3.2简单的三角恒等变换导学案(推荐文档)

巡山小妖精
691次浏览
2020年08月15日 10:41
最佳经验
本文由作者推荐

优秀共青团员事迹-清明节小报内容大全



宜良一中2010-2011学年高一数学《大成导学案》 编号: 使用时间: 班级: 小组: 姓名: 组内评价: 教师评价:
3.2简单的三角恒等变换(一)大成导学案
编制人:速中平 审核:杨忠梅 领导签字: 吴云坤

大成目标
1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、逆向使用公式等数学思想。
通过和(差)角公式推导和差化积、积化和差公式,体会换元及方程思想。
2、通过对例题的 解答,对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据
问题的条件进行公式 变形, 以及变换过程中体现的换元、公式逆用、方程等数学思想方法的认识,从
而加深理解变换思想。
3、通过本节内容的学习,让学生积极参与数学活动,从中获得成功的体验,建立学好数学的信心,培< br>养数学思想,提高推理能力。

【使用说明与学法指导】
1.预习课本13 9页至140页,结合上一节所讲和(差)角公式在恒等变换中的应用,在课本上标注疑难
之处,再研读 本学案。
2.独立完成此导学案,不照抄答案,保证学案的完成质量。

【自主学习】
例1、试以
cos

表示
sin
解:









思考:例1的结果可以将等式两边开平方,从而表示为什么样?







例2.已知
sin

—




练习1:若
sin76m
,试用含
m
的式子表示
cos7






1
00
2

2
,cos
2

2
,tan
2

2


由二倍角公式思
考:



2< br>倍角,把
cos2



中的

换为,
2
解出
cos
2
的二

2
,问
课 前预习案
第一步:看课本139页至140页,对照和(差)角公式、二倍角公式,思考公式的逆用、 变形运用及
关联运用。
第二步:结合【自主学习指导】自学,完成【预习案】。
【导学】
1、复习和、差角公式及二倍角公式:

题就解决了。这是
什么数学思想?






公式称为半角公
式,根号前面的正
负号由

所在象
2

















< br>sin(



)
sin(



)
cos(



)
cos(
< br>

)
tan(



)tan(


)
sin2


cos2


tan2


【自主学习指导】
把公式默写出来

对第一二两个公
式可记为:正余余
正符号同

对第三四两个公
式可记为:余余正
正符号异

T
а+β
和T
а-β
用上
面四个来推导

二倍角公式用和
角公式得到

你还有别的记忆
方法吗?

5

,且

在第三象限,求
tan
的值。
132
限确定。





注意:
是第三
象限角,

就是
2
符号
第二或四象限 角,
这时
tan

2
都为负。









宜良一中2010-2011学年高一数学《大成导学案》 编号: 使用时间: 班级: 小组: 姓名: 组内评价: 教师评价:
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角

函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角

函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的


联系,这是三角式恒等变换的重要特点.
恒等式的证明,可
例3、求证:
从左到右,也可以
1
从右到左。(1)从
(1).
sin

cos




sin





sin







2
右到左用和差角
公式打开就行,从



< br>
(2).
sin

sin

2sin

cos
左到右要运用解
22
方程的思想来处
证明:
理。(2)的证明只

要把

换为









(2)
cos

cos

2cos





(3)
tan







2
cos



2


2

sin

1cos



1cos

sin




2
(4)
1cos2

2sin

2






(5)






2
,把



-

就可得
2
到。(1)叫做积化
和差公式;(2)叫
和差化积公式。











sin2

cos2


2
1sin4

(6)
tan





(7)

x


x




tan



2tanx


24

24

课堂探究训练案
1.证明下列各式
1
(1)
cos

sin
< br>[sin(



)sin(


< br>)].

2





【学习总结】








2
1cos2

tan
2


1cos2





2.已知
cos




43




2

,求
sin
的值。 ,且
522












































宜良一中2010-2011学年高一数学《大成导学案》 编号: 使用时间: 班级: 小组: 姓名: 组内评价: 教师评价:





3

花儿开了-哈尔滨理工大学录取分数线


怎样写贷款申请书-高考动员大会


入党动机是什么-新疆中考


初等教育-绿色上网


1英亩-关于植树节的作文


锦州师范-描写夜晚景色的句子


日本东北大学-药品技术转让


化学反应原理试卷-以战争为话题的作文