2017年北京市平谷区中考一模数学试卷(含答案)

别妄想泡我
714次浏览
2020年08月16日 05:41
最佳经验
本文由作者推荐

清明节的传说-亲子活动方案


平谷区2017年初三统一练习(一)
一、选择题(本题共30分,每小题3分) < br>1.为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统
计, 目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为
A.0.35×10
4
B. 3.5×10
3

C.3.5×10
2
D. 35×10
2

2.把 一个边长为1的正方形如图所示放在数轴上,以正方形的对
角线为半径画弧交数轴于点A,则点A对应的 数是
A
A.1 B.
2
C.
3
D.2
3.右图是某几何体从不同角度看到的图形,这个几何体是
A.圆锥 B.圆柱
D.三棱锥
主视图 左视图 俯视图
-101
23
C.正三棱柱
4
.如果
x+y=4< br>,那么代数式
2x2y

的值是

x
2
y
2
x
2
y
2
A
.﹣
2 B

2 C

11
D



22
5.下列图形中,既是轴对称图形,又是中心对称图形的是

A. B. C. D.
6.某商场一楼与二楼之间的 手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地
面的水平线,∠ABC=150°,BC的长 是8 m,则乘电梯从点B到点C上升的高度h是
A.
43
m B.8 m
D.4 m
A
150°
B
C
h
D
8
C.
3
m
3


7.在我国古代数学 著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)
起南海,七日至北海;雁起北海 ,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从
南海起飞,7天飞到北海;大雁从北海起飞 ,9天飞到南海.野鸭与大雁从南海和北海同时
起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起 飞,经过
x
天相遇,根据题意,下
面所列方程正确的是



A.
(97)x1

B.
(97)x1
C.
()x1


79

11
D.
()x1

1
7
1
9


8.如图,是利用平面直角坐标 系画出的天安门广场的平面示
意图,若这个坐标系分别以正东、 正北方向为x轴、y轴的正
方向, 表示国旗杆的点的坐标为(0,2.5), 表示中国国家博
物馆的点的坐标为(4,1), 则表示下列建筑的点的坐标正确的

A.天安门(0, 4)
B.人民大会堂(﹣4,1)
C.毛主席纪念堂(﹣1,﹣3)
D.正阳门(0,﹣5)














































































9.1-7月份,某种蔬 菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利
润最大的月份是
A.3月份 B.4月份 C.5月份 D.6月份

10.AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的 指数.其数
值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指
数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污 染,
201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市 全年
的AQI指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015< br>年有所减少;②2016年空气质量优良的天数比2015年有所增加;③ 2015年和2016年AQ I
指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2015年多13天. 以
上结论正确的是
A. ①③ B. ①④ C.②③ D.②④
二、填空题(本题共18分,每小题3分)
11
.如果分式
x3
的值为
0
,那么
x
的值是



x1
b
12
.如图,一个正方形被分成两个正方形和两个一模一样的矩形, 请根
据图形,写出一个含有
a

b
的正确的等式




a
a
b


13
y
的值随
x
值的增大而增大的反比例函数表达式




请写出一个在各自象限内,
14
.一个猜想是否正确 ,科学家们要经过反复的论证.下表是几位科学家

掷硬币

的实验数
据:

实验者

掷币次数

出现

正面朝上

的次数

频率


·
摩根

6 140
3 109
0.506
蒲丰

4 040
2 048
0.507
费勒

10 000
4 979
0.498
皮尔逊

36 000
18 031
0.501
罗曼诺夫斯基

80 640
39 699
0.492
请根据以上数据,估计硬币出现

正面朝上

的概率为

(精确到
0.01
).

15
.如图,圆桌面正上方的灯泡 发出的光线照射桌面后,在地面上
形成阴影(圆形).已知灯泡距离地面
2.4m
,桌 面距离地面
0.8m
(桌面厚度不计算),若桌面的面积是
1.2m²
,则地 面上的阴影面积




16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分
线:
作法:如图,
(1)在射线OA上任取一点C,过点C作CD∥OB;
A
(2)以点C为圆心,CO的长为半径作弧,交CD于点E;
(3)作射线OE.
所以射线OE就是∠AOB的角平分线.
C
E
请回答:小米的作图依据是 ____________________________
_________________ ___________________________________.
O
三、解答 题(本题共72分,第17-26题,每小题5分,第27
题7分,第28题7分,第29题8分)解答 应写出文字说明、演算步骤或证明过程.
17.计算:
13122cos302017






3x2x,

18
.解不等式 组

2x1x1
并写出它的所有非负整数解.

.....,

2

5
0
D
B



19

AF

DE

F
AF=CD


如图,在矩形
ABCD
中,点
E

BC
上一点,且
DE=DA
,求证:

A
D



F
B
E
C



20.已知关于x的一元二次方程x
2
-(m+2)x+2m=0.
(1)求证:方程总有两个实数根;
(2)当m=2时,求方程的两个根.






21.在平面直角坐标xOy中,直线
ykx1

k0

与双曲线
y
A(﹣2,3),与 x轴交于点B.
(1) 求m的值和点B的坐标;
(2) 点P在y轴上,点P到直线ykx1

k0

的距离为
2
,直接写出点P的 坐标.


y


A

B

x
O





22
.随着人们

节能环保,绿色出行

意识的增强,越来越多的人喜欢骑自行车出行.某自 行
车厂生产的某型号自行车去年销售总额为
8
万元.今年该型号自行车每辆售价预计比 去年降

200
元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年 减少
10%

求该型号自行车去年每辆售价多少元?











m

m0

的一个交点为
x


23
.如图,在△
ABC
中,
BD
平分∠
ABC

AC
于< br>D

EF
垂直平分
BD
,分别交
AB
BC

BD

E

F

G

连接
DE

DF



1
)求证:
DE=DF



2
)若∠
ABC=30°
,∠
C=45°

DE=4
,求< br>CF
的长.

A
E
G
B
F
C
D











24.阅读以下材料:
2017年1月28日至2月1日农历正月初一至初五,平谷区 政府在占地面积6万平方米
的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.
本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色
美 食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,
占展区总 面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区
占地面积是 文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展
区总面积的11. 6%;还有孩子们喜爱的儿童娱乐游艺区.
此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化 ,以京津冀不同地域的特色文化为
出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国 各地的约3.2万人踏
着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气
寒冷,市 民逛庙会热情不减,又约有4.3万人次参观了庙会,品
尝特色美食,观看绿都古韵、秧歌表演、天桥绝 活,一路猜灯谜、
赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等
民俗作品也让 游客爱不释手,纷纷购买.大年初三,单日接待游
客约4万人次,大年初四风和日丽的天气让庙会进入游 园高峰,
单日接待量较前日增长了约50%.大年初五,活动进入尾声,但
庙会现场仍然人头攒 动,仍约有5.5万人次来园参观.
(1)直接写出扇形统计图中m的值;
(2)初四这天,庙会接待游客量约_______万人次;
(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.


C
E

25.如图,⊙O为等腰三角形ABC的外接圆,AB=AC,AD是

A
O
F
B
D


⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2α,写出求CE长的思路.












26.有这样一个问题:探究函数
yx+2x
的图象与性质.
小军根据学习函数的经验, 对函数
yx+2x
的图象与性质进行了探究.
下面是小军的探究过程, 请补充完整:
(1)函数
yx+2x
的自变量x的取值范围是 ;
(2)下表是

y与x的几组对应值

x
y
﹣2
2
﹣1.9 ﹣1.5

1.60 0.80
﹣1
0

﹣0.5

0
﹣1.41

1
﹣0.37

2
0
3 4 …
﹣0.72
0.76

1.55



在平面直角坐标系xOy中, 描出了以上表中各对对应值为坐标的点,根据描出的点,
画出该函数的图象;
y
4
3
2
1
O
–2 –1
–1
–2
–3
12345
x
(3)观察图象,函数的最 小值是 ;
(4)进一步探究,结合函数的图象, 写出该函数的一条性质(函数最小值除
..
外): .
27.直线
y3x3
与x轴,y轴分别交于A,B两点,点A关于直线x1
的对称点为


点C.
(1)求点C的坐标;
(2)若抛物线
ymxnx3m

m 0

经过A,B,
2
5
4
y
C三点,求该抛物线 的表达式;
(3)若抛物线
yaxbx3

a0

经过A, B两
2
3
2
点,且顶点在第二象限,抛物线与线段AC有两个公共
1
点,求a的取值范围.

–5–4–3–2–1
O
12
–1


–2






28.在△ABC中, AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,
射线DE绕点D顺 时针旋转120°,与直线AC交于点F.
(1)依题意将图1补全;
(2)小华通过观察 、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个
猜想与同学们进行交流,通过讨 论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF; 想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互
补, 可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可 得AD是∠BAC的角平分线,由角平分线定理,构造点
D到AB,AC的高,利用全等三角形,可证D E=DF…….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);
(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.

A
A





E
E

C

B
C
D
B
D

图1
备用图
x


29.在平面直角坐标系中,点Q为坐标系上任 意一点,某图形上的所有点在∠Q的内部(含
角的边),这时我们把∠Q的最小角叫做该图形的视角.如 图1,矩形ABCD,作射线OA,
OB,则称∠AOB为矩形ABCD的视角.
图1
图2

备用图
(1)如图1,矩形ABCD,A(﹣
3
,1),B(
3
,1),C(
3
,3),D(﹣
3
,3),
直接写出视角∠AOB的度数;
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形 ABCD的视角∠AQB=60°,求点
Q的坐标;
(3)如图2,⊙P的半径为1,点P( 1,
3
),点Q在x轴上,且⊙P的视角∠EQF的
度数大于60°,若Q(a,0) ,求a的取值范围.




平谷区2016—2017学年度初三统练(一)
数学答案
2017.4
一、选择题(本题共30分,每小题3分)
题号
答案
1
B
2
B
3
A
4
C
5
D
6
D
7
C
8
B
9
A
10
C
二、填空题(本题共18分,每小题3分) < br>11

3

12


ab
a
2
2abb
2

13
.答案不唯一,如
y
2
1


14

0.50

15

2.7
x
16
.两直线平行,内错角相等;
·············· ·················································· ·············· 1
等腰三角形两底角相等; ················· ·················································· ·············· 3
(其他正确依据也可以).
三、解答题(本题共72分 ,第17-26题,每小题5分,第27题7分,第28题7分,第29
题8分)解答应写出文字说明、 演算步骤或证明过程.


17.解:
13122cos302017

0
=
31232
3
1
··········· ·················································· ············· 4
2
=﹣2. ···················· ·················································· ······························· 5


3x2x

18
.解:

2x1x1


 ②

52

····························· ················································· 1
解不等式①得
x≤1

·
················ ·················································· ········ 2
解不等式②得
x
>﹣
3

················································· ·············· 3
∴不等式组的解集是:﹣
3

x≤1

·
··· ·················································· ········ 5
∴不等式组的非负整数解为
0

1

·
19
.证明:∵矩形
ABCD


A
D

AD

BC


···································· 1
∴∠
ADE=

DEC

·

AF

DE

F


F
·································· 2
∴∠
AFD=

C=90°

·
B
E< br>C
·········································· ····· 3

DE=DA


·································· 4
∴△
ADF
≌△
DEC

·
········· ····································· 5

AF=CD

·
20.(1)证明: ∵ Δ=[-(m+2)]
2
-4×2m ························· ·············································· 1
=(m-2)
2

∵ (m-2)
2
≥0,
∴方程总有两个实数根. ·································· ······························ 2
············· ············································· 3
2
)当
m=2
时,原方程变为
x
2
-4x+ 4=0

·
································ ·················································· ······ 5
解得
x
1
=x
2
=2

·
< br>21.解:(1)∵双曲线
y
m

m0

经过点 ,A(﹣2,3),
x

m6
. ················ ·················································· ·················· 1
∵直线
ykx1

k0

经过点A(﹣2,3),

k1
. ······························· ·················································· ···· 2
∴此直线与x轴交点B的坐标为(1,0). ············································ 3
(2)(0,3),(0,-1). ····························· ················································· 5

22
.解:设去年该型号自行车每辆售价
x
元,则今年每辆售 价为(
x

200
)元.
··············· 1
由题意,得


80000
80000
< br>110%

································· ·························· 2

·

x x200
········································· ············································ 3
解得:
x=2000

·
·················· ············································· 4
经检验,
x=2000
是原方程的根.
·
··········· ···································· 5
答:去年该型号自行车每辆售价为
2000
元.
·

23.(1)证明:∵EF垂直平分BD,
∴EB=ED,FB=FD. ········ ·················································· ······················ 1
∵BD平分∠ABC交AC于D,
A
∴∠ABD=∠CBD.
D
E
∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,
G
∴∠BEG=∠BFG.
∴BE=BF.
B
C
F
H
∴四边形BFDE是菱形.
∴DE=DF. · ·················································· ········································· 2
(2)解:过D作DH⊥CF于H.
∵四边形BFDE是菱形,
∴DF∥AB,DE=DF=4.
在Rt△DFH中,∠DFC=∠ABC=30°,
∴DH=2.
∴FH=
23
. ··················· ·················································· ····················· 3
在Rt△CDH中,∠C=45°,
∴DH=HC=2. ···································· ·················································· ··· 4
∴CF=2+
23
. ······················ ·················································· ··············· 5

24.(1)扇形统计图中m的值是25.1%; ·················································· ·············· 1
(2)6; ······················· ·················································· ····························· 2
(3)如图. ······· ·················································· ········································ 5



25.(1)证明:∵AB=AC,AD是⊙O的直径,
∴AD⊥BC于F. ···································· ················································· 1
∵DE是⊙O的切线,
∴DE⊥AD于D.2
∴DE∥BC.······· ·················································· ··································· 2
(2)连结CD.
由AB=AC,∠BAC=2α,可知∠BAD=α. ····················· ······························· 3
由同弧所对的圆周角,可知∠BCD=∠BAD=α.
由AD⊥BC,∠BCD =α,DF=n,
C
E
根据sinα=
DF
,可知CD的长. ··············· 4
CD
A
由勾股定理,可知CF的长
由DE∥BC,可知∠CDE=∠BCD.
由AD是⊙O的直径,可知∠ACD=90°.
由∠CDE=∠BCD,∠ECD=∠CFD,
可知△CDF∽△DEC,可知
O< br>F
B
D
DFCF
=
,可求CE的长. ······························ 5
CECD
26.(1)
x2
; ·················· ·················································· ···················· ····· 1
(2)该函数的图象如图所示; ·· ·················································· ····················· 3


y
4
3
2
1
O
–2–1
–1
–2
12345
x

(3)
-2
; ·························· ·················································· ··············· ····· 4
(4)该函数的其它性质:当
2x0
时,y随x的增大而减小; ···················· 5
(答案不唯一,符合函数性质即可写出一条即可)
27.解:(1)令y=0,得x=1.
∴点A的坐标为(1,0). ········· ·················································· ········ 1
∵点A关于直线x=﹣1对称点为点C,
∴点C的坐标为(﹣3,0). ················· 2
y
5
(2)令x=0,得y=3.
4
∴点B的坐标为(0,3).
B
3
∵抛物线经过点B,
2
∴﹣3m=3,解得m=﹣1.
·
1
····················
3
CA
∵抛物线经过点A,
–4–3–2–1
O
12
x–1
∴m+n﹣3m=0,解得n=﹣2.
∴抛物线表达式为
yx2x3
. ········ 4
2
–2
–3
(3)由题意可知,a<0.
根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a=﹣3, ········· 5
此时抛物线顶点在y轴上,不符合题意.
当抛物线经过(﹣3,0)时,开口最大,a=﹣1. ·········································· 6
结合函数图像可知,a的取值范围为
3a1
. ······································ 7
28.解:(1)如图1, ································· ·················································· ······ 1
A
E
B
D
F
C
图1
(2)


A
AA
G
E
B
D
F
C
B
E
D
P
F
C
E
M
B
D
N
F
C
图2
图3
图4

想法1证明:如图2,过D作DG∥AB,交AC于G, ····································· 2
∵点D是BC边的中点,
∴DG=
1
AB.
2
∴△CDG是等边三角形.
∴∠EDB+∠EDG=120°.
∵∠FDG+∠EDG=120°,
∴∠EDB =∠FDG.············· ·················································· ··················· 3
∵BD=DG,∠B=∠FGD=60°,
∴△BDE≌△GDF. ·································· ··············································· 4
∴DE=DF. ······································ ·················································· ····· 5
想法2证明:如图3,连接AD,
∵点D是BC边的中点,
∴AD是△ABC的对称轴.
作点E关于线段AD的对称点P,点P在边AC上, ········································ 2
∴△ADE≌△ADP.
∴DE=DP,∠AED=∠APD.
∵∠BAC+∠EDF=180°,
∴∠AED+∠AFD=180°.
∵∠APD+∠DPF=180°,
∴∠AFD=∠DPF. ············· ·················································· ···················· 3
∴DP=DF. ··············· ·················································· ··························· 4
∴DE=DF. ········ ·················································· ··································· 5
想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, ············· 2
∵点D是BC边的中点,
∴AD平分∠BAC.
∵DM⊥AB于M,DN⊥AB于N,
∴DM=DN. ················ ·················································· ························· 3
∵∠A=60°,
∴∠MDE+∠EDN=120°.
∵∠FDN+∠EDN=120°,
∴∠MDE=∠FDN.
∴Rt△MDE≌Rt△NDF. ·············· ·················································· ············· 4


∴DE=DF. ·········· ·················································· ································· 5
(3)当点F在AC边 上时,
BECF
1
···························· ··············· 6
AB
; ·
2
1
当点F在AC延长线上时,
BECFAB
. ········································· 7
2


29.解:(1)120°; ················· ·················································· ························· 1
(2)连结AC,在射线CB上截取CQ=CA,连结AQ. ···································· 2
∵AB=2
3
,BC=2,
∴AC=4. ·························· 3
∴∠ACQ=60°.
∴△ACQ为等边三角形,
即∠AQC=60°. ··············· 4
∵CQ=AC=4,
∴Q(
3
,﹣1). ············ 5



(3)
图1
图2

如图1,当点Q与点O重合时,∠EQF=60°,
∴Q(0,0). ········· ·················································· ····················· 6
如图2,当FQ⊥x轴时,∠EQF=60°,
∴Q(2,0). ····································· ··········································· 7
∴a的取值范围是0<a<2. ······························· ································ 8

山东医学专科学校-北京舞蹈学院招生网


员工自我评价-赵州桥教学反思


南平一中-播音主持分数线


山东华宇职业学院-七年级上册第一单元


治疗胃疼的最好方法-精神文明建设计划


昆明一中-5月4日是什么节


通化师范学院地址-广西招生考试院网


2015七夕-教师节对联