新北师大版八年级数学上册平行线的证明知识点复习
湖南专科录取分数线-贵州考试院
平行线的证明知识点复习
知识点1:命题
(1)判断一件事情的句子,叫_____________.
_______的命题是真命题,不正确的命题是___________.
(2)公认的真命题称为
____________,经过证明的真命题称为_____________.
典型练习:
1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:
.若a>b,则
11
.
.两个锐角的和是锐角..同位角相等,两直线平行.
ab
④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.
2.
甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来
查
看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”
甲说:“是乙不小心闯的祸.”
乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.”
丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )
A.甲 B. 乙 C.丙
D.丁
知识点2:平行线
(1).平行线的判定:公理:____________相等,两直线平行. 判定定理
1:___________相等,两直线
平行.判定定理2:_______________,两直
线平行. 定理:平行于同一直线的两直线___________.
(2).平行线的性质
公理:两直线平行,同位角___________.
性质定理1:两直线平行,内错角_________.
性质定理2:两直线平行,同旁内角__________.
典型练习:
1、已知如图∠1=∠2,BD平分∠ABC,求证:ABCD
2.已知:BCEF,∠B=∠E,求证:ABDE。
3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零
A
件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠
BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB与CD肯定是平
B
P
你知道什么原因吗?
E
D
行的,
C
F
4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度 假村D在C的正
西方向,度假村B在
C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.
(1)求道路CD与CB的夹角;
(2)如果度假村D到C是直公路,长为1km,D到A是
环湖路,度假村B到
两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的
长
;
(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若
不能,请你
加上一个条件,判定DC∥AB.
5.与平行线有关的探究题
(1)、利用平行线的性质探究:
如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点
不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个
角.当动
点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,
利用图1,过点P
作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题: (1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系
;
(2)当动点P落在第③、第
○
4部分时,在图3、图4中画出图形,探
究∠PAC、∠APB、∠PBD之间
的数量关系,写出结论并选择其中一种情形加以证明.
知识点三:三角形的内角和外角
(1)三角形内角和定理:三角形的内角和等于__________.
(2)
定理:三角形的一个外角等于和它不相邻的____________________.
(3)
定理:三角形的一个外角大于任何一个和它____________________.
典型练习:
1.如下几个图形是五角星和它的变形.
(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;
(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有
无变化?说明你的结论的正确性;
(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+
∠ACE+∠D+
∠E)有无变化?说明你的结论的正确性.
2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究1:如图1,在△ABC中,
O
是
∠AB
C与
∠ACB
的平分线
BO
和
CO
的交点,通过分析发现
∠BOC
=90°+
1
∠A,理由如下:
2
∵BO和CO分别是∠ABC和∠ACB的角平分线,
11
∠ABC,∠2=∠ACB
22
1
∴∠1+∠2=(∠ABC+∠ACB)
2
∴∠1=
又∵∠ABC+∠ACB=180°—∠A
∴∠1+∠2=
11
(180°—∠A)=90°—∠A
22
1
∠A)
2
∴∠BOC=180°—(∠1+∠2)=180
°—(90°—
∴∠BOC=90°+
1
∠A
2
探究2:如图2,
O
是∠ABC与外角∠ACD的平分线
BO
和
CO
的交点,
试分析∠BOC与∠A有怎样的关系?
请说明理由.
探究3:如图3,O
是外角∠
DBC
与外角∠
ECB
的平分线
BO
和
CO
的交点,则∠BOC与
∠A有怎样的关系?(只写结论,不需证明)
综合测试题:
一、填空题
1.如上图,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.
2.如上右图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.
3.如右图,DAE是一条直线,DE∥BC,则∠BAC=_____.
4.“一次函
数y=kx-2,当k>0时,y随x的增大而增大”是一个_______命题(填“真”或“假”)
二、选择题
1.下列命题正确的是( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交 ,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
2.两平行直线被第三条直线所截,同位角的平分线( )
A.互相重合 B.互相平行 C.互相垂直 D.相交
3. 下列句子中,不是命题的是( )
A.三角形的内角和等于180度;
B.对顶角相等;
C.过一点作已知直线的平行线; D.两点确定一条直线.
4.如右图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )
∥BC
B.∠B=∠C
∥CD
C.∠2+∠B=180°
5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )
A.∠A+∠E+∠D=180° B.∠A-∠E+∠D=180°
C.∠A+∠E-∠D=180° D.∠A+∠E+∠D=270°
三、解答题
1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数
.
2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与A
B有怎样的位置关系,为
什么?
3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,
AE是∠BAC的平分线,AD⊥BC于D.
(1)求∠DAE的度数;
(2)判定AD是∠EAC的平分线吗?说明理由.
(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜
想.∠DAE的度数.(∠C>∠B)
4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB
于点M、N.
(1)如图1,MN⊥y轴吗?为什么?
(2)如图2,当点P在y
轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=
(∠OBA﹣∠A)是否
成立?为什么?
(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其
他条件都不变时,试
问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式
,并加以证明;若不存在,
请说明理由.