混凝土配合比计算的原则

萌到你眼炸
793次浏览
2020年08月04日 23:15
最佳经验
本文由作者推荐

二级建造师挂靠风险-发言稿开头


混凝土配合比计算的原则

鉴于当前混凝土组分和原材料 的变化,传统的“混凝土配合比设
计方法”已不适用,但是本人的观点是混凝土的配合比是不必制定规< br>范的,重要的是掌握混凝土拌合物配合比的原则,至于具体步骤,应
当相信技术人员的专业知识和 经验,能满足具体的工程各项要求的配
合比,不同人所作结果有所不同是很正常的,西方国家提出
“performancebasedspecification”的概念是符合混凝土材料特点,符合客观规律的。
1混凝土组成材料、配合比要素与混凝土性质的关系
当 前混凝土的特点是普遍掺入矿物掺合料和高效减水剂。混凝土
中水、水泥、砂、石四种原材料中增加了矿 物掺合料,因此传统的配
合比三要素——水灰比、浆骨比、砂石比,就成为水胶比、浆骨比、
砂 石比和矿物掺合料用量等四要素。配合比中需要求出的未知数由传
统的4个变成5个。最后由各材料在满 足施工要求的前提下紧密堆积
的原理,用绝对体积法计算出各材料用量。不考虑外加剂占据混凝土
的体积,则各组成材料的关系和性质及其作用和影响可用图1来描
述。




图1混凝土各组成材料的关系和性质及其作用和影响

< br>由图1可看出,混凝土配合比四要素都影响拌合物与硬化混凝
土性能,当决定混凝土强度和密实性 的水胶比确定之后,所有要素都
影响拌合物施工性能。施工是保证混凝土质量的最后的和最关键的环节,则考虑浆体浓度的因素、按拌合物的施工性能选择拌合物的砂石
比与浆骨比,就是混凝土配合比 选择的主要因素。其中浆骨比是保证
硬化前后混凝土性能的核心因素。无论是改变水胶比,还是矿物掺合
料用量,调整配合比时应使用等浆体体积法,以保持浆骨比不变。
我国混凝土年产量 可占到全世界的一半,质量却相对落后。
例如,全世界只有我国使用“假定容重法”计算混凝土配合比, 也只有
我国使用绝干基的砂石生产混凝土,造成我国混凝土质量控制的困
难。
2当前我国混凝土配合比计算存在的问题及建议
2.1存在问题
2.1.1假定容重法
“假定密度法”本来是在绝对体积法的基础上产生的。混凝
土 配合比的原理是按照1m3混凝土拌合物由各原材料紧密堆积而成,


即1m3混凝土体积 等于各原材料绝对密实体积之和(即不计各原材
料内部孔隙)。过去水泥、砂石的表观密度变化不大,所 配制混凝土
的表观密度变化也不大,因此为了简化试配,对水灰比为0.5左右的
混凝土假定表 观密度为2400kgm3,对高强混凝土假定表观密度为
2450kgm3,试拌后实测差别不大。
但是如今普遍使用较大掺量的矿物掺合料,例如粉煤灰表
观密度为1.90~2.40 gcm3,磨细矿渣表观密度约为2.60gcm3,与水
泥表观密度的3.0gcm3左右相比相差就 大了,按上述假定的表观密
度计算,则体积都会大于1m3,掺合料越多,大得越多。
因此从根本上,还是应当使用绝对体积法。当然,正如任
何方法都有一定的假设,绝对体积法的假设是忽 略水泥水化所减少的
那部分水的体积,但是,混凝土在新拌状态时,这部分水相对于混凝
土的总 体积来说是很少的。为了弥补这部分忽略水的体积,建议用绝
对体积法计算时,不必计入搅拌式挟入的孔 隙体积。
2.1.2等水胶比法
掺矿物掺合料后的水胶比与未掺矿物掺合 料时的水灰比值
相同,即简单等量取代。因矿物掺合料密度小,使浆体体积变大,即
浆骨比增大 ,例如,假定普通水泥密度为3.0gcm3,粉煤灰密度为
2.2gcm3,当以粉煤灰简单取代30 %的水泥时,浆体体积就会增加
37L。水泥加水硬化后的体积收缩是混凝土的特性之一,加入骨料制< br>成混凝土后,由于骨料的温度变形系数比硬化水泥浆体的温度变形系
数小一半多,则对混凝土起稳 定体积的作用。浆骨比越小,硬化混凝


土收缩值越小;浆骨比增大势必会对混凝土的体积 稳定性有影响。此
外,因粉煤灰反应速率和反应率低,混凝土早期浆体水灰比增大。例
如假定有 一原水灰比为0.57的混凝土,如果用粉煤灰简单取代30%
的水泥,水胶比仍为0.57,忽略粉煤 灰表面吸附水,则早期水灰比就
会增大到0.81,同时混凝土强度肯定下降;为了保持混凝土强度不变 ,
将水胶比降至0.5,则早期水灰比仍有0.71。这样大的水灰比就会造
成早期较大的孔隙 率。
因此,掺粉煤灰时,不能采用不变的等水胶比,必须降低
水胶比才能发挥粉煤灰的作用。
2.1.3掺用粉煤灰的超量取代法
由于对矿物掺合料的不了解,混凝土的设计与工程质量管
理人员限制矿物掺合料的掺量,于是有关配合比的规范中提出粉煤灰
的“超量取代法”,即,在 能被接受的掺量范围取代水泥,另多掺一部
分取代砂子。这只是一种计算而已,在数量上“代砂”,实际 上因为细
度量级的差别在功能上粉煤灰并不是砂,不可能“代砂”,仍然是胶凝
材料,却因为“ 超量”而变相增加浆体含量、减小水胶比,但是,在形
式上,并未公开实际的粉煤灰掺量和实际的水胶比 ,在客观上起了遮
人耳目的作用。水胶比是混凝土配合比的三要素之一,在原材料相同
的情况下 ,影响混凝土强度的主要因素是有效拌合水与包括水泥在内
的全部粉细料的比值,即水胶比。即使掺入传 统意义上的惰性材料如
磨细石英砂等石粉,超量取代法不能用的原因,还在于对水胶比界定
的混 乱。例如有的搅拌站在胶凝材料中不计入超量取代的部分,声称


掺粉煤灰前后的水灰比不 变。已有实例表明,这种做法使得工程中出
现问题时,无法从所报的配合比上分析原因。有人认为掺粉煤 灰后的
混凝土抗裂性改善不明显,浆骨比增大是其原因之一。建议今后不要
再采用这种实际上增 加浆骨比的计算方法。
2.1.4等水灰比法
基于某些人对水泥认识的局 限性,把水泥厂生产的混合材
水泥叫做水泥,而在搅拌站生产混凝土时掺的矿物掺合料不算在水泥
中,简单地保持水灰比不变,减小用水量,降低水胶比,希望以此保
证混凝土强度不变,但是这种做法 的结果是水胶比将过大,实际强度
会超过期望值。以粉煤灰为例,如果掺入粉煤灰后仍保持水灰比不变,
则需降低水胶比。粉煤灰掺量越大,水胶比需降低越多。例如,假定
所用水泥密度为3.1gc m3,原始(FA掺量为0)水灰比为0.50,当
密度为2.4gcm3的粉煤灰掺量为30%时,使 水灰比不变的水胶比应
为0.40,依此类推,粉煤灰掺量为40%时,水胶比应为0.30。这是忽< br>略了粉煤灰表面吸附水而计算出来的。实际上由于粉煤灰表面对水的
吸附,自由水并不像计算的那 样大,则所需水胶比可以更大些。同时,
这种方法的粉煤灰掺量是按等质量取代水泥掺入的,总胶凝材料 质量
不变,但因粉煤灰密度比水泥的小,粉煤灰掺量越大,总胶凝材料体
积越大,水胶比降得太 低时,会影响拌合物的施工性,就需要增加用
水量(同时按水胶比增加胶凝材料用量),不仅会增加试配 工作量,
还会因浆骨比增大而影响混凝土的体积稳定性。
2.1.5对骨料颗粒级配与粒形要求的忽略


骨料在混凝土中起骨架作用,主 要稳定体积。即使采石场
生产的石子经过严格的级配,销售时经过装料、运输中的颠簸和卸料,
再加上生产混凝土时的投料,就会大小颗粒分离而重新分布,失去级
配。因此绝大多数国家配制混凝土所 用的石子都采用两级配或三级
配。例如德国,还在混凝土试配时就将砂石一起连续地级配。我国目
前市场供应的石子由于生产工艺落后,也由于大多数生产者的无知,
无视砂石标准。号称连续级配,实 际上小于10mm的颗粒极少,几乎
没有。而且由于我国砂石标准中对针、片状尺寸颗粒限定要求过宽( 实
际上是迁就落后),使石子的粒形很差。
已故我国老专家蔡正咏在20世纪80年 代初就说过:我国
混凝土质量不如西方国家的,原因就是石子质量太差。但是那时我国
石子随机 取样的松堆空隙率一般都在40%~42%,而理想粒形和级配
的石子空隙是约38%。现在,我国市售 石子空隙率已达45%以上,
甚至超过50%!这就使我国混凝土的水泥用量和用水量比西方国家混凝土水泥用量和用水量约多用20%。已经有一些搅拌站或工程采用了
两级配的石子,混凝土的水泥 用量可减少约20%。
然而,因对砂石质量的无奈,目前绝大多数混凝土的生产
不对 骨料提要求,混凝土配合比规范和砂石标准也基本上是迁就落后
的现状,造成混凝土无法保证应有的质量 。按市场经济的规律,产品
的品质都是根据市场需求生产的,符合顾客的要求才能卖得出去。现
在没有合格砂石的供应,其根源就是买的人对砂石质量的重要性认识
不足。典型的是过去在制定砂石应用 标准时,在所规定的级配要求表


格之下居然会说明:如级配不合格,实验证明不影响施工 ,也可使用。
(那么还有必要定标准吗?只要无限制地增加水泥浆体含量就能做到
啊!)
2.2建议
(1)鉴于当前混凝土组分的变化,进行混凝土配合比的计算的假定密度法不再适用,建议改用绝对体积法。
(2)以单粒级石子进行两级配或三级 配,生产时分级投料,
可得到满足施工要求的最小浆体总量,有利于工程的经济性和耐久
性。
(3)当矿物掺合料掺量改变时,应当使用等浆体体积法调
整混凝土配合比,以保持混凝土的稳定性。
3确定混凝土配合比的原则
按具体工程提供的《混凝土技术要求》选择原材料和配合
比:
(1)注重骨料级配和粒形,按最大松堆密度法优化级配骨
料,但级配后空隙率应不大于42%;
(2)按最小浆骨比(即最小用水量或胶凝材料总量)原则,
尽量减小浆骨比,根据混 凝土强度等级和最小胶凝材料总量的原则确
定浆骨(体积)比,按选定的浆骨比得到1m3混凝土拌合物 浆体体
积和骨料体积;计算骨料体积所使用的密度应当是饱和面干状态下所
测定的;
(3)按施工性要求选择砂石比,按《混凝土性能技术要求》


中的混凝土目标性能确定矿 物掺合料掺量和水胶比;
(4)分别按绝对体积法用浆体体积计算胶凝材料总量和用
水量;用骨料体积计算砂、石用量。调整水胶比时,保持浆体体积不
变。根据工程特点和技术要求选择合 适的外加剂,用高效减水剂掺量
调整拌合物的施工性;
(5)由于水泥接触水时就开 始水化,拌合物的实际密实体
积略小于各材料密度之和,则当未掺入引气剂时,搅拌时挟入空气可
按约1%计。
4混凝土配合比选择步骤的方案之一
4.1确认目标
确认混凝土结构设计中《混凝土技术要求》提出的设计目
标、条件及各项指标和参数: 混凝土结构构件类型、保护层最小厚度、
所处环境、设计使用年限、耐久性指标(根据所处环境选择)、 最低
强度等级、最大水胶比、胶凝材料最小和最大用量、施工季节、混凝
土内部最高温度(如果 有要求)、骨料最大粒径、拌合物坍落度、一
小时坍落度最大损失(如果有)。
4.2根据上述条件选择原材料
4.3确认原材料条件
(1)水泥:品种 、密度、标准稠度用水量、已含矿物掺合
料品种及含量、水化热、氯离子含量、细度、凝结时间;
(2)石子:品种、饱和面状态的表观密度、松堆密度、石
子最大粒径、级配的比例和级配后的空隙率;


(3)砂子:筛除5mm以上颗粒后的细度模数、5mm以上
颗粒含量 、饱和面状态的表观密度、自然堆积密度、空隙率、来源;
(4)矿物掺合料:品种、密度、需水量比、烧失量、细度;
(5)外加剂:品种、浓度(对 液体)、其它相关指标(如
减水剂的减水率、引气剂的引气量、碱含量、氯离子含量、钾钠含量
等)。
4.4计算胶凝材料密度
实测掺合料一定的胶凝材料密度,或由一定水泥和矿物掺
合料的密度计算胶凝材料密度,如下:
B=C+SL…………………………………(1)
按加权法由式(1)得:

为了消除难以测定的b,将:

代入式(2)得:



式中B,C,F,SL──分别为胶凝材料总量和水泥、粉煤
灰、矿渣粉的质量用量;
ρB,ρC,ρF,ρSL──分别为胶凝材料、水泥、粉煤灰、矿
渣粉的密度;
VB,VC,VF,VSL──分别为胶凝材料、水泥、粉煤灰、


矿渣粉的体积;
αc、αF、αSL──分别为水泥、粉煤灰、矿渣粉占胶凝材料
的质量百分数;
βC、βF、βSL──分别为水泥、粉煤灰、矿渣粉占胶凝材料
体积的百分数。
5混凝土配合比四要素的选择
5.1水胶比
对有耐久性 要求的混凝土,按照《混凝土结构耐久性设计
规范》,由设计给出《混凝土技术要求》中的最低强度等级 ,按保证
率95%确定配制强度;以最大水胶比作为初步选水胶比,再依次减小
0.05~0. 1个百分点取3~5个水胶比试配,得出水胶比和强度的直线
关系,找出上述配制强度所需要的水胶比, 进行再次试配。或按无掺
合料的普通混凝土强度-水灰比关系选择一个基准水灰比,掺入粉煤
灰 后再按等浆骨比调整水胶比。一般,有耐久性要求的中等强度等级
混凝土,掺用粉煤灰超过30%时(包 括水泥中已含的混合材料),水
胶比宜不超过0.44。
5.2浆骨(体积)比
在水胶比一定的情况下的用水量或胶凝材料总量,或骨料
总体积用量即反映浆骨比。对 于泵送混凝土,可按表1选择,或按
GBT50746-2008《混凝土结构耐久性设计规范》对最小 和最大胶凝材
料的限定范围,由试配拌合物工作性确定,见表1,取尽量小的浆骨
比值。水胶比 一定时,浆骨比小的,强度会稍低、弹性模量会稍高、


体积稳定性好、开裂风险低,反之 则相反。

5.3砂石(体积)比

通常在配 合比中的砂石比,以一定浆骨比(或骨料总量)
下的砂率表示。对级配良好的石子,砂率的选择以石子松 堆空隙率与
砂的松堆空隙率乘积为0.16~0.2为宜。一般,泵送混凝土砂率不宜
小于36 %,并不宜大于45%。为此应充分重视石子的级配,以不同
粒径的两级配或三级配后松堆空隙率不大于 42%为宜。石子松堆空隙
率越小,砂石比可越小。在水胶比和浆骨比一定的条件下,砂石比的
变动主要可影响施工性和变形性质,对硬化后的强度也会有所影响
(在一定范围内,砂率小的,强度稍低 ,弹性模量稍大,开裂敏感性
较大,拌合和物粘聚性稍差,反之则相反)。
5.4矿物掺合料掺量
矿物掺合料的掺量应视工程性质、环境和施工条件而选择。
对 于完全处于地下和水下的工程,尤其是大体积混凝土如基础底板、
咬合桩或连续浇注的地下连续墙、海水 中的桥梁桩基、海底隧道底板
或有表面处理的侧墙以及常年处于干燥环境(相对湿度40%以下)的构件等,当没有立即冻融作用时,矿物掺合料可以用到最大掺量(矿
物掺合料占胶凝材料总量的最大 掺量粉煤灰为50%,磨细矿渣为
75%);一年中环境相对湿度变化较大(冷天处在相对湿度为50% 左


右、夏季相对湿度70%以上),无化学腐蚀和冻融循环一般环境中的
结构, 对断面小、保护层厚度小、强度等级低的构件(如厚度只有
10~15cm)的楼板),当水胶比较大时 (如大于0.5),粉煤灰掺量不
宜大于20%,矿渣掺量不宜大于30%(均包括水泥中已含的混合材
料)。不同环境下矿物掺合料的掺量选择见GBT50746-2008附录B
和条文说明附录 B。如果采取延长湿养护时间或其他增强钢筋的混凝
土保护层密实度的措施,则可超过以上限制。
5.5试配和配合比的选定
在所选用高效减水剂的推荐掺量的基础上,按混凝土的施
工性调整为合适的掺量。
在 《混凝土技术要求》最大水胶比的基础上,依次减小水
胶比,选取3~5个值,计算各材料用量后进行试 配,检测所指定性
能指标值,从中选取符合目标值的水胶比,再次进行试配。
根据实 测试配结果得出配合比的拌合物密度,对计算密度
进行配合比的调整。无论水胶比还是矿物掺合料的变化 ,都要按等浆
体体积法进行调整。

宁波大红鹰学院地址-徐州人事人才网


苏州工艺美术职业技术学院-中南大学录取分数线


石室中学-三支一扶工作总结


民族风俗作文-国考总分


北京八中初中部-伯恩茅斯大学


伏羊节-改名申请书


西安工业大学教务网-2020假期安排时间表


浙师大选课系统-毕业生就业协议书