【小学数学】小学六年级数学复习重点知识点归纳
乔家大院简介-万科公司简介
小升初数学复习重点知识点归纳
体积和表面积
三角形的面积=底×高÷2
公式: S= a×h÷2
正方形的面积=边长×边长
公式: S= a2
长方形的面积=长×宽
公式: S= a×b
平行四边形的面积=底×高
公式: S= a×h
梯形的面积=(上底+下底)×高÷2
公式: S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2
公式:
S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6
公式:S=6a2
长方体的体积=长×宽×高
公式:V = abh
长方体(或正方体)的体积=底面积×高
公式:V = abh
正方体的体积=棱长×棱长×棱长
公式:V = a3
圆的周长=直径×π
公式:L=πd=2πr
圆的面积=半径×半径×π
公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:
S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=13底面×积高。
公式:V=13Sh
算术
1、加法交换律:两数相加交换加数的位置;和不变。
2、加法结合律:a + b = b +
a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b
× c = a ×(b × c)
5、乘法分配律:a × b + a × c = a ×
b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里;被除数和除数同时扩大(或缩小)相同的倍数;商不变。
O除以任
何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法;可以先把O前面的相乘;零不参
1
6
加运算;有几个零都落下;添在积的末尾。
8、有余数的除法:
被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数;等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数;并且未知数的次
数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x
=ab+c
分数
分数:把单位“1”平均分成若干份;表示这样的一份或几分的数,叫做分数。
分数大小的比较:
同分母的分数相比较;分子大的大;分子小的小。异分母的分数相比较;先通
分然后再比较;若分子相同
;分母大的反而小。
分数的加减法则:同分母的分数相加减;只把分子相加减;分母不变。异分母
的分数相加减;
先通分;然后再加减。
分数乘整数;用分数的分子和整数相乘的积作分子;分母不变。
分数乘分数;用分子相乘的积作分子;分母相乘的积作为分母。
分数的加、减法则:同分母的分数
相加减;只把分子相加减;分母不变。异分母的分数相加减;
先通分;然后再加减。
倒数
的概念:1.如果两个数乘积是1;我们称一个是另一个的倒数。这两个数互为倒数。1的倒
数是1;0
没有倒数。
分数除以整数(0除外);等于分数乘以这个整数的倒数。
分数的除法则:除以一个数(0除外);等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式;叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外);分数的大小不变。
2 6
数量关系计算公式
单价×数量=总价 单产量×数量=总产量
速度×时间=路程
工效×时间=工作总量
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差
被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商
被除数=商×除数
长度单位:
1公里=1千米
1千米=1000米
1米=10分米 1分米=10厘米
1厘米=10毫米
面积单位:
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克=
1公斤= 1市斤
比
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或13
比的前项和后项同时乘以或
除以一个相同的数(0除外);比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里;两外项之积等于两内项之积。
解比例:求比例中的未知项;叫做解比例。如3:χ=9:18
正比例:两种相关联的量;一种量
变化;另一种量也随着化;如果这两种量中相对应的的比值
(也就是商k)一定;这两种量就叫做成正比
例的量;它们的关系就叫做正比例关系。如:yx=k( k
一定)或kx=y
反比例:
两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数
的积一定;这两种
量就叫做成反比例的量;它们的关系就叫做反比例关系。 如:x×y = k( k一定)
或k x
= y
3 6
百分数
百分数:表示一个数是另一个数的百分之几的数;叫做百分数。百分数也叫做百分率或百分比。
把
小数化成百分数;只要把小数点向右移动两位;同时在后面添上百分号。其实;把小数化成百
分数;只要
把这个小数乘以100%就行了。把百分数化成小数;只要把百分号去掉;同时把小数点向左
移动两位。
把分数化成百分数;通常先把分数化成小数(除不尽时;通常保留三位小数);再把小数化成百分数。其实;把分数化成百分数;要先把分数化成小数后;再乘以100%就行了。
把百分数化成分数;先把百分数改写成分数;能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数
公有的约数;叫做这几个数的公约数。公因数有有限个。其中最大的一个
叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数;叫做这几个数的公倍数。公倍数有无限个。其中最小的一个
叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数;叫做互质数。相临的两个数一
定互质。两个连续奇数一定互
质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数;叫做通分。(通分用最小公
倍数)
约分:把一个分数的分子、分母同时除以公约数;分数值不变;这个过程叫约分。
最简分数:分子、分母是互质数的分数;叫做最简分数。分数计算到最后;得数必须化成最简
分数。
质数(素数):一个数;如果只有1和它本身两个约数;这样的数叫做质数(或素数)。
合数:一个数;如果除了1和它本身还有别的约数;这样的数叫做合数。1不是质数;也不是合数。
质因数:如果一个质数是某个数的因数;那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0;2;4;6;8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0;5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
4 6
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数;最大公约数为较小数;最小公倍数为较大数。
互质关系的两个数;最大公约数为1;最小公倍数为乘积。
两个数分别除以他们的最大公约数;所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数;结果一定是1或5。
奇数与偶数
偶数:个位是0;2;4;6;8的数。
奇数:个位不是0;2;4;6;8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数;奇数个奇数相加是奇数。
偶数×偶数=偶数
奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数;相临自然数之积为偶数。
如果乘式中有一个数为偶数;那么乘积一定是偶数。
奇数≠偶数
整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a,
那么c|a
小数
自然数:用来表示物体个数的整数;叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:
一个小数;从小数部分的某一位起;一个数字或几个数字依次不断的重复出现;这样
的小数叫做循环小数
。如3. 141414
不循环小数:一个小数;从小数部分起;没有一个数字或几个数字依次不
断的重复出现;这样的
小数叫做不循环小数。如3. 141592654
无限循环小数
:一个小数;从小数部分到无限位数;一个数字或几个数字依次不断的重复出现;
这样的小数叫做无限循
环小数。如3. 141414……
5 6
无限不循环小数
:一个小数;从小数部分起到无限位数;没有一个数字或几个数字依次不断的
重复出现;这样的小数叫做
无限不循环小数。如3. 141592654……
利润
利息=本金×利率×时间(时间一般以年或月为单位;应与利率的单位相对应)
利率:利息与本金
的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本
金的比值叫做月利率
6 6