2017年北京市平谷区中考一模数学试卷(含答案)
清明节的传说-亲子活动方案
平谷区2017年初三统一练习(一)
一、选择题(本题共30分,每小题3分) <
br>1.为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统
计,
目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为
A.0.35×10
4
B. 3.5×10
3
C.3.5×10
2
D. 35×10
2
2.把
一个边长为1的正方形如图所示放在数轴上,以正方形的对
角线为半径画弧交数轴于点A,则点A对应的
数是
A
A.1 B.
2
C.
3
D.2
3.右图是某几何体从不同角度看到的图形,这个几何体是
A.圆锥 B.圆柱
D.三棱锥
主视图 左视图 俯视图
-101
23
C.正三棱柱
4
.如果
x+y=4<
br>,那么代数式
2x2y
的值是
x
2
y
2
x
2
y
2
A
.﹣
2
B
.
2 C
.
11
D
.
22
5.下列图形中,既是轴对称图形,又是中心对称图形的是
A.
B. C. D.
6.某商场一楼与二楼之间的
手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地
面的水平线,∠ABC=150°,BC的长
是8 m,则乘电梯从点B到点C上升的高度h是
A.
43
m B.8 m
D.4 m
A
150°
B
C
h
D
8
C.
3
m
3
7.在我国古代数学
著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)
起南海,七日至北海;雁起北海
,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从
南海起飞,7天飞到北海;大雁从北海起飞
,9天飞到南海.野鸭与大雁从南海和北海同时
起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起
飞,经过
x
天相遇,根据题意,下
面所列方程正确的是
A.
(97)x1
B.
(97)x1
C.
()x1
79
11
D.
()x1
1
7
1
9
8.如图,是利用平面直角坐标
系画出的天安门广场的平面示
意图,若这个坐标系分别以正东、
正北方向为x轴、y轴的正
方向, 表示国旗杆的点的坐标为(0,2.5),
表示中国国家博
物馆的点的坐标为(4,1), 则表示下列建筑的点的坐标正确的
是
A.天安门(0, 4)
B.人民大会堂(﹣4,1)
C.毛主席纪念堂(﹣1,﹣3)
D.正阳门(0,﹣5)
9.1-7月份,某种蔬
菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利
润最大的月份是
A.3月份 B.4月份 C.5月份 D.6月份
10.AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的
指数.其数
值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指
数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污
染,
201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市
全年
的AQI指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015<
br>年有所减少;②2016年空气质量优良的天数比2015年有所增加;③ 2015年和2016年AQ
I
指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2015年多13天.
以
上结论正确的是
A. ①③ B. ①④ C.②③ D.②④
二、填空题(本题共18分,每小题3分)
11
.如果分式
x3
的值为
0
,那么
x
的值是
.
x1
b
12
.如图,一个正方形被分成两个正方形和两个一模一样的矩形,
请根
据图形,写出一个含有
a
,
b
的正确的等式
.
a
a
b
13
.y
的值随
x
值的增大而增大的反比例函数表达式
.
请写出一个在各自象限内,
14
.一个猜想是否正确
,科学家们要经过反复的论证.下表是几位科学家
“
掷硬币
”
的实验数
据:
实验者
掷币次数
出现
“
正面朝上
”
的次数
频率
德
·
摩根
6 140
3 109
0.506
蒲丰
4 040
2 048
0.507
费勒
10 000
4 979
0.498
皮尔逊
36 000
18 031
0.501
罗曼诺夫斯基
80 640
39 699
0.492
请根据以上数据,估计硬币出现
“
正面朝上
”
的概率为
(精确到
0.01
).
15
.如图,圆桌面正上方的灯泡
发出的光线照射桌面后,在地面上
形成阴影(圆形).已知灯泡距离地面
2.4m
,桌
面距离地面
0.8m
(桌面厚度不计算),若桌面的面积是
1.2m²
,则地
面上的阴影面积
是
m²
.
16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分
线:
作法:如图,
(1)在射线OA上任取一点C,过点C作CD∥OB;
A
(2)以点C为圆心,CO的长为半径作弧,交CD于点E;
(3)作射线OE.
所以射线OE就是∠AOB的角平分线.
C
E
请回答:小米的作图依据是
____________________________
_________________
___________________________________.
O
三、解答
题(本题共72分,第17-26题,每小题5分,第27
题7分,第28题7分,第29题8分)解答
应写出文字说明、演算步骤或证明过程.
17.计算:
13122cos302017
.
3x2x,
18
.解不等式
组
2x1x1
并写出它的所有非负整数解.
.....,
2
5
0
D
B
19
.
AF
⊥
DE
于
F
,AF=CD
.
如图,在矩形
ABCD
中,点
E
是
BC
上一点,且
DE=DA
,求证:
A
D
F
B
E
C
20.已知关于x的一元二次方程x
2
-(m+2)x+2m=0.
(1)求证:方程总有两个实数根;
(2)当m=2时,求方程的两个根.
21.在平面直角坐标xOy中,直线
ykx1
k0
与双曲线
y
A(﹣2,3),与
x轴交于点B.
(1) 求m的值和点B的坐标;
(2) 点P在y轴上,点P到直线ykx1
k0
的距离为
2
,直接写出点P的
坐标.
y
A
B
x
O
22
.随着人们
“
节能环保,绿色出行
”
意识的增强,越来越多的人喜欢骑自行车出行.某自
行
车厂生产的某型号自行车去年销售总额为
8
万元.今年该型号自行车每辆售价预计比
去年降
低
200
元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年
减少
10%
,
求该型号自行车去年每辆售价多少元?
m
m0
的一个交点为
x
23
.如图,在△
ABC
中,
BD
平分∠
ABC
交
AC
于<
br>D
,
EF
垂直平分
BD
,分别交
AB
,BC
,
BD
于
E
,
F
,
G
,
连接
DE
,
DF
.
(
1
)求证:
DE=DF
;
(
2
)若∠
ABC=30°
,∠
C=45°
,
DE=4
,求<
br>CF
的长.
A
E
G
B
F
C
D
24.阅读以下材料:
2017年1月28日至2月1日农历正月初一至初五,平谷区
政府在占地面积6万平方米
的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.
本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色
美
食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,
占展区总
面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区
占地面积是
文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展
区总面积的11.
6%;还有孩子们喜爱的儿童娱乐游艺区.
此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化
,以京津冀不同地域的特色文化为
出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国
各地的约3.2万人踏
着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气
寒冷,市
民逛庙会热情不减,又约有4.3万人次参观了庙会,品
尝特色美食,观看绿都古韵、秧歌表演、天桥绝
活,一路猜灯谜、
赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等
民俗作品也让
游客爱不释手,纷纷购买.大年初三,单日接待游
客约4万人次,大年初四风和日丽的天气让庙会进入游
园高峰,
单日接待量较前日增长了约50%.大年初五,活动进入尾声,但
庙会现场仍然人头攒
动,仍约有5.5万人次来园参观.
(1)直接写出扇形统计图中m的值;
(2)初四这天,庙会接待游客量约_______万人次;
(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.
C
E
25.如图,⊙O为等腰三角形ABC的外接圆,AB=AC,AD是
A
O
F
B
D
⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2α,写出求CE长的思路.
26.有这样一个问题:探究函数
yx+2x
的图象与性质.
小军根据学习函数的经验, 对函数
yx+2x
的图象与性质进行了探究.
下面是小军的探究过程, 请补充完整:
(1)函数
yx+2x
的自变量x的取值范围是 ;
(2)下表是
y与x的几组对应值
x
y
﹣2
2
﹣1.9 ﹣1.5
1.60
0.80
﹣1
0
﹣0.5
0
﹣1.41
1
﹣0.37
2
0
3 4 …
﹣0.72
0.76
1.55
…
在平面直角坐标系xOy中, 描出了以上表中各对对应值为坐标的点,根据描出的点,
画出该函数的图象;
y
4
3
2
1
O
–2
–1
–1
–2
–3
12345
x
(3)观察图象,函数的最
小值是 ;
(4)进一步探究,结合函数的图象,
写出该函数的一条性质(函数最小值除
..
外):
.
27.直线
y3x3
与x轴,y轴分别交于A,B两点,点A关于直线x1
的对称点为
点C.
(1)求点C的坐标;
(2)若抛物线
ymxnx3m
m
0
经过A,B,
2
5
4
y
C三点,求该抛物线
的表达式;
(3)若抛物线
yaxbx3
a0
经过A,
B两
2
3
2
点,且顶点在第二象限,抛物线与线段AC有两个公共
1
点,求a的取值范围.
–5–4–3–2–1
O
12
–1
–2
28.在△ABC中,
AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,
射线DE绕点D顺
时针旋转120°,与直线AC交于点F.
(1)依题意将图1补全;
(2)小华通过观察
、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个
猜想与同学们进行交流,通过讨
论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF; 想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互
补,
可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可
得AD是∠BAC的角平分线,由角平分线定理,构造点
D到AB,AC的高,利用全等三角形,可证D
E=DF…….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);
(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.
A
A
E
E
C
B
C
D
B
D
图1
备用图
x
29.在平面直角坐标系中,点Q为坐标系上任
意一点,某图形上的所有点在∠Q的内部(含
角的边),这时我们把∠Q的最小角叫做该图形的视角.如
图1,矩形ABCD,作射线OA,
OB,则称∠AOB为矩形ABCD的视角.
图1
图2
备用图
(1)如图1,矩形ABCD,A(﹣
3
,1),B(
3
,1),C(
3
,3),D(﹣
3
,3),
直接写出视角∠AOB的度数;
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形
ABCD的视角∠AQB=60°,求点
Q的坐标;
(3)如图2,⊙P的半径为1,点P(
1,
3
),点Q在x轴上,且⊙P的视角∠EQF的
度数大于60°,若Q(a,0)
,求a的取值范围.
平谷区2016—2017学年度初三统练(一)
数学答案
2017.4
一、选择题(本题共30分,每小题3分)
题号
答案
1
B
2
B
3
A
4
C
5
D
6
D
7
C
8
B
9
A
10
C
二、填空题(本题共18分,每小题3分) <
br>11
.
3
;
12
.
ab
a
2
2abb
2
;
13
.答案不唯一,如
y
2
1
;
14
.
0.50
;
15
.
2.7;
x
16
.两直线平行,内错角相等;
··············
··················································
·············· 1
等腰三角形两底角相等; ·················
··················································
·············· 3
(其他正确依据也可以).
三、解答题(本题共72分
,第17-26题,每小题5分,第27题7分,第28题7分,第29
题8分)解答应写出文字说明、
演算步骤或证明过程.
17.解:
13122cos302017
0
=
31232
3
1
···········
··················································
············· 4
2
=﹣2. ····················
··················································
······························· 5
①
3x2x
18
.解:
2x1x1
,
②
52
·····························
·················································
1
解不等式①得
x≤1
,
·
················
··················································
········ 2
解不等式②得
x
>﹣
3
,
·················································
·············· 3
∴不等式组的解集是:﹣
3
<
x≤1
.
·
···
··················································
········ 5
∴不等式组的非负整数解为
0
,
1
.
·
19
.证明:∵矩形
ABCD
,
A
D
∴
AD
∥
BC
.
···································· 1
∴∠
ADE=
∠
DEC
.
·
∵
AF
⊥
DE
于
F
,
F
·································· 2
∴∠
AFD=
∠
C=90°
.
·
B
E<
br>C
··········································
····· 3
∵
DE=DA
,
·································· 4
∴△
ADF
≌△
DEC
.
·
·········
····································· 5
∴
AF=CD
.
·
20.(1)证明: ∵
Δ=[-(m+2)]
2
-4×2m ·························
·············································· 1
=(m-2)
2
∵ (m-2)
2
≥0,
∴方程总有两个实数根. ··································
······························ 2
·············
············································· 3 (
2
)当
m=2
时,原方程变为
x
2
-4x+
4=0
.
·
································
··················································
······ 5
解得
x
1
=x
2
=2
.
·
<
br>21.解:(1)∵双曲线
y
m
m0
经过点
,A(﹣2,3),
x
∴
m6
. ················
··················································
·················· 1
∵直线
ykx1
k0
经过点A(﹣2,3),
∴
k1
. ·······························
··················································
···· 2
∴此直线与x轴交点B的坐标为(1,0).
············································ 3
(2)(0,3),(0,-1). ·····························
·················································
5
22
.解:设去年该型号自行车每辆售价
x
元,则今年每辆售
价为(
x
﹣
200
)元.
··············· 1
由题意,得
80000
80000
<
br>110%
·································
·························· 2
,
·
x
x200
·········································
············································ 3
解得:
x=2000
.
·
··················
············································· 4
经检验,
x=2000
是原方程的根.
·
···········
···································· 5
答:去年该型号自行车每辆售价为
2000
元.
·
23.(1)证明:∵EF垂直平分BD,
∴EB=ED,FB=FD. ········
··················································
······················ 1
∵BD平分∠ABC交AC于D,
A
∴∠ABD=∠CBD.
D
E
∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,
G
∴∠BEG=∠BFG.
∴BE=BF.
B
C
F
H
∴四边形BFDE是菱形.
∴DE=DF. ·
··················································
········································· 2
(2)解:过D作DH⊥CF于H.
∵四边形BFDE是菱形,
∴DF∥AB,DE=DF=4.
在Rt△DFH中,∠DFC=∠ABC=30°,
∴DH=2.
∴FH=
23
. ···················
··················································
····················· 3
在Rt△CDH中,∠C=45°,
∴DH=HC=2. ····································
··················································
··· 4
∴CF=2+
23
. ······················
··················································
··············· 5
24.(1)扇形统计图中m的值是25.1%;
··················································
·············· 1
(2)6; ·······················
··················································
····························· 2
(3)如图. ·······
··················································
········································ 5
25.(1)证明:∵AB=AC,AD是⊙O的直径,
∴AD⊥BC于F. ····································
·················································
1
∵DE是⊙O的切线,
∴DE⊥AD于D.2
∴DE∥BC.·······
··················································
··································· 2
(2)连结CD.
由AB=AC,∠BAC=2α,可知∠BAD=α. ·····················
······························· 3
由同弧所对的圆周角,可知∠BCD=∠BAD=α.
由AD⊥BC,∠BCD
=α,DF=n,
C
E
根据sinα=
DF
,可知CD的长.
··············· 4
CD
A
由勾股定理,可知CF的长
由DE∥BC,可知∠CDE=∠BCD.
由AD是⊙O的直径,可知∠ACD=90°.
由∠CDE=∠BCD,∠ECD=∠CFD,
可知△CDF∽△DEC,可知
O<
br>F
B
D
DFCF
=
,可求CE的长.
······························ 5
CECD
26.(1)
x2
; ··················
··················································
···················· ····· 1
(2)该函数的图象如图所示; ··
··················································
····················· 3
y
4
3
2
1
O
–2–1
–1
–2
12345
x
(3)
-2
; ··························
··················································
··············· ····· 4
(4)该函数的其它性质:当
2x0
时,y随x的增大而减小;
···················· 5
(答案不唯一,符合函数性质即可写出一条即可)
27.解:(1)令y=0,得x=1.
∴点A的坐标为(1,0). ·········
··················································
········ 1
∵点A关于直线x=﹣1对称点为点C,
∴点C的坐标为(﹣3,0). ················· 2
y
5
(2)令x=0,得y=3.
4
∴点B的坐标为(0,3).
B
3
∵抛物线经过点B,
2
∴﹣3m=3,解得m=﹣1.
·
1
····················
3
CA
∵抛物线经过点A,
–4–3–2–1
O
12
x–1
∴m+n﹣3m=0,解得n=﹣2.
∴抛物线表达式为
yx2x3
. ········ 4
2
–2
–3
(3)由题意可知,a<0.
根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a=﹣3, ········· 5
此时抛物线顶点在y轴上,不符合题意.
当抛物线经过(﹣3,0)时,开口最大,a=﹣1.
·········································· 6
结合函数图像可知,a的取值范围为
3a1
.
······································ 7
28.解:(1)如图1, ·································
··················································
······ 1
A
E
B
D
F
C
图1
(2)
A
AA
G
E
B
D
F
C
B
E
D
P
F
C
E
M
B
D
N
F
C
图2
图3
图4
想法1证明:如图2,过D作DG∥AB,交AC于G,
····································· 2
∵点D是BC边的中点,
∴DG=
1
AB.
2
∴△CDG是等边三角形.
∴∠EDB+∠EDG=120°.
∵∠FDG+∠EDG=120°,
∴∠EDB =∠FDG.·············
··················································
··················· 3
∵BD=DG,∠B=∠FGD=60°,
∴△BDE≌△GDF. ··································
··············································· 4
∴DE=DF. ······································
··················································
····· 5
想法2证明:如图3,连接AD,
∵点D是BC边的中点,
∴AD是△ABC的对称轴.
作点E关于线段AD的对称点P,点P在边AC上,
········································ 2
∴△ADE≌△ADP.
∴DE=DP,∠AED=∠APD.
∵∠BAC+∠EDF=180°,
∴∠AED+∠AFD=180°.
∵∠APD+∠DPF=180°,
∴∠AFD=∠DPF. ·············
··················································
···················· 3
∴DP=DF. ···············
··················································
··························· 4
∴DE=DF. ········
··················································
··································· 5
想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N,
············· 2
∵点D是BC边的中点,
∴AD平分∠BAC.
∵DM⊥AB于M,DN⊥AB于N,
∴DM=DN. ················
··················································
························· 3
∵∠A=60°,
∴∠MDE+∠EDN=120°.
∵∠FDN+∠EDN=120°,
∴∠MDE=∠FDN.
∴Rt△MDE≌Rt△NDF. ··············
··················································
············· 4
∴DE=DF. ··········
··················································
································· 5
(3)当点F在AC边
上时,
BECF
1
····························
··············· 6
AB
;
·
2
1
当点F在AC延长线上时,
BECFAB
.
········································· 7
2
29.解:(1)120°; ·················
··················································
························· 1
(2)连结AC,在射线CB上截取CQ=CA,连结AQ.
···································· 2
∵AB=2
3
,BC=2,
∴AC=4.
·························· 3
∴∠ACQ=60°.
∴△ACQ为等边三角形,
即∠AQC=60°. ··············· 4
∵CQ=AC=4,
∴Q(
3
,﹣1). ············ 5
(3)
图1
图2
如图1,当点Q与点O重合时,∠EQF=60°,
∴Q(0,0). ·········
··················································
····················· 6
如图2,当FQ⊥x轴时,∠EQF=60°,
∴Q(2,0). ·····································
··········································· 7
∴a的取值范围是0<a<2. ·······························
································ 8