最新人教版四年级数学上册第四单元教学设计
应届毕业生简历范文-四级成绩查询身份证
新人教版四年级数学上册第四单元教学设计
第1课时 笔算乘法
【教学内容】
教材第47页的例1及相对应的“做一做”.
【教学目标】
1.使学生掌握三位数乘两位数的笔算方法.
2.通过练习,提高学生笔算的准确率.
3.培养学生类推迁移的能力和口算的能力.
【教学重点】
掌握笔算乘法的步骤和方法.
【教学难点】
掌握三位数乘两位数笔算乘法的对位和进位.
【教学过程】
一、情景导入
1.口算.
16×4= 230×4= 19×3=
180×4=
140×7= 24×5=
2.笔算.
58×43 63×54 23×15
说一说笔算的方法是什么.
3.这节课我们将继续学习笔算乘法.
板书课题:笔算乘法.
二、探究新知
1.出示教材第47页的例1.
(1)学生独立思考,试着做一做.
(2)小组内交流,每个学生介绍自己解决问题的方法.
①估算:
方法一:把145看成150
150×10=1500
估计约有1500千米
方法二:把12看成10
145×10=1450
12>10
所以结果应比1450千米多一些
②直接用计算器计算:
145×12=1740
③用笔算:
我们已经学过了两位数乘两位数的笔算方法,现在请你们在练习本上尝试列竖式计算:
145×12=1740
错误!,1 7 4 0)
学生独立尝试笔算,教师巡视课堂,请一个速度快,做得准确的同学板演.
做完的同学自己重新检查一遍计算过程.
(3)集体订正.
请这位同学说说这道题的计算过程.
用第二个因数12的个位2去乘145,二五一十,个位
上写0,二四得八,加上前面进的1,十位上写9
28 8
<
br>,一二得二,百位上写2.再用第二个因数12十位上的1去乘145;一五得五,十位上写5,一四得四
,百
位上写4,一一得一,千位上写1,0加0等于0,9加5等于14,向前面进1,2加4等于6,
加上进的1等于7
,1写下来,所以145×12等于1740.
2.三位数乘两位数怎样计算呢?
小结:先用一个乘数个位上的数去乘另一个乘数,得数的末
尾和个位对齐;再用这个乘数十位上
的数去乘另一个乘数,得数的末尾和十位对齐,最后把两次乘得的积
加起来.
三、课堂作业
完成教材第47页的“做一做”.
【课堂小结】
提问:同学们,通过本节课的学习,你有什么收获?在笔算乘法时要注意些什么?
1.用第二个因数中哪一位上的数去乘第一个因数,得数的末位就要和那一位对齐.
2.计算过程中有进位的,计算时要把进位加上.
【课后作业】
完成《金榜行动》相应的练习.
【教学反思】
第2课时 因数中间或末尾有0的乘法【教学内容】
教材第48页例2及相对应的“做一做”.
【教学目标】
1.使学生掌握因数中间或末尾有0的乘法的计算方法,进一步认识0在乘法运算中的特性.
2.能用简便的竖式写法正确地计算因数中间或末尾有0的乘法,养成认真计算的良好习惯.
【教学重点】
竖式的简便写法及“0”的处理.
【教学难点】
因数中间的0是否与另一个因数相乘的问题.
【教学过程】
一、复习导入
1.口算.
老师出示口算卡,指名学生说得数.
12×10 23×10
32×30
8×13 6×50 24×20
2.提问:
出示:6×50
老师:这道整十数乘一位数的口算题怎样计算比较简便?(先用整十数十位上的数去乘两位数,再
在乘得的数的后面添一个0.)
观察:6×50和24×20这两道题的因数有什么特点?(都是整十数,末尾都有0)
老师:如果两个因数的末尾都有0,这样的乘法你会做吗?
板书:160×30=
二、探究新知
1.教学例2(1).
(1)学生尝试笔算.
29 8
(2)反馈,请运用不同算法的同学,说一说自己是如何解答的.
学生甲:我是口算得出的结果,先算16×3=48,再在积的末尾添上两个0.
学生乙:我是这样算的:
1 6 0
× 3 0
,4 8 0),4
8 0 0)
0 0 0
学生丙:老师,我喜欢这样算:
1 6 0
,4 8 0 0)
× 3 0
(3)提问:这道题与前面学习的有什么不同
?(两个因数的末尾都有
0)这道题怎样用简便的方法计算?(学生甲和丙的做法比较简便)
老师提问:写竖式时,要把两个因数0前面的数对齐,再把0前面的数相乘,在乘得的数的末尾怎
样添0
?(两个因数末尾一共有几个0,就添几个0)
(4)归纳总结简便算法.
回顾老师刚才的提问过程,理清思路,用语言叙述出简便算法.
2.教学例2(2).
(1)观察例题,这道题与刚才学的有什么不同?(一个因数中间有0,另一个因数末尾有0)
提问:竖式怎样写,有简便写法吗?
计算106×3时,既然中间的0与3相乘得0,那么这
个过程可以不要吗?怎样写这一位上的积?(可
直接加上个位进上的数)
1 0 6
0
板书: ),sdo5( 3 1 8 0 ))
× 3 0
三、课堂作业
1.完成教材第48页的“做一做”.
2.完成教材练习八的第3~8题.
【课堂小结】
提问:同学们,通过本节课学习,你今天有什么收获?
小结:计算两
个因数的末尾都有0的乘法时,先把两个因数0前面的数对齐,再把0前面的数相乘,
最后看两个因数,
末尾一共有几个0,就在乘得的数末尾添几个0.
【课后作业】
1.完成教材练习八的第10~12题.
2.完成《金榜行动》相应的的练习.
【教学反思】
第3课时
积的变化规律
【教学内容】
教材第51页例3及相对应的“做一做”.
【教学目标】
1.使学生经历变化规律的发展过程,感受发现数学中的规律是一件十分有趣的事情.
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力.
30
8
【教学重点】
理解两数相乘时,积的变化随其中一个因数或两个因数的变化而变化.
【教学难点】
自主思考探究,归纳出积的变化规律.
【教学过程】
一、复习引入
1.投影出示.
2.学生填空.
3.让学生说说自己是怎样填的.
学生通常是按照如下方法计算的:8×3=24,16×3=48……依次类推.
4.肯定他们的做法,然后启发学生:该题除了这种做法外,还可以通过其他的途径解决.
二、新知探究
1.探索积随因数变大而变大的规律.
(1)出示例3左边的3道题:
6×2=12
6×20=120
6×200=1200
(2)小组讨论,由这三道题发现了什么?
(3)学生通过
学习例题方框中的提示,说出20是2乘以10的积,120是12乘以10的积,200是2乘以
10
0的积,1200是12乘以100的积.
(4)为了便于学生表述规律,可和学生一起复习乘法算式各部分的名称:
6 × 2 =
12
F F F
因数 因数 积
(5)学生总结:
一个因数不变,另一个因数乘以10,积也要乘以10.
师提问:如果乘以5,乘以100呢?说说你的想法.
(6)全班交流.谁能把这些规律用一句话来概括呢?
一个因数不变,另一个因数乘以几,积也要乘以几.
2.探索积随因数的变小而变小的规律.
(1)师:科学家在做实验前都善于猜想,今天咱们也来一次猜想:
投影出示:20×8=160
10×8=80
5×8=40
根据以上三题,我们可以得出一个怎样的结论.
小组内讨论交流.
(2)验证猜想.
出三道运用规律的题目,让同学做,看看你的猜想正确吗?
(3)把你的发现用一句话概括.
一个因数不变,另一个因数除以几,积也要除以几.
31 8
(4)引导学生把黑板上的两个规律合并成
一个规律:一个因数不变,另一个因数乘(或除
以)几,积也乘(或除以)几.
三、课堂作业
完成教材第51页的“做一做”.
【课堂小结】
今天你学习了什么?有什么收获?
【课后作业】
1.完成教材练习九的第1,4,6,10题.
2.完成《金榜行动》相应的练习.
【教学反思】
第4课时 单价、数量和总价
【教学内容】
教材第52页的例4及相对应的“做一做”.
【教学目标】
1.使学生理解单价、数量、总价的概念,掌握“单价×数量=总价”这组数量关系.
2.引导学生自主探索“单价×数量=总价”这组数量关系,并应用它去解决问题.
【教学重点】
使学生理解单价、数量和总价三个数量的关系.
【教学难点】
运用数量关系,解决简单的实际生活中的问题.
【教学过程】
一、复习引入
1.师:请根据乘除法的关系进行推算.
3×7=21 ( )×( )=42
21÷3=( ) 42÷7=( )
21÷7=( ) ( )÷(
)=( )
学生独立填写,集体汇报.
问:谁来说说乘除法之间有什么关系?
2.师:在前面的学习中,我们经常会见过一些数量关系,今天我们来学习单价、数量和总价之间
的关系
.
板书课题:单价、数量与总价的关系.
二、教学新课
1.理解单价、数量、总价的含义.
(1)投影出示例4.
师:请大家认真读题,小组合作讨论分析一下,你从中知道了哪些信息?要求什么?
①学生先独立读题.
②小组讨论交流.
③小组派代表汇报.引导提问并概括.
师:从题目中你知道了什么?
第(1)题中,我们知道了篮球每个80元,买了3个,第(2
)题中,我们知道了鱼每千克10元,买
了4千克.
32 8
(2)师:大家分析一下这些信息有什么特点吗?
①学生思考,小组内讨论.
②教师根据学生的汇报,总结:
都是知道了每件商品的价钱,还知道了买了多少件商品.
师:你们知道在数学领域里,像这样表示每件商品的价钱有个专门的名称吗?叫什么呢?(
价)
单价可以以“1袋”、“1包”、“1个
等等为单位,这些以“1”为单位的物品的价格称为这
种商品的单价.
(3)师:像这样“买3个篮球”“买4千克”表示买了多少,也有个专门的名称是什么呢?
学生思考,教师引导学生回答:数量.
师:像表示袋数、包数、瓶数等,我们可以称之为商品的数量.
(4)师:看看这两题,要求的是什么呢?
①学生独立思考后,教师指名回答.
②教师根据学生回答,总结:
a.要求买3个多少钱.
b.要求买4千克多少钱.
都是求一共用了多少钱,在数学领域里,一共用了多少钱叫总价.
2.探究单价、数量、总价之间的关系.
(1)师:知道了单价、数量怎样求总价呢?请同学们完成例4.
师:单价、数量和总价之间有什么关系吗?
(2)学生根据例4汇报,教师总结板书:
80 × 3 = 240(元) 10 × 4 = 40(元)
单价 数量 总价
单价 数量 总价
(3)你能写出单价、数量、总价之间的关系式吗?
学生思考,教师指名汇报,总结并板书:
单价×数量=总价
(4)根据这个数量关系,你能利用乘除法算式之间的关系,推算出其他的数量关系式吗?
三、课堂练习
完成教材第52页“做一做”.
【课堂小结】
今天你学会了什么,你有什么收获?
【课后作业】
1.完成教材练习九第3、8题
2.完成《金榜行动》相应的练习.
【教学反思】
第5课时 速度、时间和路程
【教学内容】
教材第53页的例5及相对应的“做一做”.
【教学目标】
33 8
单
”
1.使学生理解速度的概念,掌握“速度×时间=路程”这组数量关系,学会速度的算法.
2.提高学生分析、处理信息的能力,培养学生解决实际问题的能力.
【教学重点】
理解“速度×时间”和“走过的路程”之间的关系.
【教学难点】
对“速度”这一概念的理解及正确书写速度单位.
【教学过程】
一、谈话导入 <
br>同学们上学时借助了什么交通工具?你知道这种交通工具的速度吗?上学用了多长时间?你家到
学
校有多远呢?例如:小红坐电动车上学,每分钟行驶300米,用了10分钟,小红家到学校有3千米.今
天,我们就来研究这方面的知识,我们称之为“行程问题”.
二、探究新知
教学例5.
1.多媒体出示:
(1)一辆汽车每小时行70千米,4小时行多少千米?
(2)一人骑自行车每分钟行225米,10分钟行多少千米?
2.学生独立解答,教师巡视.
3.学生反馈情况,教师说明要求:
70×4=280(千米)
225×10=2250(米)
4.理解路程、速度、时间的概念.
(1)告知:汽车一共行了280千米,这是汽车行的路程.
即一共行了多长的路叫做路程.
(2)告知:汽车行了4小时是汽车行驶的时间.即行了几小时(或几分钟)叫做时间.
(3)告知:每小时行70千米表示这辆汽车的运动速度.
即每小时(或每分钟等)行的路程叫做速度.
5.学习速度的表示方法.
老师刚才
在写汽车的速度时,你们是否觉得书写很麻烦呢?你们能用一种简单的方法把速度表示
出来吗?
(学生通过预习,此时会很快想自己写出来,学习兴趣会很高.)
学生尝试写汽车速度和自行车的速度.老师找2名同学板演:
70千米时 225米分
小结:“”的左边是米数、千米数,右边是时、分.米数、千米数就是路程,时、分就是单位时间,所以速度的表示方法就是路程单位时间.
6.速度、时间、路程的关系.
(1)结合例5,引导学生独自找出速度、时间和路程的关系.
想一想算式中每一个数量表示什么?
70 × 4 = 280(千米)
速度
时间 路程
225 × 10 =2250(米)
速度 时间 路程
(2)同桌、小组之间相互交流.
(3)学生展示交流结果:
速度×时间=路程
三、课堂作业
34 8
完成教材第53页的“做一做”.
【课堂小结】
通过今天的学习,你有什么收获?
【课后作业】
1.完成教材练习九的第5,7,9题.
2.完成《金榜行动》相应的练习.
【教学反思】
35
8