小学三年级奥数巧求矩形面积专题解
英国留学保证金-高三历史教学计划
http:小学奥数辅导网
小学三年级奥数巧求矩形面积专题解析
摘 要:《小学三年级奥数专题(二十七)巧用矩形面积公式》...,对左下图,我们无法直
接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),
分别计算出
各块面积再求和,就得出整个图形的面积。 例1
右图中的每个数字分别表示所
对应的线段的长度...
同学们都知道求正方形和长方形面积的公式:
正方形的面积=a×a(a为边长),
长方形的面积=a×b(a为长,b为宽)。
利用这两个公式可以计算出
各种各样的直角多边形的面积。例如,对左下图,我们无法
直接求出它的面积,但是通过将它分割成几块
,其中每一块都是正方形或长方形(见右下图),
分别计算出各块面积再求和,就得出整个图形的面积。
例1
右图中的每个数字分别表示所对应的线段的长度(单位:米)。这个图形的面积等于
多少平方米?
http:京翰教育
http:小学奥数辅导网
分析与解:将此图形分割成长方形有下面两种较简单的方法,图形都被分割成三个长方
形。根据这两种不
同的分割方法,都可以计算出图形的的面积。
5×2+(5+3)×3+(5+3+4)×2=58(米2);
或
5×(2+3+2)+3×(2+3)+4×2=58(米2)。
上面的方法是通过将图形分割成
若干个长方形,然后求图形面积的。实际上,我们也可
以将图形“添补”成一个大长方形(见下图),然
后利用大长方形与两个小长方形的面积之差,
求出图形的面积。
(5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);
或
(5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。
由例1看出,计算
直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演变为
多个长方形的和或差,然后计算
出图形的面积。其中“分割”是最基本、最常用的方法。
http:京翰教育
http:小学奥数辅导网
例2 右图为一个长50米、宽25米的标准
游泳池。它的四周铺设了宽2米的白瓷地砖
(阴影部分)。求游泳池面积和地砖面积。
分析与解:游泳池面积=50×25=1250(米2)。
求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面
积为
(2+25+2)×2×2+50×2×2=316(米2);
或
(2+50+2)×2×2+25×2×2=316(米2)。
求地砖的面积,我们还
可以通过“挖”的方法,即从大长方形内“挖掉”一个小长方形(见右
图)。从而可得白瓷地砖面积为
(50+2+2)×(25+2+2)-50×25
http:京翰教育
http:小学奥数辅导网
=316(米2)。
例3
下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。试求
各图形的面积。
解:每个小方格的面积为1厘米2。
图(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=4(厘米2)。图(1)的面
积为
4×5=20(厘米2)。
图(2)可以看成是从长7厘米、宽6厘米的长方形中,
“挖掉”4个边长为2厘米的正方形。
它的面积等于
7×6-(2×2)×4=26(厘米2)。
图(3)像个宝鼎,竖行分割,从左至右分成五块,
每块面积依次为2,5,3,5,2厘米
2,总面积为
2+5+3+5+2=17(厘米2)。
例3中分割成正方形、长方形的方法很多,因而具体计算
面积的方法也很多。由于图
形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。
http:京翰教育
http:小学奥数辅导网
例4 一个长
方形的周长是22厘米。如果它的长和宽都是整数厘米,那么这个长方形的
面积(单位:厘米2)有多少
种可能值?最大、最小各是多少?
解:因为长方形的周长是22厘米,所以它的长、宽之和是22
÷2=11(厘米)。考虑到长、
宽都是整数厘米,只有如下情形:
所以,这个长方形的
面积有五种可能值:10,18,24,28,30厘米2。最大是30厘
米2,最小是10厘米2。
练习27
1.甲、乙两块地都是长方形,且一样长。
(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?
(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?
分析与解:游泳池面积=50×25=1250(米2)。
求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面
积为
(2+25+2)×2×2+50×2×2=316(米2);
或(2+50+2)×2×2+25×2×2=316(米2)。
http:京翰教育
http:小学奥数辅导网
求地砖的面积,我们还可以通过“挖”的方法
,即从大长方形内“挖掉”一个小长方形(见右
图)。从而可得白瓷地砖面积为
(50+2+2)×(25+2+2)-50×25
=316(米2)。
例3
下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。试求
各图形的面积。
解:每个小方格的面积为1厘米2。
图(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=4(厘米2)。图(1)的面
积为
4×5=20(厘米2)。
图(2)可以看成是从长7厘米、宽6厘米的长方形中,
“挖掉”4个边长为2厘米的正方形。
它的面积等于
7×6-(2×2)×4=26(厘米2)。
http:京翰教育
http:小学奥数辅导网
图(3)像个宝鼎,竖行分割,从左至右分成
五块,每块面积依次为2,5,3,5,2厘米
2,总面积为
2+5+3+5+2=17(厘米2)。
例3中分割成正方形、长方形的方法很多,因而具体计算
面积的方法也很多。由于图
形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。
例4 一个长方形的周长是22厘米。如果它的长和宽都是整数厘米,那么这个长方形的
面
积(单位:厘米2)有多少种可能值?最大、最小各是多少?
解:因为长方形的周长是22厘米,
所以它的长、宽之和是22÷2=11(厘米)。考虑到长、
宽都是整数厘米,只有如下情形:
所以,这个长方形的面积有五种可能值:10,18,24,28,30厘米2。最大是30厘米2,最小是10厘米2。
练习27
1.甲、乙两块地都是长方形,且一样长。
(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?
(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?[
http:京翰教育