2020-2021上海卢湾中学小学六年级数学上期末试卷(含答案)
黑板报模板-困难的作文
2020-2021上海卢湾中学小学六年级数学上期末试卷(含答案)
一、选择题
1.下面是六(1)班同学评选三好生情况统计表,那么,下面哪幅图最适合表示投票结
果.(
)
姓名
李丽
张亮
王明
吴浩
4
票数(张)
24
12
8
A.
B. C. D.
2.某商店同时卖出两件商品,卖价均为120元,其中一件盈利20%,另一件亏本20%
,这
个商店卖出这两件商品,相对成本而言,总体上( )。
A. 不亏不赚 B.
赚了10元 C. 亏了10元
D. 亏了20
元
3.种植99棵树,全部成活,成活率是( )。
A. 99%
B. 100% C. 1%
D. 101%
4.已知一个圆的半径是R,且R满足3:R=R:4,则这个圆的面积为(
)
A. 7π
B. 7 C. 12π
D. 无法求出
5.将圆的半径按3:1放大后,面积将扩大到原来的( )。
A. 9倍
B. 6倍 C.
3倍
6.一根长6米的铁丝,第一次用去 ,第二次用去余下的 ,还剩下全长的(
)
A.
B. C.
D.
7.若小强在小明的东偏南35°的方向上,则小明在小强的( )的方向上。
A. 西偏南35° B.
南偏西35° C. 西偏北35°
D. 北偏西35°
8.红花朵数的 等于黄花朵数。把它们的关系写成数量关系式是(
)
A. 红花朵数×(1+ )=黄花朵数
B. 红花朵数× =黄花朵数
C. 黄花朵数× =红花朵数
D. 黄花朵数×(1+ )=黄花朵数
9.某小学有教师70人,这个学校男、女教师人数的比不可能是( )。
A. 1:6
B. 1:2 C. 2:3
D. 3:4
二、填空题
10.从图中可以判断六(2)班喜爱_
_______的人数最多,________判断出六(2)班喜爱
哪项体活动人数最少。(填“能”
或“不能”)
11.水泥厂上半年生产水泥60万吨,超过计划10万吨。超过计划________%。
12.在一个圆内,以它的半径为边长作一个正方形,已知正方形的面积是36平方厘米,圆
的面积是________平方厘米。(圆周率取3.14)
13.8:5=16:________
3.5:7=________:8 = ________
14.求5个 的和是多少,列乘法算式并计算是________;把
×3改写成加法算式是
________。
15.如图,点B在点A的北偏
________°方向________m处;点C在点B的南偏西30°方向
40m处,请在图中标
出点C的位置.________
16.一根铁丝长3m,先用去
,再用去 m,还剩________m。
三、解答题
17.今年,新
冠肺炎疾病成为人们关注的焦点。为了了解全校师生对新冠肺炎疾病预防知
识的了解情况,光明学校大队
部对全体师生进行了问卷调查,并将调查结果按三个等级进
行整理后,制成了两个统计图。
(1)将扇形统计图填完整。
(2)大队部一共调查了________人。
(3)将条形统计图画完整。
18.新华小学开展植树活动,右图是所植各种树木棵数所占百分比。
(1)所植柳树的棵数占各种树木总棵数的百分之几?
(2)已知法桐有48棵,那么所植槐树的棵数比柳树的棵数少百分之几?
19.一个长方形长和宽的比是3:2,已知长方形的周长是110dm,这个长方形的面积是多
少?
20.求下图阴影部分的面积。
21.如图,涂色部分的面积是 平方分米,那么空白部分的面积是多少平方分米?
22.我国第36次南极考察队乘坐我国首艘自主建造的极地科学考察破冰船”雪龙2“号于
2019年10月15 日启航前往中山站开展作业。南极建有长城站、昆仑站、中山站、泰山站
4个科学考察站,位置如图所示。
(1)中山站
在昆仑站的________偏________、________°方向上,距离是________km。
(2)“雪龙2”号从昆仑站前往长城站,需要沿________偏________、_
_______°方向航行,
航程是________km。
(3)请为“
雪龙2”号在平面图上标出秦山站的位置。泰山站在昆仑站的西偏北30°方向
500km处。
23.六(1)班的40名同学每人要制一套校服,有甲、乙两个商场的服装款式和价格都比
较符合要求,每套校服定价都是300元。两个商场的优惠情况如下:
请你算一算:六(1)班应到哪家商场购买合算?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析: A
【解析】【解答】24+12+8+4=48(人)
24÷48=50%
12÷48=25%
8÷48≈16.7%
4÷48≈8.3%
首先排除图C、图D,因为图C、D中没有表示25%的扇形,不符题意;
再排除图B,因为图B中两个较小的扇形同样大,不符题意;
只有图A最适合表示投票结果。
故答案为:A。
【分析】此题主要考查了扇形统计图的绘制,根据题意,先用加法求出总人数,然后求出
每个人的得票率
,再分析各选项的图是否符合题意。
2.C
解析: C
【解析】【解答】解:120÷(1+20%)=100元,120÷(1-20%)=150元,100+15
0=250
元,120+120=240元,250元>240元,250-240=10元,所以总体
上,亏了10元。
故答案为:C。
【分析】盈利商品的成本价=卖价
÷(1+盈利百分之几),亏本商品的成本价=卖价÷(1-亏
本百分之几),将这两件衣服的成本价之
和与卖价之和进行比较,成本价比卖价多,说明
亏了,成本价比卖价少,说明赚了,然后作差即可。
3.B
解析: B
【解析】【解答】99÷99×100%
=1×100%
=100%
故答案为:B。
【分析】根据成活率的公式:种树的成活
率=成活的棵数÷种植的棵数×100%,据此列式解
答。
4.C
解析:
C
【解析】【解答】解:3:R=R:4,那么R
2
=12,12×
π=12π,所以这个圆的面积为12π。
故答案为:C。
【分析】
利用比例的基本性质:两个外项的积等于两个内项的积,可以得到半径的平方,
然后再乘π就是这个圆的
面积。
5.A
解析: A
【解析】【解答】
将圆的半径按3:1放大后,面积将扩大到原来的3×3=9倍。
故答案为:A。
【分析】根据圆的面积公式:S=πr
2
,
将圆的半径按a:1放大后,面积将扩大到原来的
a
2
倍。
6.B
解析: B
【解析】【解答】1--(1-)×
=1--
=。
所以还剩下全程的。
故答案为:B。
【分析】将全长看作单位1,第一次用去后剩下的是1- ,
第二次用去几分之几是用第一
次用去后剩下的乘以 ,
接下来用1减去第一次用去的几分之几再减去第二次用去的几分
之几即可得出答案。
7.C
解析: C
【解析】【解答】
若小强在小明的东偏南35°的方向上,则小明在小强的西偏北35°的方向
上。
故答案为:C。
【分析】根据对方位的认识可知,东与西相对,南与北相对,两个人的位置
是相对的,据
此找准参照物,根据方向与角度描述相对位置。
8.B
解析: B
【解析】【解答】解:写成数量关系是:红花朵数×=黄花朵数。
故答案为:B。
【分析】以红花朵数为单位“1”,把红花朵数平均分成4份,黄花朵数相当于其中的3
份。
9.B
解析: B
【解析】【解答】选项A,1+6=7,70÷
7=10,这个学校男、女教师人数的比可能是1:6;
选项B,1+2=3,70不能被3整除,这个学校男、女教师人数的比不可能是1:2;
选项C,2+3=5,70÷5=14,这个学校男、女教师人数的比可能是2:3;
选项D,3+4=7,70÷7=10,这个学校男、女教师人数的比可能是3:4。
故答案为:B。
【分析】此题主要考查了比的应用,把男、女教师的人数比看成他们的份数
比,先用除法
求出每份数,如果能整除,就可能是他们的比,如果不能整除,就不可能是他们的比,据<
br>此解答。
二、填空题
10.乒乓球;不能【解析】【解答】30
>19>18>15;喜欢乒乓球的人数最
多;喜欢其它项目的人数占19其它项目不能确定有多少个也
不能确定它们的人
数各占总人数的百分之几;所以无法找出喜爱哪项体育活动人数最
解析:乒乓球;不能
【解析】【解答】30%>19%>18%>15%;喜欢乒乓球的人数最多;
喜欢
其它项目的人数占19%,其它项目不能确定有多少个,也不能确定它们的人数各占总
人数的百分之几;
所以无法找出喜爱哪项体育活动人数最少。
【分析】把总人数看成单位“1”,关键是要根据
统计图读数所需要的数量,再由这些数量求
解。
11.【解析】【解答】解:10÷
(60-10)=20所以超过计划20故答案为:20
【分析】超过计划百分之几=超过计划的质量÷
计划生产的质量其中计划生产的
质量=上半年生产水泥的质量-超过计划的质量
解析:【解析】【解答】解:10÷(60-10)=20%,所以超过计划20%。
故答案为:20。
【分析】超过计划百分之几=超过计划的质量÷计划生产的质
量,其中计划生产的质量=上
半年生产水泥的质量-超过计划的质量。
12.04【
解析】【解答】解:36×314=11304平方厘米所以圆的面积是11304平
方厘米故答案为:
11304【分析】圆的面积=πr2正方形的面积=边长×边长因为
正方形的边长=圆的半径所以圆的
面积=正
解析:04
【解析】【解答】解:36×3.14=113.04
平方厘米,所以圆的面积是113.04平方厘米。
故答案为:113.04。
【分析】圆的面积=πr
2
, 正方形的面积=边长×边长,因为正方形的边长=
圆的半径,所以
圆的面积=正方形的面积×π。
13.10;4;15【解析】【解
答】8:5=(8×2):(5×2)=16:10;35:7=1:
2=(1×4):(2×4)=4
:8;13=1×153×15=1545故答案为:10;4;15【分析】
比的基本性
解析: 10;4;15
【解析】【解答】8:5=(8×2):(5×2)=16:10;
3.5:7=1:2=(1×4):(2×4)=4:8;
.
故答案为:10;4;15.
【分析】比的基本性质:比的前项和后项同时乘或除以(0除
外)相同的数,比值不变,这
叫做比的基本性质。
14.38×5=178或(5×
38=178);56+56+56【解析】【解答】求5个38的和是
多少列乘法算式并计算是38×
5=178或(5×38=178);把56×3改写成加法算式
是56+56+56故答案
解析: ×5=1 或(5× =1 ); + +
【解析】【解答】 求5个 的和是多少,列乘法算式并计算是 ×5=1 或(5× =1
) ;
把 ×3改写成加法算式是 + + 。
故答案为: ×5=1
或(5× =1 ); + + 。
【分析】求几个几是多少,用乘法计算简便;
根据乘法的意义:求几个相同加数和
的简便运算用乘法计算,用相同的加数与相同加数的
个数相乘,据此列式解答。
15
.东50;60;【解析】【解答】20×3=60(米)40÷20=3(厘米)所以点B
在点A的北
偏东50°方向60m处;C点位置如图:故答案为:东50;60;【分
析】此题主要考查了比例尺的
应用观察图可知此
解析: 东50;60;
【解析】【解答】20×3=60(米)
40÷20=3(厘米)
所以点B在点A的北偏东50°方向60m处;
C点位置如图:
故答案为:东50;60;。
【分析】此题主要考查了比例尺的应用,观察图可知,此图是按“上北下南,左西右东”来
规定方向的,
图中1cm代表实际20m,从A到B有几段,就有几个20m,据此列式计算;
然后以B点为观测点,
在点B的南偏西30°方向40m处找到点C,据此作图。
16.53【解析】【解答】3-
(3×13+13)=3-(1+13)=3-43=53(m)故答案为:
53【分析】根据题意可知
这根铁丝的长度-(总长度×先用去的占这根铁丝的分
率+再用去的长度)=剩下的长度据此
解析:
【解析】【解答】3-(3×+)
=3-(1+)
=3-
=(m)
故答案为:。
【分析】根据题意可知,这根铁丝的长度-(总长度×先用去的占这根铁丝的
分率+再用去的
长度)=剩下的长度,据此列式解答。
三、解答题
17. (1)1-(50%+10%)
=1-60%
=40%
(2)600
(3)600×40%=240(人),
600×10%=60(人),
。
【解析】【解答】(2)300÷50%=600(人)。
【分析】(1)根据题
意可知,把全体师生的总量看作单位“1”,单位“1”-(非常了解占的
分率+不了解占的分率)=基
本了解占的分率,据此计算并将扇形统计图补充完整;
(2)根据条形统计图可知,非常了
解的有300人,根据扇形统计图可知,非常了解占调
查人数的50%,据此用除法可以求出调查的总人
数;
(3)根据题意,先用乘法分别求出B、C等级的人数,然后绘制条形统计图,纵轴每
格代
表50人,据此解答。
18.
(1)解:1-14%-20%-30%-16%=20%
答:所植柳树的棵数占各种树木总棵数的20%。
(2)解:法一:
48÷16%=300(棵)
300×20%=60(棵)
300×14%=42(棵)
(60-42)÷60=30%
答:所植槐树的棵数比柳树的棵数少30%。
法二:
(20%-14%)÷20%=30%
答:所植槐树的棵数比柳树的棵数少30%。
【解析】【分析】(1)根据题意可知
,把植树的总棵数看作单位“1”,用单位“1”-槐树占总
棵数的百分比-其他占总棵数的百分比-
杨树占总棵数的百分比-法桐占总棵数的百分比=柳树
占总棵数的百分比,据此列式解答;
(2)根据题意可知,先求出植树的总棵数,用法桐的棵数÷法桐占总棵数的百分比=植树
的
总棵数,然后用植树的总棵数×柳树占总棵数的百分比=柳树的棵数,植树的总棵数×槐树
占总棵数的百
分比=槐树的棵数,最后用(柳树的棵数-
槐树的棵数)÷柳树的棵数=槐树比
柳树少的百分比,据此列式解答。
19.
解:长和宽的和:110÷2=55(dm)
长方形的长:55×
=55×
=33(dm)
长方形的宽:55×
=55×
=22(dm)
长方形的面积:33×22=726(dm)
2
答:这个长方形的面积是726dm
2
。
【解析】【分析】用长方
形的周长除以2求出长与宽的和,然后把长与宽的和按照3:2的
比分配后分别求出长和宽,再用长乘宽
求出面积即可。
20. 解:10÷2=5cm
6÷2=3cm
(5
2
-3
2
)×3.14÷2=25.12cm
2
答:阴影部分的面积是25.12cm
2
。
【解析】【
分析】从图中可以看出,阴影部分的是圆环的一半,其中圆环的面积=(大圆半
径
2
-
小圆半径
2
)×π,所以阴影部分的面积=圆环的面积÷2。
21. 解:
÷ = (平方分米)
﹣ = (平方分米)
答:空白部分的面积是 平方分米。
【解析】【分析】涂色部分占总面积的
22.
(1)北;西;30;500
(2)南;西;25;2000
(3)解:
,
根据分数除法的意义计算总面积,然后用总
面积减去涂色部分的面积即可求出空白部分的面积。
【解析】【分析】(1)观察图可知,图中是按“上北下南,左西右东”来规定方向的,图中
每格代表500km,据此以昆仑站为参照物,描述中山站的位置;
(2)观察图
可知,图中是按“上北下南,左西右东”来规定方向的,图中每格代表
500km,从昆仑站前往长城站
,以昆仑站为参照物,描述路线;
(3)观察图可知,图中是按“上北下南,左西右东”来
规定方向的,图中每格代表
500km,据此以昆仑站为参照物,泰山站在昆仑站的西偏北30°方向5
00km处,据此作
图。
23.
解:甲商场:40×300×=9600(元)
乙商场:(40-40÷10)×300=10800(元)
9600<10800
答:六(1)班应到甲商场购买合算。
【解析】【分析】在甲商场买衣服花的钱数=六(1)班的人数×每套校服的定价×定价的几
分之几
;在乙商场买衣服花的钱数=六(1)班的人数=(六(1)班的人数-六(1)班的人
数中有10的个
数)×每套校服的定价。然后进行比较即可。