制)=2.2046磅
5.加减法运算性质:
同级运算时,如果交换数的位置,应注意符号搬家。加、去括号时要
注意
以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变
号;括号前
面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
6.乘除法运算性质
乘法中性质:(1)乘法交换律(2)乘法结合律 (3)乘法分配律
(4)乘
法性质(5)积的变化规律:一扩一缩法。
除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律 积的
变化规律:同扩同缩
法。同级运算时,如果有交换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘
号,去掉或加上括号不变号;括号 前
面是除号,去掉或加上括号要变号;
7.等差数列
数列是指按一定规律顺序排列成一列数。如果一个数列中从第二个数 开始,
相邻两个数的差都
相等,我们就把这样的一列数叫做等差数列,等差数列中的每
一个数都叫做项,第一个数叫第一项,通常
也叫“首项”,第二个数叫第二 项,
第三个数叫第三项„„最后一项叫做“末项”。等差数列中相邻两
项的差叫做
“公差”,等差数列中项的个数叫做“项数”。公式:
和=(首项+末项)×项
数÷2 项数=(末项-首项)÷公差+1 第n项=首项+(n-1)×公差
8.和倍问题
己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫 和倍问题。解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据
其他几个数与较小数
的倍数关系,确定总和相当于标准数的多少倍,然后用除法
求出标准数,再求出其他各数,最好采用画线段图的方法。和倍公式:和÷(倍
数+1)=小数
9.差倍问题
己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍 问题。<
br>解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍
数关系,确定差是
标准数的多少倍,然后用除法先求出较小数,再求出较大
数。
解答这类问题,先画线段图,帮助分析数量关系。差倍公式:差÷(倍数-1)=
小数
10.和差问题
和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少
的应
用题。解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大
数九、
11.年龄问题
己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己 知某<
br>些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。年龄问题的
特点是:一般用和
差或者和倍问题的方法解答。(1)两人的年龄之差是不变 的,
称为定差。(2)两个人的年龄同时都
增加同样的数量。(3)两个年龄之间的倍
数关系,随着年龄的增长,也在发生变化。年龄问题的解题方
法是:几年后= 大
小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差
12.平均数
求平均数必须知道总数和份数,常用公式:平均数=总数÷份数
总数=平均
数×份数 份数=总数÷平均数相遇问题行程问题又分为相遇问题、
13.相遇与追及问题
路程=速度×时间 时间=路程÷速度 速度=路程÷时间。
相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而
行,
或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间
=路程
路程÷速度和=相遇时间 速度÷相遇时间=速度和
追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过 一段
时间追上先出发的,
这样的问题叫做追及问题,解答追及问题的基本条件是“追
及路程”和“速度差”。追及问题的基本数量
关系是:追及时间=追及路程÷速
度差 追及路程=速度差×追及时间
速度差=追及路程÷追及时间
14.行船问题
船在江河里航行,前进的速度与水流动的速度有关系。船在流水中行 程问
题,
叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船
速、水速的关系是:顺水速度
=船速+水速逆水速度=船速-水速由于顺水速
度 是船速与水速的和,逆水速度是船速与水速的差,因
此行船问题就是和差问
题,所以解答行船问题有时需要驼用和差问题的数量关系。船速=(顺水速度+<
br>逆水速 度)÷2 水速=(顺水速度-逆水速度)÷2
因为行船问题也是行程问题,所
以在行船问题中也反映了行程问题的路程、
速度与时间的关系。顺水路程=顺水速度×时间逆水路程=逆
水速 度×时间
15.过桥问题
过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车 长)÷通
过时间通过时间=
(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速
×通过时间-车长
16.植树问题
在首尾不相接的路线上植树,段数与棵数关系可分为三类:(1)两
端都
种树 段数=棵数-1 (2)一端种一端不种
段数=棵数(3)两端都不种段数=
棵数+1
在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数
17.还原问题
还原问题又叫逆推问题。己知一个数的结果,再经过逆运算反求原 数,叫
做还原问题。解决这
类题要从结果出发,逐步向前一步一步推理,每一步运算都
是原来运算的逆运算(即变加为减,变减为加
,变乘为除,变除为乘)。
18.方阵问题
很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件 求总
人数,这类题叫方阵
问题。在解决方阵问题时,要搞清方阵中一些量(如层数,
最外层人数,最里层人数,总人数)之间的关
系。方阵问题的基本特点是: (1)
方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的
人数减少2,
每一层就少8。(2)每层人数=(每边人数-1)×4
(3)每边人数=每层人数
÷4+1 (4)实心方阵人数=每边人数×每边人数
19.幻方与数阵
幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相 等
。
这相相等的和叫“幻和”。两种方法:奇阶:1、九子排列法2、罗伯法,3、巴
舍法。偶阶
:1、对称交换法2、圆心方阵法。数阵有三种基本类型:(1) 封
闭型,(2)辐射型(3)综合型
解数阵问题一般思路是从和相等入手,确定重处
长使用的中心数,是解答解数阵类型题的解题关键。一般
答案不唯一。
20.奇数与偶数
加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法: 偶数-
偶数=偶数奇数-
奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数
=奇数偶数×奇数=偶数盈亏问题解
21.盈亏问题
通常是比较法和对应法结合使用。公式是:(同盈同亏用减法,一亏
一盈
用加法)即:两次分配结果差÷两次分配数差=人数
22.牛吃草问题
牛吃草问题涉及三种数量:A.原有的草。B.新长出的草。C.牛 吃掉的草。
牛吃草问题解
法一般分为三步:一、求每天新生的草量;二、求原有草量;三、
求出最终的问题。(类似于行程问题中
的追及问题)
23.还原问题
解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运 算,
原来加的,运算时用
减;原来减的,运算时用加;原来乘的,运算时用除;原来
除的,运算时用乘。
24.假设问题
假设法是解答应用题时经常用到的一种方法。所谓“假设法”就是依 据题
目中
的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上
出现的矛盾,再适当调整,从
而找到正确答案。
25.余数问题
一个带余数除法算式包含4个数:被除数÷除数=商„„余数。它们
的关系
也可表示为:被除数=除数×商+余数,或(被除数-余数)÷除数=商。
26.一笔画和多笔画
(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一
偶点
为起点,最后能以这个点为终点画完此图。
(2)凡是只有两个奇点(其余均为偶点)
的连通图,一定可以一笔画完;
画时必须以一个奇点为起点,另 一个奇点为终点。
(3)多 笔画定理
有2n(n>1)个奇点的连通图形,可以用n笔画完(彼
此无公共线),而且至少要n次画完.
27.抽屉原理
抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少
有一个
抽屉里有两个或两个以上的苹果。
抽屉原则二:把(m×n+1)个(或更多个)苹
果放进n个抽屉里,必须一个
抽屉里有(m+1)个(或 更多的)苹果。
说明:应用
抽屉原则解题,要从最坏的情况去思考。
28.分解因式
把一个合数写成几个质数相乘的形式,叫做分解质因数。一个自然数 的约
数的个数,恰为各个
质因数的指数加1后的乘积。一个数的完全平方数,各个质
因数的个数,恰好是平方前这
个数各个质因数个数的2倍。一个完全平方数各
个 质因数的个数都是偶数。
29.最大公约数与最小公倍数
求两个数的最大公约数一般有三种方法:(1)分解质因数法(2) 短除法
(3)辗转相除法
30.分数的比较
分母相同的分数比较大小,分子大的分数比较大。分子相同的分数比 较
大
小,分母大的分数反而小。分子和分母都不相同的分数比较大小,可以把它们转
化成分母相同
的分数比较大小;也可以把它们转化成分子相同的分数比较大
小。 性质:
1.一个真分数的分子和分母都加上同一个自然数,所得的新分数
比原分数大。 2.一个真分数的分子
、分母都减去同一个自然数(这个自然数小
于真分数的分子),所得的新分数比原分数小。 3.一个假
分数的分子、分母都
减去同一个自然数(这个自然数小于假分数分母),所得的新分数比原分数大。
4.
一个假分数的分子、分母都加上同一个自然数,所得的新分数比原分数小。
31.剪纸问题
公式:2对折后剪的次数+1=段数。
32.最大最小 <
br>1、解答最大最小的问题,可以进行枚举比较。在有限的情况下,通过计算,
将所有情况的结果列
举出来, 然后比较出最大值或最小值。
2、运用规律。(1)两个数的和一定,则它们的差越接近
,乘积越大;当它
们相等(差为0)时,乘积最大。
3、考虑极
端情况。如“连接两点间的线段最短”、“作对称点”、“联
系实际考虑问题”等。
33.比较大小
估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的 “放
大”
或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度
的方法有两条:一是分组(分
段),并尽可能使每组所对应的标准相同;另一种
方
法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。
34.钟表问题
解答钟表问题,我们首先想办法把有些能转化成相遇或追及问题的转 化为
相遇或追及问题来解
答。需记住以下常用数据:钟表上有12大格,60小格,每
大格30度,每小格6度。,分针每分钟走
:6度;时针每分钟走:0.5 度;速
度差:5.5度 2解答钟表上的时间快慢问题,关键是抓住单
位时间内的误差,
然后根据某一时间段内含多少个单位时间,就可以求出这一时间段内的误差。
35.分数应用题的计算
解答较复杂的分数应用题,一定要找准单位“1”,如果单位“1” 的量是
变化的,就要从题
目中找出不变的量,把不变的量看作单位“1”,将己知条件
进行转化,找出所求数量相当于单位“1”
的几分之几,再列式解答。 2还可
以借助线段图来帮助理解题意,列式解答。
3对较复杂的分数应用题,还可以
列方程来解答。
36.利润问题
解答利润问题你必须理解以下的关系式。 (1)利润=卖价-成本
(2)利润的百分数=(卖价-成本)÷成本×100﹪ (3)卖价=成本×(1
+利润率)
(4)成本=卖价÷(1+利润率)
(5)折扣=实际售价÷原售价×100%(折扣<1)
(6) 利息=本金×
利率×时间
(7)
税后利息=本金×利率×时间×(1-20%)
37.浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量
×
100%=浓度 溶液的重量×浓度=溶质的重量