2018年初三一模数学试卷及答案

绝世美人儿
839次浏览
2020年08月16日 04:09
最佳经验
本文由作者推荐

银行卡新规-选调生报考条件


2018年初三一模数学考试
一、选择题(本题共30分,每小题3分)
1 .为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目
前我区 共有公租自行车3 500辆.将3 500用科学记数法表示应为
A.0.35×10
4
B. 3.5×10
3

C.3.5×10
2
D. 35×10
2

2.把 一个边长为1的正方形如图所示放在数轴上,以正方形的对
角线为半径画弧交数轴于点A,则点A对应的 数是
A
A.1 B.
2
C.
3
D.2
3.右图是某几何体从不同角度看到的图形,这个几何体是
A.圆锥 B.圆柱
D.三棱锥
主视图 左视图 俯视图
-101
23
C.正三棱柱
2x2y

4
.如果
x+y=4
,那么代数式
2
的值是

xy
2
x
2
y
2
A
.﹣
2 B

2 C

11
D



22
5.下列图形中,既是轴对称图形,又是中心对称图形的是

A. B. C. D.
6.某商场一楼与二楼之间的 手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地面的水
平线,∠ABC=150°,BC的长 是8 m,则乘电梯从点B到点C上升的高度h是
A.
43
m B.8 m
D.4 m
A
150°
B
C
h
D
8
C.
3
m
3


7.在我国古代数学 著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南
海,七日至北海;雁起北海 ,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,
7天飞到北海;大雁从北海起飞 ,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相
遇.设野鸭与大雁从南海和北海同时起 飞,经过
x
天相遇,根据题意,下面所列方程正确的是



A.
(97)x1

B.
(97)x1
C.
()x1


79

11
D.
()x1

1
7
1
9

1


8.如图,是利用平面直角坐标系画出的天安门广场的平面示
意图,若这个坐标系分别以 正东、 正北方向为x轴、y轴的正
方向, 表示国旗杆的点的坐标为(0,2.5), 表示中国国家博
物馆的点的坐标为(4,1), 则表示下列建筑的点的坐标正确的

A.天安门(0, 4)
B.人民大会堂(﹣4,1)
C.毛主席纪念堂(﹣1,﹣3)
D.正阳门(0,﹣5)

























































2























9.1-7月 份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大
的月份是
A.3月份 B.4月份 C.5月份 D.6月份

10.AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的 指数.其数值越大
说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指 数为0-50
一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污 染,201-300五级重度
污染,大于300六级严重污染.小明查阅了2015年和2016年某市 全年的AQI指数,并绘制了如
下统计图,并得出以下结论:①2016年重度污染的天数比2015年 有所减少;②2016年空气质量
优良的天数比2015年有所增加;③ 2015年和2016年AQ I指数的中位数都集中在51-100这一
档中;④2016年中度污染的天数比2015年多13天. 以上结论正确的是
A. ①③ B. ①④ C.②③ D.②④
二、填空题(本题共18分,每小题3分)
11
.如果分式
x3
的值为
0
,那么
x
的值是



x1
b
12
.如图,一个正方形被分成两个正方形和两个一模一样的矩形, 请根
据图形,写出一个含有
a

b
的正确的等式




3
a
a
b


13< br>.请写出一个在各自象限内,
y
的值随
x
值的增大而增大的反比例函数 表达式




14
.一个猜想是否 正确,科学家们要经过反复的论证.下表是几位科学家

掷硬币

的实验数据 :

实验者

掷币次数

出现

正面朝上

的次数

频率


·
摩根

6 140
3 109
蒲丰

4 040
2 048
费勒

10 000
4 979
皮尔逊

36 000
18 031
罗曼诺夫斯基

80 640
39 699
0.506 0.507 0.498 0.501 0.492
请根据以上数据,估计硬币出现

正面朝上

的概率为

(精确到
0.01
).

15
.如图,圆桌面正上方的灯泡 发出的光线照射桌面后,在地面上
形成阴影(圆形).已知灯泡距离地面
2.4m
,桌 面距离地面
0.8m
(桌面厚度不计算),若桌面的面积是
1.2m²
,则地 面上的阴影面积




16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分
线:
作法:如图,
(1)在射线OA上任取一点C,过点C作CD∥OB;
A
(2)以点C为圆心,CO的长为半径作弧,交CD于点E;
(3)作射线OE.
所以射线OE就是∠AOB的角平分线.
C
E
请回答:小米的作图依据是 ____________________________
_________________ ___________________________________.
O
三、解答 题(本题共72分,第17-26题,每小题5分,第27
题7分,第28题7分,第29题8分)解答 应写出文字说明、演算步骤或证明过程.
17.计算:
13122cos302017






3x2x,

18
.解不等式 组

2x1x1
并写出它的所有非负整数解.

.....,

2

5
0
D
B



19
.如图,在矩形
ABCD
中,点
E

BC
上一点,且
DE=DA

AF

DE
F
,求证:
AF=CD








4
A
D
B
F
E
C



20.已知关于x的一元二次方程x
2
-(m+2)x+2m=0.
(1)求证:方程总有两个实数根;
(2)当m=2时,求方程的两个根.






21.在平面直角坐标xOy中,直线
ykx1

k0

与双曲线
y
2,3),与x轴交 于点B.
(1) 求m的值和点B的坐标;
(2) 点P在y轴上,点P到直线
y kx1

k0

的距离为
2
,直接写出点P的坐标.


y


A

B

x
O





22
.随着人们

节能环保,绿色出行

意识的增强,越来越多的人喜欢骑自行车出行.某自 行车厂
生产的某型号自行车去年销售总额为
8
万元.今年该型号自行车每辆售价预计比 去年降低
200
元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%
,求该型号自行
车去年每辆售价多少元?










5
m

m0

的一个交点为A(﹣
x



23
.如 图,在△
ABC
中,
BD
平分∠
ABC

AC
D

EF
垂直平分
BD
,分别交
AB

BC

BD

E

F

G< br>,
连接
DE

DF



1
)求证:
DE=DF



2
)若∠
ABC=30°
,∠
C=45°

DE=4
,求< br>CF
的长.

A
E
G
B
F
C
D











24.阅读以下材料:
2017年1月28日至2月1日农历正月初一至初五,平谷区 政府在占地面积6万平方米的琴湖
公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.
本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食
区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总
面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文
艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;< br>还有孩子们喜爱的儿童娱乐游艺区.
此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化 ,以京津冀不同地域的特色文化为出发
点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国 各地的约3.2万人踏着新春的脚
步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民
逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,
观看绿都古韵、秧歌表演、天桥绝 活,一路猜灯谜、赏图片展,
场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也
让 游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人
次,大年初四风和日丽的天气让庙会进入游 园高峰,单日接待量
较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍
然人头攒 动,仍约有5.5万人次来园参观.
(1)直接写出扇形统计图中m的值;
(2)初四这天,庙会接待游客量约_______万人次;
(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.



6



25.如图,⊙O为等腰三角形ABC的外接圆,A B=AC,AD是
⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2α,写出求CE长的思路.
C
E
A
D

O
F


B









26.有这样一个问题:探究函数
yx+2x
的图象与性质.
小军根据学习函数的经验, 对函数
yx+2x
的图象与性质进行了探究.
下面是小军的探究过程, 请补充完整:
(1)函数
yx+2x
的自变量x的取值范围是 ;
(2)下表是
x

y与x的几组对应值



﹣2﹣1.9 ﹣1.5﹣1﹣0.5
y 2

1.60 0.80
0

0 1 2 3 4 …
﹣0.72
﹣1.41

﹣0.37

0 0.76

1.55



在平面直角坐标系xOy中, 描出了以上表中各对对应值为坐标的点,根据描出的点,
该函数的图象;
y
4
3
2
1
O
–2–112345
x
–1
–2
–3
(3)观察图象,函数的最小值是 ;

(4)进一步探究,结合函数的图象, 写出该函数的一条
..
性质(函数最小值除
7

画出


外): .
27.直线
y3x3
与x轴,y轴分别交于A,B两点,点A关于直线x1
的对称点为点C.
(1)求点C的坐标;
(2)若抛物线
y mx
2
nx3m

m0

经过A,B,
C 三点,求该抛物线的表达式;
(3)若抛物线
yaxbx3

a0

经过A, B两
2
5
4
3
2
y
点,且顶点在第二象限,抛物线 与线段AC有两个公共
1
点,求a的取值范围.

–5–4–3–2–1
O
12
x
–1


–2






28.在△ABC中, AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线
DE绕点D顺 时针旋转120°,与直线AC交于点F.
(1)依题意将图1补全;
(2)小华通过观察 、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与
同学们进行交流,通过讨 论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF; 想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,
可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可 得AD是∠BAC的角平分线,由角平分线定理,构造点D到
AB,AC的高,利用全等三角形,可证D E=DF…….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);
(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.

A
A





E
E

C

B
C
D
B
D
图1
备用图

8



29.在平面直角坐标系中,点Q为坐标系上任意一 点,某图形上的所有点在∠Q的内部(含角的
边),这时我们把∠Q的最小角叫做该图形的视角.如图1 ,矩形ABCD,作射线OA,OB,则称
∠AOB为矩形ABCD的视角.
图1
图2

备用图
(1)如图1,矩形ABCD,A(﹣
3
,1),B(
3
,1),C(
3
,3),D(﹣
3
,3), 直
接写出视角∠AOB的度数;
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形 ABCD的视角∠AQB=60°,求点Q的
坐标;
(3)如图2,⊙P的半径为1,点P( 1,
3
),点Q在x轴上,且⊙P的视角∠EQF的度数大
于60°,若Q(a,0) ,求a的取值范围.



















9




2017—2018学年度初三模考(一)
数学答案

一、选择题(本题共30分,每小题3分)
题号
答案
1
B
2
B
3
A
4
C
5
D
6
D
7
C
8
B
9
A
10
C
二、填空题(本题共18分,每小题3分)
11< br>.
3

12


ab

a2
2abb
2

13
.答案不唯一,如
y< br>2
1

14

0.50

15

2.7


x
16
.两直线平行,内错角相等;
················· ·················································· ··········· 1
等腰三角形两底角相等; ···················· ·················································· ··········· 3
(其他正确依据也可以).
三、解答题(本题共72分,第1 7-26题,每小题5分,第27题7分,第28题7分,第29题8
分)解答应写出文字说明、演算步 骤或证明过程.
17.解:
13122cos302017

0
=
31232
3
1
··········· ·················································· ············· 4
2
=﹣2. ···················· ·················································· ······························· 5


3x2x

18
.解:

2x1x1




5

2


··············· ·················································· ············· 1
解不等式①得
x≤1

·
·· ·················································· ······················ 2
解不等式②得
x
>﹣
3

·
········· ·················································· ··· 3
∴不等式组的解集是:﹣
3

x≤1

·< br>··············································· ················ 5
∴不等式组的非负整数解为
0

1


19
.证明:∵矩形
ABCD


A
D

AD

BC


···································· 1
∴∠
ADE=

DEC

·

AF

DE

F


F
·································· 2
∴∠
AFD=

C=90°

·
B
E< br>C
·········································· ···· 3

DE=DA

·
···································· 4
∴△
ADF
≌△
DEC


·············································· 5

AF=CD

·
20.(1)证明: ∵ Δ=[-(m+2)]
2
-4×2m ························· ·············································· 1
2
=(m-2)

10


∵ (m-2)
2
≥0,
∴方程总有两个实数根. ················ ················································· 2
2
······································· ··················· 3

2
)当
m=2
时 ,原方程变为
x-4x+4=0

·
················· ·················································· ····················· 5
解得
x
1
=x
2
=2

·
< br>21.解:(1)∵双曲线
y
m

m0

经过点 ,A(﹣2,3),
x

m6
. ················ ·················································· ·················· 1
∵直线
ykx1

k0

经过点A(﹣2,3),

k1
. ······························· ·················································· ···· 2
∴此直线与x轴交点B的坐标为(1,0). ············································ 3
(2)(0,3),(0,-1). ····························· ················································· 5

22
.解:设去年该型号自行车每辆售价
x
元,则今年每辆售 价为(
x

200
)元.
··············· 1
由题意,得

80000
80000

110%

············································· ··············· 2

·

xx200
··· ·················································· ································ 3
解得:
x=2000

·
·················· ············································· 4
经检验,
x=2000
是原方程的根.
·
··········· ···································· 5
答:去年该型号自行车每辆售价为
2000
元.
·

23.(1)证明:∵EF垂直平分BD,
∴EB=ED,FB=FD. ········ ·················································· ······················ 1
∵BD平分∠ABC交AC于D,
A
∴∠ABD=∠CBD.
D
E
∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,
G
∴∠BEG=∠BFG.
∴BE=BF.
B
C
F
H
∴四边形BFDE是菱形.
∴DE=DF. · ·················································· ········································· 2
(2)解:过D作DH⊥CF于H.
∵四边形BFDE是菱形,
∴DF∥AB,DE=DF=4.
在Rt△DFH中,∠DFC=∠ABC=30°,
∴DH=2.
∴FH=
23
. ··················· ·················································· ····················· 3

11


在Rt△CDH中,∠C=45°,
∴DH=HC=2. ········ ·················································· ······························· 4
∴CF=2+
23
. ···························· ·················································· ········· 5

24.(1)扇形统计图中m的值是25.1%; ······ ·················································· ········ 1
(2)6; ····························· ·················································· ······················· 2
(3)如图. ············· ·················································· ·································· 5

25.(1)证明:∵AB=AC,AD是⊙O的直径,
∴AD⊥BC于F. ······ ·················································· ····························· 1
∵DE是⊙O的切线,
∴DE⊥AD于D.2
∴DE∥BC. ······················· ·················································· ··················· 2
(2)连结CD.
由AB=AC,∠BAC=2α,可知∠BAD=α. ····················· ······························· 3
由同弧所对的圆周角,可知∠BCD=∠BAD=α.
由AD⊥BC,∠BCD =α,DF=n,
C
E
根据sinα=
DF
,可知CD的长. ··············· 4
CD
A
由勾股定理,可知CF的长
由DE∥BC,可知∠CDE=∠BCD.
由AD是⊙O的直径,可知∠ACD=90°.
由∠CDE=∠BCD,∠ECD=∠CFD,
可知△CDF∽△DEC,可知
O< br>F
B
D
DFCF
=
,可求CE的长. ······························ 5
CECD
26.(1)
x2
; ·················· ·················································· ·························· 1

12


(2)该函数的图象如图所示; ························ ················································· 3
y
4
3
2
1
O
–2–1
–1
–2
12345
x

(3)
-2
; ·········· ·················································· ····································· 4
(4)该函数的其它性质:当
2x0
时,y随x的增大而减小; ····················· 5
(答案不唯一,符合函数性质即可写出一条即可)
27.解:(1)令y=0,得x=1.
∴点A的坐标为(1,0). ········· ·················································· ········ 1
∵点A关于直线x=﹣1对称点为点C,
∴点C的坐标为(﹣3,0). ·················· 2
y
5
(2)令x=0,得y=3.
4
∴点B的坐标为(0,3).
B
3
∵抛物线经过点B,
2
∴﹣3m=3,解得m=﹣1.
·
1
····················
3
CA
∵抛物线经过点A,
–4–3–2–1
O
12
x–1
∴m+n﹣3m=0,解得n=﹣2.
∴抛物线表达式为
yx2x3
. ········ 4
2
–2
–3
(3)由题意可知,a<0.
根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a=﹣3, ·········· 5
此时抛物线顶点在y轴上,不符合题意.
当抛物线经过(﹣3,0)时,开口最大,a=﹣1. ·········································· 6
结合函数图像可知,a的取值范围为
3a1
. ······································ 7
28.解:(1)如图1, ································· ·················································· ······ 1
A
E
B
D
F
C
图1
(2)


13


A
AA
GE
B
D
F
C
B
E
D
P
FC
E
M
B
D
N
F
C
图2
图3
图4

想法1证明:如图2,过D作DG∥AB,交AC于G, ····································· 2
∵点D是BC边的中点,
∴DG=
1
AB.
2
∴△CDG是等边三角形.
∴∠EDB+∠EDG=120°.
∵∠FDG+∠EDG=120°,
∴∠EDB =∠FDG. ············ ·················································· ···················· 3
∵BD=DG,∠B=∠FGD=60°,
∴△BDE≌△GDF. ·································· ··············································· 4
∴DE=DF. ······································ ·················································· ····· 5
想法2证明:如图3,连接AD,
∵点D是BC边的中点,
∴AD是△ABC的对称轴.
作点E关于线段AD的对称点P,点P在边AC上, ········································ 2
∴△ADE≌△ADP.
∴DE=DP,∠AED=∠APD.
∵∠BAC+∠EDF=180°,
∴∠AED+∠AFD=180°.
∵∠APD+∠DPF=180°,
∴∠AFD=∠DPF. ············· ·················································· ···················· 3
∴DP=DF. ··············· ·················································· ··························· 4
∴DE=DF. ········ ·················································· ··································· 5
想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, ············· 2
∵点D是BC边的中点,
∴AD平分∠BAC.
∵DM⊥AB于M,DN⊥AB于N,
∴DM=DN. ················ ·················································· ·························· 3
∵∠A=60°,
∴∠MDE+∠EDN=120°.
∵∠FDN+∠EDN=120°,
∴∠MDE=∠FDN.

14


∴Rt△MDE≌Rt△NDF. ······················· ·················································· ···· 4
∴DE=DF. ······························· ·················································· ············ 5
(3)当点F在AC边上时,
BECF
1
··········································· 6
AB
; ·
2
1
当点F在AC延长线上时,
BECFAB
. ········································· 7
2


29.解:(1)120°; ················· ·················································· ························· 1
(2)连结AC,在射线CB上截取CQ=CA,连结AQ. ···································· 2
∵AB=2
3
,BC=2,
∴AC=4. ·························· 3
∴∠ACQ=60°.
∴△ACQ为等边三角形,
即∠AQC=60°. ················ 4
∵CQ=AC=4,
∴Q(
3
,﹣1). ············· 5



(3)
图1
图2

如图1,当点Q与点O重合时,∠EQF=60°,
∴Q(0,0). ········· ·················································· ····················· 6
如图2,当FQ⊥x轴时,∠EQF=60°,
∴Q(2,0). ····································· ··········································· 7
∴a的取值范围是0<a<2. ······························· ································ 8



15

观察动物的作文-常州机电职业技术


南京理工大学泰州科技学院教务在线-三八妇女节活动策划


一分一段表-思想品德论文


销售简历-清华自主招生


杨绛作品-我生活在幸福之中


六盘水职业技术学院-圣诞节英语手抄报


我得到了快乐-电焊工工作总结


龋齿的预防-高一语文教学反思