奥数题 五年级分解质因数的应用
2014考研国家线-安徽师范大学研究生学院
例一:
(1) 用一个数去除30、60、75,都能整除,这个数最大是多少?
(2) 一个数用9、15、20除都能整除,这个数最小是多少?
练习1
1(1)求48和64的最大公约数,(2)求8和12的最小公倍数。
○
2求42、168、252的最大公约数和最小公倍数。
○
3希望小学买来360个苹果,480个桔子,400个梨
,带这些水果去慰问敬老院的老人们,最多
○
可以分成多少份同样地礼物?每份中苹果、桔子、
梨各有多少个?
例二:
有三根铁丝
,长度分别是12厘米,18厘米和24厘米,现在要把它们截成相等的小段,每
根都不许有剩余。每小
段最长是多少厘米?一共可以截成多少段?
练习2 1有3根铁丝,长度分别是12厘米,18厘米和54厘米。现在要把它们截成相等的小段,
○梅根都不许有剩余。每小段最长是多少厘米?一共可以截成多少段?
2有三根钢管,分别长200厘米、240厘米和360厘米,现要把这三根钢管截成尽可能
长
○
而且相等的小段,一共能截成多少段?
3五年级三个班分别有2
4人,36人、42人参加体育活动,要把他们分成人数相等的小组,
○
但各班同学不能打乱,
每组最多多少人?每个班可以分几组?
例三:
一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大的正方形,使边长是整厘米,
且不能有剩余,最少能剪多少个?
练习3 <
br>1一张长方形纸长96厘米,宽60厘米,把它剪成同样大的正方形,且不能有剩余,最少
○可以裁多少张?
2有一块试验基地,长7
5米,宽60米,现要将这块土地划分成面积相等的小正方形土地,那
○
么,小正方形土地的面
积最大是多少平方米?
3用长16厘米,宽1
4厘米的长方形木板来拼成一个正方形,最小需要用这样的木板多少
○
块?
例四:
张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好
。问:张妮至少
有多少张画片?
练习4
1一批书大约300到400本,若每包12本,还剩11本;每包18本,还缺1本;每
包15本,
○
有7包,每包各多2本,这批书有多少本?
2某班学生列队,3人一排多1人,5人一排多3人,7人一排多2人,这个班至少有多少人?
○
3五年级两个班的同学一起排队出操,如果9人
排一行,多出1个人,如果10人排一行,
○
同样多出1人,问这样两个班至少共有多少人?
例五:
将长宽高分别是1
20厘米,90厘米,60厘米的长方体木料锯成同样大小的正方体木块,而
没有剩余,锯成的木块棱长
最长是多少?共可以锯成多少块?
练习5 <
br>1有一块长方形木料,长325厘米,宽175厘米,厚75厘米,把它锯成相等的正方体木块,最少○
可以锯多少块?每块的棱长是多少厘米?
2一间长5.6米,宽3.2米得
小阳台,现要在它的水泥地面上划成正方形的格子,这种方
○
格面积最大是多少平方米?
3长180厘米、宽45厘米、高18厘米
的木料,能锯成尽可能大的正方体木块(不余料)
○
多少块?
例六:
两个数的最大公约数是6,最小公倍数是144,这两个数各是多少?有几组这样的数?
1两个数的最大公约数是12,最小公倍数是60,求这两个数。
○
2两个数的最大公约数是18,最小公倍数是180,两个数相差54。求这两个数各是多少。
○
3两个数的最大公约数是8,最小公倍数是160,其中的一个数是32,另一个数是多少?
○
例七:
琦琦、梦梦、妮妮、浩浩四位小朋友,每
隔不同的天数去敬老院做好事一次,琦琦3天去一
次,梦梦4天去一次,妮妮5天去一次,浩浩6天去一
次,有一次四位小朋友是星期一在敬
老院相逢,至少要过多少天四位小朋友才会在敬老院再次相逢?相逢
时是星期几?
练习2
1小明和小军每人隔不同
的天数到图书馆去看书,小明每6天去一次,小军每8天去一次。
○
这个星期天,他们在图书馆
相遇,至少再过多少天,他们又在图书馆相遇?
<
br>2公共汽车站友三条线路通往不同的地方。第一条线每隔5分钟发车一次,第二条线路每
○
隔6分钟发车一次,第三条线路每隔10分钟发车一次。三条线路在同一时间发车后,再过
多少分钟又
同时发车?
3某旅社有甲、乙、丙三位客人星期二晚上同住在一间房
,已知甲3天来住一次,乙4天
○
来住一次,丙5天来住一次,问下一次再来同住一房间要过多
少天(假设只有一个房间)?
例八:
有一批图
书,总数在1000本以内,若按24本书包一捆,最后一捆差2本;若按28本书包
一捆,最后一捆还
是差2本;若按32本书包一捆,最后一捆也是差2本。这批图书有多少
本?
练习3
1有一篮鸡蛋,按每四个一堆分多一个;按每五个一堆分多一个
;按每六个一堆分也多一
○
个。这篮鸡蛋至少有多少个?
2有一盒小花,每次8个8个地数、10个10个地数、12个12个地数,最后总是剩下3
○
朵。这盒小花至少有多少朵?
3一个数,不论是被10除,被4除,还是被15除,最后都少3,这个数最小是多少?
○
例九:
公路上一排电线杆,共25根,,每相邻
2根间的距离原来都是45米,现在要改成60米,可
以有几根不移动?
练习4
1
在长廊两侧每隔4米种一棵枫树,结果第一棵与最后一棵相
距48米。现在将树移栽成每○
隔6米种一棵,其中有几棵树不需要移动?
2
AB两地有一段公路长72000米,路旁有路标,原来每300米有
一个(起点终点各一个)○,
现在要改为800米一个,有多少个旧路标可以利用?
3
从小张家到学校每隔50米有一根电线杆,○加上两端的两
根一共有55根电线杆。现在实行
线路改造,改成每隔60米安装一根电线杆,那么包括两端共有多少根
不必移动?、
例十:
有甲乙两个互相衔接的齿
轮,甲轮有437齿,乙轮有323齿。求甲轮的某一齿与乙轮的某一
齿从第一次接触到第二次接触,需
要各转几周?
练习5
1一对咬合齿
轮,大齿轮有132个齿,小齿轮有48个齿,其中咬合的任意一对齿轮从第一
○
次相接到再次
相接,两个齿轮各要转动多少圈?
2一对相互咬合齿轮,分别有84个30个齿,问:其中某一对齿轮
从第一次相遇到第二次
○
相遇,,两个齿轮至少各要转动多少圈?