2018年浙江省宁波市中考数学真题试题(带答案解析)

绝世美人儿
749次浏览
2020年08月13日 03:12
最佳经验
本文由作者推荐

山东省教育招生网-班主任对学生的评语


宁波市2018年初中学业水平考试
数学试题
试题卷Ⅰ
一、选择 题(每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要
求的)
1.在-3,-1,0,1这四个数中,最小的数是( )
A.-3 B.-1 C.0 D.1
2.2018中国 (宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,
参观总人数 超55万人次.其中55万用科学记数法表示为( )
A.
0.5510
B.
5.510
C.
5.510
D.
5510

3.下列计算正确的是( )
333326623
A.
aa2a
B.
aaa
C.
aaa
D.
(a)a

325
6544
4.有五张背面完全相同的卡片 ,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中
随机抽取一张,其正面的数 字是偶数的概率为( )
A.
4321
B. C. D.
5555
5.已知正多边形的一个外角等于
40
,那么这个正多边形的边数为( )
A.6 B.7 C.8 D.9
6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )

A.主视图 B.左视图 C.俯视图 D.主视图和左视图
7.如图,在
ABCD
中,对角线
AC
BD
相交于点
O

E
是边
CD
的中点,连结< br>OE
.若
ABC60

BAC80
,则
1
的度数为( )


A.
50
B.
40
C.
30
D.
20

8.若一组数据4,1,7,
x
,5的平均数为4,则这组数据的中位数为( )
A.7 B.5 C.4 D.3
9.如图,在
ABC
中,
ACB90

A 30

AB4
,以点
B
为圆心,
BC
长为半径 画弧,交边
AB
于点
D
,则
CD
的长为( )

A.

B.

C.

D.
10.如图,平行于
x
轴的直线与 函数
y
1
6
1
3
2
3
23
< br>
3
k
1
k
(k
1
0,x0)

y
2
(k
2
0,x0)
的图象分别相交于
A

xx
B
两点,点
A
在点
B
的右侧,< br>C

x
轴上的一个动点.若
ABC
的面积为4,则
k
1
k
2
的值为( )

A.8 B.-8 C.4 D.-4
11.如图,二次函 数
yaxbx
的图象开口向下,且经过第三象限的点
P
.若点
P
的横坐标为-1,则一
次函数
y(ab)xb
的图象大致是( )
2


A. B. C. D.
12.在矩形
ABCD
内,将两张边长分别为
a

b(ab)
的正方形 纸片按图1,图2两种方式放置(图1,
图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方 形纸片覆盖的部分用阴影表示,设图1


中阴影部分为
S
1
,图 2中阴影部分的面积为
S
2
.当
ADAB2
时,
S2
S
1
的值为( )

A.
2a
B.
2b
C.
2a2b
D.
2b

试题卷Ⅱ
二、填空题(每小题4分,共24分)
13.计算:
2018

14.要使分式
1
有意义,
x
的取值应满足 .
x1

x2y5
22
15.已知
x

y
满足方程组

,则
x4y
的值为 . < br>
x2y3
16.如图,某高速公路建设中需要测量某条江的宽度
AB< br>,飞机上的测量人员在
C
处测得
A

B
两点的
俯角分别为
45

30
.若飞机离地面的高度
CH
为12 00米,且点
H

A

B
在同一水平直线上,则这
条江的宽度
AB
为 米(结果保留根号).

17.如 图,正方形
ABCD
的边长为8,
M

AB
的中点,
P

BC
边上的动点,连结
PM
,以点
P
圆心,
PM
长为半径作
P
.当
P
与正方形
AB CD
的边相切时,
BP
的长为 .

18.如 图,在菱形
ABCD
中,
AB2

B
是锐角,
AEBC
于点
E

M

AB
的中点,连结
MD

ME
.若
EMD90
,则
cosB
的 值为 .



三、解答题(本大题有8小题,共78分)
19.先化简,再求值:
(x1)x(3x)
,其中
x
2
1
.
2
20.在
53
的方格纸中,
ABC< br>的三个顶点都在格点上.

(1)在图1中画出线段
BD
,使
BDAC
,其中
D
是格点;
(2)在图2中画出线段
BE
,使
BEAC
,其中
E
是格点.
21.在第23个世界读书日 前夕,我市某中学为了解本校学生的每周课外阅读时间(用
t
表示,单位:小
时),采 用随机抽样的方法进行问卷调查.调查结果按
0t2

2t3
3t4

t4
分为四个
等级,并依次用
A
B

C

D
表示.根据调查结果统计的数据,绘制成了如图所示 的两幅不完整的统
计图,由图中给出的信息解答下列问题:

(1)求本次调查的学生人数;
(2)求扇形统计图中等级
B
所在扇形的圆心角度数,并把条形统计图补充完整;
(3)若该校共有学生1200人,试估计每周课外阅读时间满足
3t4
的人数.
22.已知抛物线
y
1
2
3
xbxc
经过 点
(1,0)

(0,)
.
22
(1)求该抛物线的函数表达式;


(2)将抛物线
y
数表达式.
1
2
x bxc
平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函
2
23 .如图,在
ABC
中,
ACB90

ACBC
,< br>D

AB
边上一点(点
D

A

B
不重合),连

CD
,将线段
CD
绕点
C
按逆时针方向旋转
90
得到线段
CE
,连结
DE

BC
于点
F
,连
BE
.

(1)求证:
ACDBCE

(2)当
ADBF
时,求
BEF
的度数.
24.某商 场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件
进 价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种 商品的销售单价为60元,乙种商品的销售单价为
88元.销售过程中发现甲种商品销量不好,商场决定 :甲种商品销售一定数量后,将剩余的甲种商品按
原销售单价的七折销售;乙种商品销售单价保持不变. 要使两种商品全部售完后共获利不少于2460元,
问甲种商品按原销售单价至少销售多少件?
25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

(1)已知
ABC
是比例三角形,
AB2

BC3< br>,请直接写出所有满足条件的
AC
的长;
(2)如图1,在四边形
A BCD
中,
ADBC
,对角线
BD
平分
ABC

BACADC
.
求证:
ABC
是比例三角形;
(3)如图2,在(2)的条件下,当
ADC90
时,求
26.如图1,直线l

y

0AC
BD
的值.
AC< br>3
xb

x
轴交于点
A(4,0)
,与
y
轴交于点
B
,点
C
是线段
OA
上一动点
4
16
).以点
A
为圆心,
AC
长为半径作
5
A

x
轴于另一点
D
,交线段
AB
于点
E
,连结
OE


并延长交
A
于点
F
.

(1)求直线
l
的函数表达式和
tanBAO
的值;
(2)如图2,连结
CE
,当
CEEF
时,
①求证:
OCEOEA

②求点
E
的坐标;
(3)当点
C
在线段
OA
上运动时,求
OEEF
的最大 值.



2018年浙江省宁波市中考数学试卷

一、选择题(本大题共12小题,共48分)
1.

在,,0,1这四个数中,最小的数是



A. B. C.
0
D.
1
【答案】
A

【解析】解:由正数大于零,零大于负数,得

最小的数是,
故选:
A

根据正数大于零,零大于负数,可得答案.
本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.

2.

2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本 次博览会为期四天,参
观总人数超55万人次,其中55万用科学记数法表示为



C.

D.

A. B.
【答案】
B

【解析】解:,
故选:
B
科学记数法的表示形式为的形式,其中,
n
为整数确定
n
的值时,要看把 原数变成
a
时,小数点移动了多少位,
n
的绝对值与小数点移动的位数相同当 原数绝对值时,
n
是正数;当原
数的绝对值时,
n
是负数.
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,
n
为整数,
表示时关键要正确确定
a
的值以及
n
的值.



3.

下列计算正确的是



B.

D.

A. C.
【答案】
A

【解析】解:,
选项
A
符合题意;


选项
B
不符合题意;


选项
C
不符合题意;


选项
D
不符合题意.
故选:
A

根据同底数幂 的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方
的运算方法,逐 项判定即可.
此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法, 以及幂的乘方
与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个
字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数
a
可是单项式,也可 以是多项式,
但必须明确底数是什么,指数是什么.

4.

有五 张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中
随机 抽取一张,其正面的数字是偶数的概率为


A.

B.

C.

D.

【答案】
C

【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,
正面的数字是偶数的概率为,
故选:
C

让正面的数字是偶数的情况数除以总情况数5即为所求的概率.
此题主要考查了概率公式的应 用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况
数与总情况数之比.

5.

已知正多边形的一个外角等于,那么这个正多边形的边数为


A.
6
B.
7
C.
8
D.
9
【答案】
D

【解析】解:正多边形的一个外角等于,且外角和为,
则这个正多边形的边数是:.
故选:
D

根据正多边形的外角和以及一个外角的度数,求得边数.
本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.

6.

如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是< br>中心对称图形的是


A.
主视图
B.
左视图
C.
俯视图
D.
主视图和左视图


【答案】
C

【解析】解:从上边看是一个田字,
“田”字是中心对称图形,
故选:
C

根据从上边看得到的图形是俯视图,可得答案.
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.

7.

如图,在▱
ABCD
中,对角线
AC
BD
相交于点
O

E
是边
CD
的中点,连结若,,则的度数为



A. B. C. D.

【答案】
B

【解析】解:,,

对角线
AC

BD
相交于点
O

E
是边
CD
的中点,
是的中位线,


故选:
B

直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出
EO
是的中位线是解题关 键.

8.

若一组数据4,1,7,
x
,5的平均数为4,则这组数据的中位数为


A.
7
B.
5
C.
4
D.
3
【答案】
C

【解析】解:数据4,1,7,
x
,5的平均数为4,

解得:,
则将数据重新排列为1、3、4、5、7,
所以这组数据的中位数为4,
故选:
C

先根据平均数为4求出
x
的值,然后根据中位数的概念求解.
本题考查了中 位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,
则处于中间位置 的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就
是这组数据的中位 数.

9.

如图,在中,,,,以点
B
为圆心,
BC
长为半径画弧,交边
AB
于点
D
,则


的长为


A.

B.


C.
,,

D.

【答案】
C

【解析】解:

的长为
故选:
C

先根据


,得圆心角和半径的长,再根据弧长公式可得到弧
CD
的长.
弧长为
,,
本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:
l
,圆心角度数为
n
,圆的半径为.

10.

如图,平行于
x
轴的直线与函数,
的图象分别相交于
A

B
两点,点
A
在点
B
的右侧,
C

x
轴上的一个动点,
若的面积为4,则的值为


A.
8

B.
C.
4

D.


【答案】
A

【解析】解:轴,

B
两点纵坐标相同.
设,,则,.


故选:
A

设,
得到
,根据反比例函数图象上点的坐标特 征得出,
,求出
根据三角形的面积公式

本题考查了反比例函数图象上点的 坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查
了三角形的面积.

11.

如图,二次函数的图象开口向下,且经过第三象限的点若点
P
的横坐标为,则一次函数的图象大致是


A.


B.

C.

D.



【答案】
D

【解析】解:由二次函数的图象可知,
,,
当时,,
的图象在第二、三、四象限,
故选:
D

根据二次函数的图象可以判断
a

b
、的正负情况,从而可以得到一次函数经过哪几个象限,本题
得以解决.
本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.

12.

在矩形
ABCD
内,将两张边长分别为
a
和的正方形纸片按图1,图2两种方式放置图1,图
2中两张正方形纸片均有部分重叠,矩形 中未被这两张正方形纸片覆盖的部分用阴影表示,设图1
中阴影部分的面积为,图2中阴影部分的面积为 当时,的值为


A.
2
a

【答案】
B

【解析】解:
B.
2
b

C.

D.




故选:
B

利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.
本题考查了整式的混 合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,


并且迅 速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性
质.

二、填空题(本大题共6小题,共24分)
13.

计算:______.
【答案】2018
【解析】解:.
故答案为:2018.
直接利用绝对值的性质得出答案.
此题主要考查了绝对值,正确把握绝对值的定义是解题关键.

14.

要使分式
【答案】
【解析】解:要使分式有意义,则:.
有意义,
x
的取值应满足______.
解得:,故
x
的取值应满足:.
故答案为:.
直接利用分式有意义则分母不能为零,进而得出答案.
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.

15.

已知
x

y
满足方程组
【答案】
【解析】解:原式
,则的值为______.



故答案为:

根据平方差公式即可求出答案.
本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.

16.

如图,某高速公路建设中需要测量某条江的宽度
AB
,飞机 上的测量人员在
C
处测得
A

B
两点的俯
角分别为 和若飞机离地面的高度
CH
为1200米,且点
H

A
,< br>B
在同一水平直线上,则这条江
的宽度
AB
为______米结果保留 根号.

【答案】
【解析】解:由于
在中,
米,





在,


米.



故答案为:

在和中,利用锐角三角函数,用CH
表示出
AH

BH
的长,然后计算出
AB
的长.
本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含
CH
的式子表示出
AH

BH


17.

如图,正方形
ABCD
的边长为8,
M

AB
的中 点,
P

BC
边上的动点,连结
PM
,以点
P为圆心,
PM
长为半径作当与正方形
ABCD
的边相切时,
BP
的长为______.





【答案】3或
【解析】解:如图1中,当与直线
CD
相切时,设.




如图2中当
中,


. < br>与直线
AD
相切时设切点为
K
,连接
PK
,则,四边 形
PKDC
是矩形.




,,
在中,.
综上所述,
BP
的长为3或.
分两种情形分别求解:如 图1中,当与直线
CD
相切时;如图2中当与直线
AD
相切时设切点为
K
,连接
PK
,则,四边形
PKDC
是矩形;
本题考查 切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,
学会利用 参数构建方程解决问题.

18.

如图,在菱形
ABCD
中,,是锐角,于点
E

M

AB
的中
点,连结
MD
,若,则的值为______.




【答案】
【解析】解:延长
DM

CB
的延长线于点
H


四边形
ABCD
是菱形,



≌,


,设,








故答案为.

舍弃,
延长
DM

CB
的延长线于点首先证明,设,利用 勾股定理构建方程求出
x
即可解决问
题.
本题考查菱形的性质、勾股定理、 线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的
关键是学会添加常用辅助线,构造全 等三角形解决问题,属于中考常考题型.

三、计算题(本大题共1小题,共6分)
19.

已知抛物线经过点,

求该抛物线的函数表达式;
将抛物线
数表达式.
【答案】解:把,代入抛物线解析式得:,
平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函
解得:,



则抛物线解析式为
抛物线解析式为
将抛物线向右平移一个单 位,向下平移2个单位,解析式变为
【解析】把已知点的坐标代入抛物线解析式求出
b

c
的值即可;
指出满足题意的平移方法,并写出平移后的解析式即可.
此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数
法 求二次函数解析式,熟练掌握二次函数性质是解本题的关键.

四、解答题(本大题共7小题,共72分)
20.

先化简,再求值:
【答案】解:原式
当时,原式.
,其中


【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把
x
的值代入即可.
此题主要考查了整式的混合运算-- 化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入
求整式的值.


21.

在的方格纸中,的三个顶点都在格点上.

在图1中画出线段
BD
,使,其中
D
是格点;
在图2中画出线段
BE
,使,其中
E
是格点.
【答案】解:如图所示,线段
BD
即为所求;

如图所示,线段
BE
即为所求.
【解析】将线段
AC
沿着
AB
方向平移2个单位,即可得到线段
BD

利用的长方形的对角线,即可得到线段.
本题主要考查了作图以及平行四边形的性质,首先要 理解题意,弄清问题中对所作图形的要求,结合对
应几何图形的性质和基本作图的方法作图.

22.

在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间 用
t
表示,单位:小
时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为< br>四个等级,并依次用
A

B

C

D
表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完
整的统计图,由图中给出的信息解答下 列问题:

求本次调查的学生人数;
求扇形统计图中等级
B
所在扇形的圆心角度数,并把条形统计图补充完整;
若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
【答案】解:由条形图
知,
A
级的人数为20人,
由扇形图知:
A
级人数占总
调查人数的

所以:




即本次调查的学生人数为200人;
由条形图知:
C
级的人数为60人
所以
C
级所占的百分比为:,

B
级所占的百分比为:
B
级的人数为人

D
级的人数为:人

B
所在扇形的圆心角为:
因为
C
级所占的百分比为,

所以全校每周课外阅读时间满足的人数为:人

答:全校每周课外阅读时间满足的约有360人.
【解析】由条形图、扇形图中给出的级别
A
的数字,可计算出调查学生人数;
先计算出
C
在扇形图中的百分比,用在扇形图中的百分比可计算出
B
在扇形 图中的
百分比,再计算出
B
在扇形的圆心角.
总人数课外阅读时间满足的百分比即得所求.
本题考查了扇形图和条形图的相关知识题目难度 不大扇形图中某项的百分比
中某项圆心角的度数该项在扇形图中的百分比.

23.

如图,在中,,,
D

AB
边上一点点< br>D

A

B
不重合,连结
CD
,将线段CD
绕点
C
按逆时针方向旋转得到线段
CE
,连
DE

BC
于点
F
,连接
BE

求证:≌;
当时,求的度数.
【答案】解:由题意可知:,,




在与中,
,扇形图





可知:





【解析】


由题意可知:
,所以
≌可知:< br>,,由于
,从而可证明

,所以

,从而可求出
,< br>
的度数.


本题考查全等三角形的判定与性质,解题的关键是熟练运用 旋转的性质以及全等三角形的判定与性质,
本题属于中等题型.

24.

某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件
进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单 价为60元,乙种商品的销售单价
为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销 售一定数量后,将剩余的甲
种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全 部售完后共获利不少
于2460元,问甲种商品按原销售单价至少销售多少件?
【答案】解:设甲种商品的每件进价为
x
元,则乙种商品的每件进价为元.
根据题意,得,,
解得.
经检验,是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;

甲乙两种商品的销售量为.
设甲种商品按原销售单价销售
a
件,则

解得.
答:甲种商品按原销售单价至少销售20件.
【解析】设甲种 商品的每件进价为
x
元,乙种商品的每件进价为
y
元根据“某商场购进甲、乙 两种
商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列 出方程;
设甲种商品按原销售单价销售
a
件,则由“两种商品全部售完后共获利不少 于2460元”列出不等式.
本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中 的利润问题,对于此类问题,
隐含着一个等量关系:利润售价进价.

25.

若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

已知是比例三角形,
如图1,在四边形
ABCD
中,
例三角形. < br>如图2,在
【答案】解:



的条件下,当
,,请 直接写出所有满足条件的
AC
的长;
,对角线
BD
平分,求证:是比
时,求的值.



负值舍去;
, 是比例三角形,且
时,得:
时,得:
时,得:
,解得:
,解得:
,解得:


所以当

或或时,是比例三角形;


,即

平分











是比例三角形;

如图,过点
A
作于点
H









,即




【解析】根据比例三角形的定义分
计算可得;
先证∽得

,再由


三种情况分别代入
即可得;






结合,由

知,再证∽得,即,
,据此可得答案.
本题主要考查相似三角形 的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的
判定与性质.

26.

如图1,直线
l
:与
x
轴交于点,与y
轴交于点
B
,点
C
是线段
OA
上一动点
x
轴于另一点
D
,交线段
AB
于点
E
,连结
OE
并以点
A
为圆心,
AC
长为半径作
延 长交于点
F


求直线
l
的函数表达式和的值;
如图2,连结
CE
,当时,
求证:∽;
求点
E
的坐标;
当点
C
在线段
OA
上运动时,求的最大值.
【答案】解:直线
l



直线
l
的函数表达式




如图2,连接
DF
,,




四边形
CEFD
是的圆内接四边形,



中,


x
轴交于点,


∽,
过点于
M

由知,,
设,则,
,,
,,


由知,∽,





舍或,
,,

如图,设的半径为
r
,过点
O


G

,,
,,





连接
FH

是直径,
,,

∽,


时,最大值为.


【解析】利用待定系数法求出b
即可得出直线
l
表达式,即可求出
OA

OB
,即可得出结论;
先判断出,进而得出,即可得出结论;
设出,,进而得出点
E
坐标,即可得出
OE
的平方,再根据的相似得出比例式得

OE的平方,建立方程即可得出结论;
利用面积法求出
OG
,进而得出
AG

HE
,再构造相似三角形,即可得出结论.
此题是圆的综合题,主要考查 了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正
确作出辅助线是解本题的关键.




新教师个人发展规划-思想汇报


济宁人事-保证书


希腊申根签证-场地租赁合同范本


威海海洋职业学院-入团志愿书范文


外贸职业-命若琴弦读后感


给远方的朋友写一封信-新郎讲话


江西工艺美术馆-出纳实习报告


婚礼贺词大全-重大教学网