六年级数学下册预习资料
深圳大学排名-世界大学
学习必备 欢迎下载
六年级下册数学预习资料
第一单元
负数——认识负数
【预习导学】
(一)轻松热身。
1、说出意思相反的话。
①向前走200米( )
②电梯上升15层(
)
③我在银行存入了500元( )。
④零上10摄式度( )。
(二)自主学习。
1、自学例1:
(1)认识温度计,理解用正负数来表示零上和零下的温度。
①“
。”表示度,“C”表示摄氏度。在标准大气压下,冰和水混合时的温度是0摄氏度,水沸腾
时的温度是
100摄氏度,0摄氏度是零上温度和零下温度的分界点。
②零上和零下是一对反义词,零上温度用“
+”表示,“+”是正号,读作“正”。零下温度用“—”
表示,“—”是负号,读作负。
③教室内的温度零上16℃,比0摄氏度的温度还要( ),记作(
),读作
( )。
雪地里的温度是零下16℃,比0摄氏度的温度还要( ),记作(
),读作
( )。
+16℃与—16℃表示两种(
)意义的量。
比较+16℃与( )16℃(填 、 或=)
2、自学例2:观察图中的银行存折。
(1)存入的钱用(
)表示,支出钱数前用( )表示。存入和支出是一组反义词,是
两种(
)的量。
(2)图中“2000”表示( ),读作(
)。
“—500”表示( ),读作( )。
3、认识负数。
2
(1)像—16、—500、—
、—0.4、、、这样的数叫做( );像16、2000、500、 、
75
6.3
这样的数叫做( )。
52
(2)— 读作(
),—0.4读作( ),+ 读作( )。
75
4、正数前面的“+”号(
)省略(填能或不能),负数前面的“—”号( )省
略(填能或不能)。
5
学习必备 欢迎下载
【合作交流】
1、讨论自主学习中存在的问题。
2、讨论:0是正数吗?是负数吗?
3、说说生活中的负数。
4、任意写出几个负数。
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、填空。
42
(1)在—1, 2.5, —3.6, 0, 6, + , — 中,(
)是正数,( )
37
是负数,(
)既不是正数,也不是负数。
(2)如果60m 表示向南走60m ,那么—40m 表示(
)。
(3)如果+15分表示比平均分高15分,那么比平均分低8分应记作(
)。
(4)写出四个连续的正整数和四个连续的负整数。
正整数:(
)、( )、( )、( )。
负整数:(
)、( )、( )、( )。
2、选择。
(
1)按照“神州”五号飞船环境控制和生命保障系统的设计指标,“神州”五号飞船返回舱的温
度为21
℃4±℃,则返回舱的最高温度为( )。
A、25℃
B、21℃ C、17、℃
(2)下列说法中,错误的是(
)。
A、向东行驶2km,记作+2km,则向西行驶5km记作5km。
B、买100kg大米记作+100kg,则—20kg表示卖出20kg 大米。
C、收入500元记作+500元,则支出200元记作—200元。
第一单元
负数——比较正数和负数的大小
【预习导学】
(一)轻松热身。
1、说说什么是负数?
2、读数,指出哪些是正数,哪些是负数?
学习必备 欢迎下载
2
—8 5.6 +0.9
— + 0 —82
45
正数:(
)
负数:(
)
3、如果+20%表示增加20%,那么—6%表示(
)。
4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是
(
)摄氏度。
(二)自主学习。
1、自学例3。
(1)观察图,画直线表示4名同学的运动情况。
①以大树为起点,向东为正,向西为负,如下图:
3
②直线上0右边的数是( )数,左边的数是(
)数,像这样表示出正数、0和负
数的直线,我们把它叫做( )。
③在数轴上表示出—1.5。如果想从起点到—1.5处,应如何运动?在图中表示出来。
如果从—2处到2处,应如何运动?在图中表示出来。
2、自学例4。
(1)把这一周每天的最低气温填在表中。
时间
最低
气温
周一
周二
周三
周四
周五
周六
周日
(2)把每天的最低气温在数轴上表示出来。
(3)比较大小。
2和0 —3和0 1和 —1
—8和—6
【合作交流】
1、讨论自主学习中存在的问题。
2、讨论:怎样比较负数的大小?
学习必备 欢迎下载
*3、把例4中这一周每天最低气温从小到大排列出来。
( )<(
)<( )<( )<( )<( )<( )
4、得出结论:在数轴上,从左往右的顺序就是从( )到(
)的顺序,所有的负数都在
0的( ),也就是负数都比0(
),而正数都比0( ),负数都比正数
( )。
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、写出A、B、C、D、E、F点表示的数。
2、在数轴上表示下列各数,并比较各组数的大小。
5
-7○ -5
1.5○ 0○-1.5 -3.5○3.5
2
*3、试车员在一条
路上检测新车,约定前进为正,后退为负。自A地出发到结束时所走的路程(单
位:千米)为:
+10 -3 +4 +2 -8 +13 -2 +12
+5
结束时试车员距A地多远?
4、一个点从数轴上某点出发,先向右移动5个
单位长度,再向左移动2个长度单位,这时这个
点表示的数为1,则起点表示的数是多少?
第二单元 圆柱与圆锥——圆柱的认识
【预习导学】
(一)轻松热身。
1、我们以前学过的平面图形有哪些?
,学过的立体图形有哪
些?
.
2、观察书中第10页上的物体,这类物体的名称叫( ).
学习必备 欢迎下载
3、举例:生活中有哪些圆柱形的物体?
(二)自主学习。
1、自学例1。
(1)拿出准备好的圆柱形实物,摸一摸,圆柱是由( )、(
)、( )
组成。圆柱的两个圆面叫做( ),周围的面叫做(
),两个底面之间的距离叫做
( )。
(2)在圆柱形实物上找出圆柱的底面、侧面和高。
(3)指出下面圆柱的底面、侧面和高。
(4)认识圆柱的特征。
①圆柱的底面都是( ),并且大小(
),圆柱的侧面是( )。
②圆柱有( )条高,这些高的长度(
)。
2、实际操作:把一张长方形的硬纸贴在木棒上,快速转动,转出来是一个(
)。
【合作交流】
1、讨论自主学习中存在的问题。
2、合作交流完成例2。
(1)组内操作:在圆柱形罐头盒侧面的商标纸上画一条高,沿着这条高把商标纸剪开后展开,
是( )形。
(2)长方形的长等于圆柱(
),宽等于圆柱的( )。
*3、当圆柱的底面周长和高相等时,沿高剪开的圆柱侧面展开后是( )形。
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、
选择。
(1)下面物体的形状,不是圆柱体的是( )
① 日光灯管 ②
汽油桶 ③ 粉笔
(2)把圆柱的侧面展开不能得到( )
① 长方形
② 正方形 ③ 平行四边形 ④ 梯形
学习必备 欢迎下载
2、填空。
(1)把一个底面半径是2cm的圆柱的侧面展开,得到一个正方形,这个圆柱的高是(
)
cm.
(2)圆柱有( )条高。
3、下面图形中是圆柱的在括号里打“√” ,并标出底面直径和高。
*4、一个圆柱的侧面沿高展开是一个长12.56cm ,宽6.28cm
的长方形,求这个圆柱的底面
半径。
第二单元
圆柱与圆锥——圆柱的表面积
【预习导学】
(一)轻松热身。
1、写出相关的公式:
圆的周长公式:c=
长方形的面积:s=
圆的面积:s=
2、圆柱的侧面展开是( )形,长方形的长等于圆柱的(
),宽等于圆柱
的( )。
(二)自主学习。
1、圆柱侧面积公式的推导。
(1)圆柱的侧面积=(
)的面积
=( )x(
)
=( )x ( )
用字母表示圆柱的侧面积公式:s=
2、圆柱侧面积公式的应用。(只列式,不计算)
学习必备 欢迎下载
(1)一个圆柱,底面周长是2.5dm,高0.6dm,侧面积是多少?
(2)一个圆柱,底面直径是8cm,高12cm,侧面积是多少?
(3)一个圆柱,底面半径是2dm,高dm,侧面积是多少?
3、思考:要求一个圆柱的侧面积,通常需要知道哪些条件?
【合作交流】
1、理解圆柱表面积的含义
(1小组内拿出做好的圆柱,标出每个面,把它展开,观察,圆柱的表面由(
( )组成。
(2)讨论:怎样计算圆柱的表面积?
圆柱的表面积=(
)+( )
2、求下面圆柱的表面积。
一个圆柱的高是10cm,底面半径是3cm,它的表面积是多少?
侧面积
底面积: 表面积:
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1.用一张长4.5分米,宽2分米的长方形纸,围成一个圆柱形纸筒,它的侧面积是多少?
2.一个圆柱的底面周长是6.28cm,高是5cm,它的表面积是多少?
第二单元 圆柱与圆锥——运用圆柱表面积解决实际问题
、
)
学习必备 欢迎下载
【预习导学】
(一)轻松热身。
1、 圆柱的表面积=
2、一个圆柱高20厘米,底面直径是12厘米,求圆柱的表面积。
(二)自主学习。
1、自学例4。
(1)求做这样一顶帽子需要多少面料,实际上就是求圆柱形帽子的(
)。
(2)这个帽子的表面积算的是那几个面?( )为什么?
(3)计算:
①帽子的侧面积: ②帽顶的面积:
③需要用的面料:
温馨提示:最后的结果不能用“四舍五入”法,应该用“进一
法”,因为在实际生活中,使用的
材料都比计算得到的结果多一些。
【合作交流】
1、讨论自主学习中存在的问题。
2、一种圆柱形流水管,每节长度为1.2cm,横截面直
径为0.5cm,制作20节这样的流水管,
至少需要铁皮多少平方米?(得数保留整数)
(1)求所需要的铁皮面积,实际上就是求流水管的( )面积。
(2)计算:
3、讨论:求下列圆柱形物体的表面积时应计算哪几个面的面积?
(1)通风管,水管,粉刷圆柱,装饰花柱等。 ( )
(2)无盖水桶,灯笼,博士帽,圆柱形水池等。( )
(3)油桶,有盖的水桶、实物罐等。 ( )
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、
一个圆柱形蓄水池,直径是10米,深2米。这个蓄水池的占地面积是多少?在水池的底面
和内壁抹上水
泥,抹水泥的面积是多少?
学习必备 欢迎下载
*2.用一张长 2.5米,宽
2米的铁皮做一个圆柱形通风管,这个通风管的侧面积是多少?(接
口处忽略不计)
(附加题)3、一根圆柱形木头长4m,底面半径是10cm
,把它截成3段后,表面积增加了多
少平方厘米?
第二单元
圆柱与圆锥——圆柱的体积
【预习导学】
(一)轻松热身。
1、物体所占空间的大小叫做物体的( ).
2、长方体的体积=
v=
正方体的体积=
v=
长方体和正方体的体积=
v=
3、回顾圆面积公式的推导。
(二)自主学习。
1、自学例5.
(1)操作:把圆柱转化成长方体。
把圆柱的底面分成16个相等的扇形,按照等分线并沿着圆柱的
高把圆柱切开,然后拼成学过的立体图形
,如下图所示:
(2)把圆柱16等分,能拼成一个近似的( )。
(3)观察比较上面两个图形之间的关系:
图形形状不同,但(
)相等
圆柱的高=长方体的高
圆柱的( )= 长方体的长
圆柱的( )=长方体的宽
(4)推导圆柱体积公式:
因为长方体的体积= 长 x 宽 x 高
= ( )x 高
学习必备 欢迎下载
所以圆柱的体积= ( )x 高
用字母表示圆柱的体积公式:v= 或v=
【合作交流】
1、讨论自主学习中存在的问题。
2、探讨:圆柱的各部分与拼成的长方体的各部分之间的关系。
3、一个圆柱形罐头盒的底面半径是5cm,高是18cm。它的体积是多少?
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、判断。
(1)圆柱的体积比表面积大。( )
(2)侧面积相等得两个圆柱,它们的体积一定相等。( )
(3)等底等高的正方体、长方体和圆柱的体积都相等。( )
(4)圆柱的高不变,底面直径扩大到原来的4倍,体积也扩大到原来的4倍。( )
2、一个圆柱的底面直径是80dm,高15dm,求这个长方体的体积。
*3、把一个圆柱的侧面展开后得到一个正方形,已知圆柱的高是12.56dm,求圆柱的体积。
第二单元 圆柱与圆锥——圆柱的体积(容积)公式的应用
【预习导学】
(一)轻松热身。
1、体积单位有:
容积单位有:
2、填空。
0.125升=( )毫升=( )立方厘米=( )立方分米
学习必备 欢迎下载
8000ml=( )立方厘米
3、圆柱的体积公式:
4、求下面圆柱的体积。
(1)底面积是40平方米 ,高是2m 。
(2)底面半径是2cm,高是1dm。
(二)自主学习。
1、学懂书中的例6,然后完成下面的题。
一个杯子,从里面量,底面直径是6cm,高是8
cm。现在有一袋牛奶重220ml,问:这个杯子
能不能装下这袋牛奶?
(1)理解题意:
要解决问题,先要计算出杯子的容积。容积就是容器内部空间的体积,容积的
计算方法与体积的计算方法
相同。
(2)列式解答:
①杯子的底面积:
②杯子的容积:
比较:( )>(
),这个杯子( )(填能或不能)装下这袋牛
奶。
答:
【合作交流】
1、讨论自主学习中存在的问题。
2、说说体积和容积的关系。
3、一个圆柱形油桶,从里面量得桶底半径是2dm,深5dm。如果每升油重0.78kg
,这个油桶
可装多少千克油?(得数保留整数)
想一想:最后的结果能用“四舍五入”法吗?为什么?
【课堂总结】本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、一个圆柱形的体积是90平方米,底面积是15平方米,它的高是多少m?
2、一个圆柱形粮囤,从里面量得它的底面周长是6.28m,高是2m。如果每立方米小麦重700k
g,
那么这个粮囤能装小麦多少千克?
学习必备 欢迎下载
*3、一个圆柱形水杯,底面内直径是10cm,高是16cm,倒入的饮料占容
积的80%,倒入饮料
多少ml?
第二单元
圆柱与圆锥——圆锥的认识
【预习导学】
(一)轻松热身。
1、自己制作一个圆锥模型。
2、观察书中第23页上的物体,这类物体的名称叫(
).
3、举例:生活中有哪些圆锥形的物体?
(二)自主学习。
1、自学例1。
(1)拿出准备好的圆锥形实物,摸一摸,圆锥是由(
)和( )组成。圆锥
的底面是一个( ),侧面是一个(
)。
(2)从圆锥的( )到底面(
)的距离是圆锥的高。
(3)圆锥有( )条高。
2、实际操作:把一张直角三角形的硬纸贴在木棒上,快速转动,转出来是一个(
),
直角三角形贴在木棒上的直角边是旋转而成的圆锥的(
),另一条直角边是圆锥的底面的
( )。
【合作交流】
1、讨论自主学习中存在的问题。
2、合作交流完成。
组内操作:用硬纸做一个圆锥,量出它的底面直径和高。 怎样测量圆锥的高呢?
3、比较圆柱和圆锥的不同?
学习必备
欢迎下载
侧面
底面
高
圆柱
圆锥
4、圆锥的侧面展开后是一个(
)形。
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、 选择。
(1)下面物体的形状,是圆锥体的是( )
①沙堆
② 汽油桶 ③ 粉笔
(2)把圆锥的展开能得到( )
① 长方形
② 正方形 ③ 平行四边形 ④扇形
2、判断。
(1)圆锥的高是指从圆锥的顶点到圆锥的底面的任意一条线段的长。 ( )
(2)圆锥有无数条高。( )
(3)半圆不能围成圆锥。 (
)
3、下面哪些是圆锥,打上“√”,并标出底面直径和高。
*4、有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口3厘米。若
将一个圆锥铅锤浸入杯中,水会溢出20毫升。求铅锤的体积。
第二单元 圆柱与圆锥——圆锥的体积
【预习导学】
学习必备
欢迎下载
(一)轻松热身。
1、写出相关的公式:
圆的体积:s=
圆柱的体积公式:V=
2、一个圆柱形的底面直径是10米,高3.9米,它的体积是多少?
(二)自主学习。
1、圆锥体积公式的推导。
(1)借助教具完成书上25-26页的实验,探索圆锥和圆柱体积之间的关系。
(2)通过实验,因为:
圆柱的体积=( )×( ),
与圆柱等底等高的圆锥的体积等于圆柱体积的( ),
所以圆锥的体积=(
)×( )×( )
用字母表示体积公式:
V圆柱 = (
) × ( )
V圆锥 = ( ) × (
)
3
2、圆锥体积公式的应用。
看书完成例3工地上有一些沙子,堆起来近似一个
圆锥,这堆沙子大约多少立方米?(得数保留
两位小数。)
(1)沙堆底面积:
(2)沙堆的体积:
【合作交流】
1、讨论自主学习中存在的问题。
1
2、思考讨论:为什么等底等高的圆锥的体积只有圆柱的体积的
?等底等高的圆柱的体积比圆锥
3
的体积多( )倍,圆锥的体积比圆柱的体积少(
)。
1
学习必备 欢迎下载
3、一个圆锥形小麦
堆,底面周长是25.12m,高3m.如果每立方米小麦重750千克,这堆小麦
重多少千克?
【课堂总结】
本堂课你学懂了什么?还有什么疑问?
【当堂检测】
1、一个圆锥的高是10cm,底面半径是3cm,它的体积是多少?
2、把一个底面直径为20cm的圆柱形木块切削成一个与它等底等高的圆锥。这
个圆锥的体积是
多少?
※3、一个正方体的体积是225立方厘米,一
个圆锥的底面半径和高都等于该正方体的棱长。求
这个圆锥的体积。