2020年新北师大版小学五年级数学下册知识点归纳

巡山小妖精
585次浏览
2020年08月14日 19:26
最佳经验
本文由作者推荐

首都医科大学研究生院-写事作文


2020年新北师大版小学五年级数学下册知识点
(非常完整哦,感觉你一定会用得到。)
第一单元:《分数加减法》
复习:
分数的意义:把单位1平均分成若干份,表示这样一份或几份的数,叫做
分数。
分数 的基本性质:分数的分子和分母同时乘上或除以相同的数(0除外),
分数的大小不变.一个物体,一个 图形,一个计量单位,都可看作单位“1”.把单位“1”
平均分成几份,表示这样一份或几份的数叫做 分数.在分数里,表示把单位“1”平
均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的 一份叫做分数
单位.(如:
11
的分数单位是)
4
分数与除法的关 系:分子相当于除法中的被除数,分母相当于除法中的除
数,分数线相当于除法中的除号
被除数
a
被除数÷除数= (除数不为0)
a÷b=(b≠0)

除数
b
真分数是指分子小于分母 最简真分数:分子和分母无公约数(除1以外),
或者说分子、分母互质的分数。
假分数:分数值大于1或等于1的分数,即分子大于或等于分母的分数称
假分数。
假分数和带分数互化
假分数来化成带分数:用分子除以分母,所得商作带分数的整数部分,余
数作分子,分母不变.
1



如:
11
=11÷4=
2
3
(11÷4=2……3)
44
带分数化成假分数:用整数乘以分母的积加上原来的分子作分子,分母不变
如:2=
3
4
(2×4+3)
11

4
4
异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约
分的要约分。 1、异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能
约分的要约分并约到最简 。
2、分数加减法方程的计算方法与整数方程的计算方法一致,在计算过程中
要注意统一分数 单位(即通分)。
3、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在
计算过程,整数的运算律对分数同样适用。
4、计算异分母分数混合运算主要有两种方法,一是将所有 的分数进行通分,
再进行计算,二是先根据需要进行部分通分。根据算式特点来选择方法。
5、在比较分数与小数大小时,要先统一他们的表现形式。将分数转化为
小数或者将小数转化为分数。只 有表现形式统一了,才有可能比较大小。(一般
情况下分数转化成小数更加方便)
6、小数化 成分数的方法:将小数化成分母是10、100、1000…的分数,能
约分的要约分。具体是:看有几 位小数,就在1后边写几个0做分母,把小数
点去掉的部分做分子,能约分的要约分。
7、分数化成小数的方法:用分子除以分母所得的商即可,除不尽时通常保
留三位小数。

2



8、在分数化成小数时,如果分母只含有2或5的质 因数,这个分数能化成
有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。 9、分数单位:用分子是1、分母是某一自然数(0和1除外)的分数(即
几分之一)作为分数单位 。
第二单元:《长方体(一)》
2.1长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称。
(1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱
又交于一点,这个点叫作顶点。
(2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的
面叫下面(或叫底面), 前面的面叫前面,后面的面叫后面。
(3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。
正方体的12条棱的长度都相等。
2、长方体、正方体各自的特点。
顶点
个数 个数


8


形 状 大小关系

条数 长度关系
都是长方形,特
相对的面是 可以分为三
殊的有两个相对
的面是正方形,
完全一样的 组,相对的棱
其余四个面是完
全一样的长方
6 长方形。(最12 平行且相等。
形。

多有2个是
正方形)

8

都是正方形。 每个面的面
6
3
长度都相等。
积都相等 12



3、正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等 的长
方体。(在长方体中最多有2个面是正方形,最多8条棱的长度相等。)
4、长方体的棱长总和=(长+宽+高)×4或者是长×4+宽×4+高×4
长方体的宽=棱长总和÷4-长-高
长方体的长=棱长总和÷4-宽-高
长方体的高=棱长总和÷4-宽-长
正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷12
2.2展开与折叠
知识点:正方体展开共11种
1—4—1 型 6个


图(1)图(2)

前< br>图(3)图(4)图(5)图(6)


2—3—1 型 3个


图(7)图(8)

图(9)

2—2—2 型 1个 楼梯形

图(10)
3-3 型 1个

图(11)

注意:(1)田字型与凹字型的不能围成正方体。
(2)一条线上超过4个的。

4



2.3长方体的表面积
知识点:1、表面积的意义:是指六个面的面积之和。
2、长方体和正方体表面积的计算方法:
3、长方体的表面积(6个面)=长×宽×2 +长×高×2 +宽×高×2
(上下面) (前后面) (左右面)
S长=(长×宽+长×高+宽×高)×2
3、正方体的表面积(6个面)=棱长×棱长×6
(一个面的面积)
4、S正=棱长×棱长×6
2.4露在外面的面
知识点:1、在观察中,通过不同的观察策略进行观察。
如:一种是看每个纸箱露在外面的面 ,再加到一起;另一种是分
别从正面、上面、侧面进行不同角度的观察,看每个角度都能看
到多 少个面,再加到一起。
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
3、求露在外面的面的面积=棱长×棱长×露在外面的面的个数。
(一个面的面积)
第三单元《分数乘法》
分数乘法(一)
知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘
法的意义相同 ,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积 作分子。
能约分的要约成最简分数。

5



3、计算时,应该先约分再计算。
分数乘法(二)
知识点 : 1、整数乘分数的意义:求一个数的几分之几是多
少。
如:3的是多少?算式就是3×
2、理解打折的含义。例如:九折,是指现价是原价的十分之九。
补充知识点:
1、打几折就是指现价是原价的百分之几,例如八五折,是指现价是原
价的百分之八十五。
现价=原价×折扣 原价=现价÷折扣 折扣=现价÷原价
2、买一赠一打几折:
出一个的钱拿两个货品 即 1除以2等于零点五 五折
买三赠一打几折:
出三个的钱拿四个货品 即 3除以4等于零点七五 七五折


分数乘法(三)
知识点:1、分数乘分数的计算方法:分子相乘的积 做分子,分
母相乘的积做分母,能约分的可以先约分。(计算结果要求是最简分
数。)
2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任
何一个乘数;真分数与假分数相乘积 大于真分数小于假分数。

6
3
4
3
4



3、比较分数相乘的积与每一个乘数的大小。
一个乘数乘以<1的数,积<这个乘数;
一个乘数乘以=1的数,积=这个乘数;
一个乘数乘以>1的数,积>这个乘数;
真分数相乘积小于任何一个乘数;
真分数与假分数相乘积大于真分数小于假分数。
4、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相
对应的分率,求部分量,用乘法)
5、倒数、
1、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒
数 。倒数是对两个数来说的,并不是孤立存在的。
2、当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。
3、1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。
4、求一个数的倒数 的方法:把这个数的分子、分母调换位置;其中整
数可以看成分母是1的分数。


第四单元:《长方体(二)》
4.1体积与容积
知识点:1、体积与容积的概念:
体积:物体所占空间的大小叫作物体的体积。(从外部测量)
容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量)
注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等

7



于体积。如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空
间的大小没有发生变化)

4.2体积单位
知识点:1、认识体积、容积单位
常用的体积单位:立方米(
3
)、立方分米(
分米
3
)、立方厘米(
厘米
3

常用的容积单位:升、毫升、1升=1
分米
3
、1毫升=1
厘米
3

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:
①手指头、苹果、火柴盒体积较小,可用
厘米
3
作单位
1立方厘米是指棱长为1厘米的正方体的体积,如:一个小指头所占的空
间大小。
②西瓜、粉笔盒体积稍大,可以用
分米
3
作单位
1立方分米是指棱长为1分米的正方体的体积,如:一个粉笔盒所占的空
间大小。
③矿泉水瓶、墨水瓶可以用毫升作单位
④热水瓶等较大盛液体容器、冰箱可用生升作单位
⑤我们饮用的自来水用“立方米”作单位。
1立方米是指棱长为1米的正方体的体积,如:一个讲台所占的空间大小。
在填写单位时多想想实物的大小,再考虑是否符合实际情况。




8



4.3长方体的体积
知识点:1、长方体、正方体体积的计算方法
①长方体的体积=长×宽×高,如果长 用a表示,宽用b表示,
高用h表示,体积用V表示,体积可表示为V=abh
②正方体 的体积=棱长*棱长*棱长,如果棱长用a表示,体积可
表示为V=
a
3
=a ×a×a
长方体(正方体)的体积=底面积×高 V=Sh
补充知识点:长方体的体积=横截面面积×长
2、能利用长方体(正方体)的体积及其他两个条件求出问题。
如:长方体的高=体积÷长÷宽 长=体积÷高÷宽
宽=体积÷高÷长
注意:计算体积时,单位一定要 统一;表面积与体积表示的意义不一
样,单位不同,无法比较大小
4.4体积单位的换算
认识体积、容积单位。常用的体积单位有:立方厘米(cm³)、立方分米
(dm³) 、立方米(m³)。
常用的容积单位有:升(L)、毫升(m L)
知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间
进率为1000
1

3
=1000
分米
3
1
分米
3
=1000
厘米
3
1升=1
分米
3
1毫升=1
厘米
3
1升=1000毫升
3、体积、容积单位之间的换算方法:体积、容积单位之间的换算,
由高 级单位化成低级单位乘进率,由低级单位化成高级单位除以进率

9



4、长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
5、面积单位换算1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
6、体(容)积单位换算 1立方米=1000立方分米
1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
7、单位换算时大单位化小单位时在前乘以进率,小单位化大单位
时在前除以进率。

4.5有趣的测量
知识点:1、不规则物体体积的测量方法:一般都是把不规则物体
的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还
是“升高到”)
注意:在 测量体积较小的不规则物体的体积时,要先测量出一定数
量物体的体积,再算出一个物体的体积
2、不规则物体体积的计算方法:现在液体体积减去原来液体体积
补充知识:在一个长方形中 剪一个最大的正方形,那么正方形的
边长就是原长方形长宽中较短的长度。
在一个长方体中截一个最大的正方体,正方体的棱长就是原长方
体长、宽、高中最短的长度。


10



第五单元:《分数除法》
分数除法(一)
知识点:1、分数除以整数的意义及计算方法。分 数除以整数,就
是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数
的倒数。
分数除法(二)
知识点:1、一个数除以分数的意义和基本算理:一个数除以分
数 的意义与整数除法的意义相同;一个数除以分数等于乘这个数的
倒数。
2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这
个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;
除数等于1。商等于被除数;
除数大于1,商小于被除数。
分数除法(三)
知识点:1、列方程“求一个数的几分之几是多少”的方法:
(1)、解方 程法:设未知数,这里的单位“1”未知,所以设单位“1”
为x,再根据分数乘法的意义列出等量关系 式解这个方程。
(2)、算术方法:用部分量除以它所占整体的几分之几
(对应量÷对应分率=标准量)
例如:女生有30人,女生占全班人数的,对应量就是30人,它对应的
3
4

11



分率就是,它们是相互对应的。
2、判断单位“1”:
①一般来说,某个数的几分之几,“某个数”就是单位“1”
②谁比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”
③谁是谁的几分之几,“是”字后面的数量就是单位“1”
④谁占谁的几分之几,“占”字后面的数量就是单位“1”
(有些情况没有出现上述的字,那 么大家要去感受应该是谁的几分之几。
这个谁就是单位“1”)

第六单元确定位置
确定位置(一)知识点
1、
2、
3、
4、
认识方向与距离对确定位置的作用。
能根据方向和距离确定物体的位置。
能描述简单的路线图。
确定位置的三个要素:方向、 角度、 距离。(角度的
3< br>4
两条边肯定有一条指向了东、南、西、北的一个方向,读的时候就
要从那个方向读起。 如东偏北40度。那么这个角的一条边肯定指
向正东方向,另一条在东和北之间。)
确定位置(二)知识点
1、
2、
了解确定物体位置的方法。
能根据平 面图确定图中任意两地的相对位置(以其中一
地为观察点,度量另一地所在方向以及两地的距离)

12




第七单元:《用方程解决问题》
1、理解并掌握形如ax+x=b这样的方程。
2、会分析简单问题中的数量中的相等关系。
3、会用方程解决简单的实际问题。
4、列方程解决实际问题的步骤:
(1)、根据题意找出数量之间的相等关系。
(2)、根据等量关系列方程。
(3)、解方程。
(4)、检查结果是否合理。

5、相遇问题:特点:必须是同时的 可根据不同的行程进行分析。
路程=速度和×相遇时间 速度和=路程÷相遇时间
相遇时间=路程÷速度和 速度1=路程÷相遇时间-速度2
6、常用关系式:
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
因数 × 因数=积 一个因数=积÷另一个因数

13



被除数÷除数=商 除数=被除数÷商 被除数=商×除数

第八单元:《数据的表示和分析》
1、条形统计图 优点:很容易看出各种数量的多少。
2、折线统计图 优点:不但可以表示数量的多少,而且能够清楚
地表示出数量增减变化的情况。
3、平均数=总数量÷总份数 (总数量和总份数要对应)

单位换算规则:大单位化小单位×进率
小单位化大单位÷进率
1、长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米
1厘米=10毫米 1米=100厘米
2、面积单位换算
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
3、重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
4、人民币单位换算
1元=10角 1角=10分 1元=100分
5、时间单位换算
1世纪=100年 1年=12月 大月(31天)有:135781012月

14



小月(30天)的有:46911月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天
1日=24小时
1时=60分 1分=60秒 1时=3600秒




(2)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c) =a-b-c

(3)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
长方形的周长=(长+宽)×2 c=2(a+b)
长=周长÷2-宽 宽=周长÷2-长
长方形的面积=长×宽 s=ab
长=面积÷宽 宽=面积÷长
正方形的边长a用表示,周长用c表示,面积用s表示。
正方形的周长=边长×4 c=4a
边长=周长÷4
正方形的面积=边长×边长 s=a²
平行四边形的底a用表示,高用h表示,面积用s表示。

15



平行四边形的面积=底×高 s=ah
底=面积÷高 高=面积÷底
三角形的底用a表示,高用h表示,面积用s表示。
三角形的面积=底×高÷2 s=ah÷2
底=面积×
2
÷
高 高=面积×2÷底
梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2
高=面积×2÷(上底+下底) (上底+下底)=面积×2÷高
上底=面积×2÷高-下底 下底=面积×2÷高-上底


1
0.5
2
3
0.6
5
5
0.625
8



1
0.25
4
3
0.75
4
4
0.8
5
1
0.2
5
1
0.125
8
2
0.4
5
3
0.375
8


7
0.875
8
需注意的算式
11X11=121 13X3=39 13X5=65 17X3=51
13X7=91
19 X5=95 29 X3=87 13×2=26(首先明确121、
39、65 、51、 91 、95 、87不是质数。其次要知 道13和39,13
和65,13和26、17和51,13和91,19和95是都是能够约分
的。)
33和55可以用11约分,222和777可以用111约分。(平
时自己不容易 判断出来的记录在一起经常看看。)

16

把握机遇-灯谜大全及答案


我心目中的班主任-方阵口号


菊花展-腊八节的来历


关于景色的作文-清明节的作文200字


2012四川高考-成立党支部的请示


新疆财经网-节后收心会


建筑承包合同范本-二手车买卖合同


世界儿童日-英国留学生政策