2016全国卷1数学答案
军队院校-银行新规
2016全国卷1数学答案
>试题类型:a
2016年普通高等学校招生全国统一考试
理科数学
注意事项:
【篇一:2016年全国高考理科数学试题-全国卷1】
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3
页,第Ⅱ卷3至
5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的
位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一.
选择题:本大题共12小题,每小题5分,在每小题给出的四个
选项中,只有一项是符合题目要
求的.
2a{x|x4x30},b{x|2x30},则ab
(1)设集合
3333(3,)(3,)(,3)(1,)2(b)2(c)2(d)2(a)
(2)设(1i)x1yi,其中x,y是实数,则xyi=
(a)1(b
c
d)2
(3)已知等差数列{an}前9项的和为27,a10=8,则a100=
(a)100(b)99(c)98(d)97
(4)某公司的班车在7:00,8:00
,8:30发车,小明在7:50至
8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,
则
他等车时间不超过10分钟的概率是
(a)(b)(c)(d)
(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,
则n的取值范围是
(a)(–1,3) (b)(–1,3) (c)(0,3) (d)(0,3)
(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条
相互垂直的半径.若该几
何体的体积是,则它的表面积是
(7)函数y=2x2–e|x|在[–2,2]的图像大致为
(a)(b)
(c)(d)
,0c1,则 (8)若ab1
cccc(a)ab(b)abba(c)alogbcblogac(d)logaclogbc
(9)执行右面的程序图,如果输入的x0,y1,n1,则输出x,y
的值满足
(a)y2x(b)y3x(c)y4x(d)y5x
(10)以抛物线c的顶
点为圆心的圆交c于a、b两点,交c的标准线
于d、e两点.已知|ab
|=|
de|=c的焦点到准线的距离为
(a)2(b)4(c)6(d)8
(11)平面a过正方体abcd-a1b1c1d1
的顶点a,a平面cb1d1,a
平面abcd=m,a平面aba1b1=n,则m、n所成角的正弦
值为
1b
)
(d)
3212.已知函数f(x)sin(x+)(0
2),x
4为f(x)的零点,x4为yf(x)图像的
对称轴,且f(x)在5单调,则的最大值为
1836
(a)11 (b)9 (c)7 (d)5
第ii卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个<
br>试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作
答.
二、填空题:本大题共3小题,每小题5分
(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.
(14)(2x5的展开式中,x3的系数是.(用数字填写答案)
(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大
值为。
(16)某高科技企业生产产品a和产品b需要甲、乙两种新型材料。
生产一件产品a需要甲
材料1.5kg,乙材料1kg,用5个工时;生产
一件产品b需要甲材料0.5kg,乙材料0.3k
g,用3个工时,生产一
件产品a的利润为2100元,生产一件产品b的利润为900元。该
企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条
件下,生产产品a、产品b
的利润之和的最大值为元。
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本题满分为12分)
abc的内角a,b,c的对边分别别为a,b,c,已知
2cosc(acosb+bcosa)c.
(i)求c;
(ii
)若c
abc(18)(本题满分为12分)
如图,在已a,b,c,d,e,f为顶点的五面体中,面abef为正方
形,af=2fd,afd9
0,且二面角d-af-e与二面角c-be-f都是60.
(i)证明平面abefefdc;
(ii)求二面角e-bc-a的余弦值.
(19)(本小题满分12分)
某公司计划购买2台机器,该种机器使用三年
后即被淘汰.机器有一
易损零件,在购进机器时,可以额外购买这种零件作为备件,每个
200
元.在机器使用期间,如果备件不足再购买,则每个500元.现需
决策在购买机器时应同时购买几个易
损零件,为此搜集并整理了100
台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
abc的周长.
以这100台机器更换的易损零件数的频率代替1台机器更
换的易损
零件数发生的概率,记x表示2台机器三年内共需更换的易损零件
数,n表示购买2台
机器的同时购买的易损零件数.
(i)求x的分布列;
(ii)若要求p(xn)0.5,确定n的最小值;
(iii)以购买易
损零件所需费用的期望值为决策依据,在n19与
n20之中选其一,应选用哪个?
20. (本小题满分12分)
设圆xy2x150的圆心为a,直线l过点b(1,0)
且与x轴不重合,l
交圆a于c,d两点,过b作ac的平行线交ad于点e.
(i)证明eaeb为定值,并写出点e的轨迹方程;
(ii)设点e的轨迹为曲线c1,
直线l交c1于m,n两点,过b且与
l垂直的直线与圆a交于p,q两点,求四边形mpnq面积的取
值范围.
(21)(本小题满分12分)
已知函数有两个零点.
(i)求a的取值范围;
(ii)设x1,x2是的两个零点,证明:+x22.
请考生在22、23、24题中任
选一题作答,如果多做,则按所做的第一
题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
(i)证明:直线ab与o相切;
(ii)点c,d在⊙o上,且a,b,c,d四点共圆,证明:ab∥cd. 22
(23)(本小题满分10分)选修4—4:坐标系与参数方程
(ii)直线c3
的极坐标方程为,其中满足tan=2,若曲线c1与c2
的公共点都在c3上,求a。
(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)=
∣x+1∣-∣2x-3∣.
(i)在答题卡第(24)题图中画出y=
f(x)的图像;
(ii)求不等式∣f(x)∣﹥1的解集。
【篇二:2016年全国1卷理科数学(修正版,含答案)】
txt>2016年普通高等学校招生全国统一考试
理科数学
一.
选择题:本大题共12小题,每小题5分,在每小题给出的四个
选项中,只有一项是符合题目要求的.
(1)设集合a{x|x24x30},
b{x|2x30},则ab( )
(a)(3,) 3
2(b)(3,) 3
2 (c)(1,)
3
2 (d)(,3) 3
2
(2)设(1i)x1yi,其中x,y是实数,则xyi=( )
(a)1
(b
(c
(d)2
(3)已知等差数列{an}前9项的和为27,a10=8,则a100=( )
(a)100(b)99 (c)98 (d)97
(4)某公司的班车在7:00,8:
00,8:30发车,小明在7:50至
8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机
的,则
他等车时间不超过10分钟的概率是( )
1(a) 3 1(b)
2 2(c 3 3(d) 4
x2y2
(5-1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值
范围是( ) m+n
m-n
(a)(–1,3)(b)(–1,3)(c)(0,3)(d)(0,3)
则它的表面积是( )
(7)函数y=2x2–e|x|在[–2,2]的图像大致为(
)
(a)(b)
(c)(d)
,0c1,则(
) (8)若ab1
(a)acbc (b)abcbac
(c)alogbcblogac (d)logaclogbc
(9)执行右面的程序图,如果输入的x0,y1,n1,
则输出x,y的值满足(
)
(a)y2x
(b)y3x
(c)y4x
(d)y5x
(10)以抛物线c的顶点为圆心的圆交
c于a、b两点,交c的标
准线于d、e两点.已知|ab
|=|
de|=
则c的焦点到准线的距离为( )
(a)2
(b)4 (c)6 (d)8
(11)平面a过正方体abcd-a1b1c1d1
的顶点a,a平面cb1d1,
a平面abcd=m,a平面aba1b1=n,
则m、n所成角的正弦值为( )
(b)
2
(d)1 3
(12)已知函数f(x)sin(x+)(0且f(x)在
(a)11
(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则
m=_________.
(14
)(2x5的展开式中,x3的系数是________.(用数字填写答案)
(
15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大
值为______
__.
(16)某高科技企业生产产品a和产品b需要甲、乙两种新型材料。
生产
一件产品a需要甲材料1.5kg,
乙材料1kg,用5个工时;生产一件产品b需要甲材
料0.5kg,乙
材料0.3kg,用3个工时,生产一件 产品a的利润为2100元,生产
一件产品b的利润为900元。该企业现有甲材料150kg,乙材料
90kg,
则在不超过600个工时的条件下,生产产品a、产品b的利
润之和的最大值为元
________.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本题满分为12分)
abc的内角a,b,c的对边分别别为a,b,c,已知
2cosc(acosb+bcosa)c.
(i)求c;
(ii
)若c
abc
(18)(本题满分为12分)
如图,在已a,b,c,d,e,f为顶点的
五面体中,面abef为正方
形,af=2fd,afd90, 且二面角d-af-e与二面角c-
be-f都是60.
(i)证明平面abef平面efdc;
(ii)求二面角e-bc-a的余弦值.
abc的周长.
某公司计划
购买2台机器,该种机器使用三年后即被淘汰.机器有一
易损零件,在购进机器时,可以额外购买这种零
件作为备件,每个
200元.在机器使用期间,如果备件不足再购买,则每个500元.现需
决
策在购买机器时应同时购买几个易损零件,为此搜集并整理了100
台这种机器在三年使用期内更换的易
损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的
易损
零件数发生的概率,记x表示2台机器三年内共需更换的易损零件
数,n表示购买2台机器
的同时购买的易损零件数.
(i)求x的分布列;
(ii)若要求p(xn)0.5,确定n的最小值;
(iii)以购买易损零件所需费用
的期望值为决策依据,在n19与
n20之中选其一,应选用哪个?
设圆x2y2
2x150的圆心为a,直线l过点b(1,0)且与x轴不重合,
l交圆a于c,d两点,过b作ac
的平行线交ad于点e.
(i)证明eaeb为定值,并写出点e的轨迹方程;
(ii)设点e的轨迹为曲线c1,直线l交c1于m,
n两点,过b且
与l垂直的直线与圆a交于p,
q两点,求四边形mpnq面积的取值
范围.
(21)(本小题满分12分)
已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(i)求a的取值范围;
(ii)设x1,x2是的两个零点,证明:x1+x22.
【篇三:2016年全国高考理科数学试题及答案-全国卷
1】
>试题类型:a
2016年普通高等学校招生全国统一考试
理科数学
注意事项:
页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的
位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,
将本试题和答题卡一并交回.
第Ⅰ卷
一.
选择题:本大题共12小题,每小题5分,在每小题给出的四个
选项中,只有一项是符
合题目要求的.
2a{x|x4x30},b{x|2x30},则ab (1)设集合1.本试卷分第Ⅰ卷(选
择题)
和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5
3333(3,)(3,)(1,)(,3)2(b)2(c)2(d)2(a)
(2)设(1i)x1yi,其中x,y是实数,则xyi=
(a)1 (b
(c
(d)2
(3)已知等差数列{an}前9项的和为27,a10=8,则a100=
(a)100(b)99(c)98(d)97
(4)某公司的班车在7:00,8:00
,8:30发车,小明在7:50至
8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,
则
他等车时间不超过10分钟的概率是
(a)1123(b) (c) (d)
3234
x2y2
1表示双曲线,且该双曲线两焦点间的距离为4,则(5)已知方程
22mn3mn
n的取值范围是
(a)(–1,3)(b)(–1,3) (c)(0,3)
(d)(0,3)
(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28,则它的表面积是 3
(7)函数y=2x2–e|x|在[–2,2]的图像大致为
(a)(b)
(c)
(d)
,0c1,则
(8)若ab1
cccc(a)ab (b)abba
(c)alogbcblogac
(d)logaclogbc
(9)执行右面的程序图,如果输入的x0,y1,n1,则输出x,y
的值满足
(a)y2x(b)y3x(c)y4x(d)y5x
(10)以抛物线c的顶点为圆心的
圆交c于a、b两点,交c的准线于
d、e两点.已知|ab
|=
|
de|=c的焦点到准线的距离为
(a)2 (b)4
(c)6 (d)8
(11)平面a过正方体abcd-a1b1c1d1的顶点a,a
平面cb1d1,a
平面abcd=m,a平面abba=n,则m、n所成角的正弦值为
11
(a) 1(b
(d)
312.已知函数f(x)sin(x+)(0
2),x
4为f(x)的零点,x
4为
5yf(x)图像的对称轴,且f(x)在单调,则的最大值为 1836
(a)11 (b)9 (c)7 (d)5
第ii卷
本卷
包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个
试题考生都必须作答.第(2
2)题~第(24)题为选考题,考生根据要求作
答.
二、填空题:本大题共4小题,每小题5分
(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.
(14)(2x5的展开式中,x3的系数是. (用数字填写答案)
(15)设等比数列满足a满足a+a=10,a+a=5,则aa…a的最大
值为。
n132412n
(16)某高科技企业生产产品a和产品b需要甲、乙两种新型材料。<
br>生产一件产品a需要甲材料1.5kg,乙材料1kg,用5个工时;生产
一件产品b需要甲材料
0.5kg,乙材料0.3kg,用3个工时,生产一
件产品a的利润为2100元,生产一件产品b的
利润为900元。学.
科网该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品a、产品b的利润之和的最大值为元。
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本题满分为12分)
abc的内角a,b,c的对边分别别为a,b,c,已知<
br>2cosc(acosb+bcosa)c. (i)求c;
(ii
)若c
abc的面积为
(18)(本题满分为12分)
如图,在已a,b,c,d,e,f为顶点
的五面体中,面abef为正方
形,af=2fd,afd90,且二面角d-af-e与二面角c-
be-f都是60.
(i)证明;平面abef平面efdc;
(ii)求二面角e-bc-a的余弦值.
(19)(本小题满分12分)
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一
易损零件,在购进机器时
,可以额外购买这种零件作为备件,每个
200元.在机器使用期间,如果备件不足再购买,则每个50
0元.现需
决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100
台这种机器在
三年使用期内更换的易损零件数,得下面柱状图:
,求abc的周长. 2
以这100台机器更换的易损零件数的频率代替1台机器更换的易损
零件数发生的概率,记
x表示2台机器三年内共需更换的易损零件
数,n表示购买2台机器的同时购买的易损零件数.
(i)求x的分布
列;
(ii)若要求p(xn)0.5,确定n的最小值;
(iii)以购买易损零件所需费用的期望值为决策依据,在n19与n
20之中选其一,应
选用哪个?
20.
(本小题满分12分)
设圆x2y22x150的圆心为a,直线l过点b(1,0)且与
x轴不重合,
l交圆a于c,d两点,过b作ac的平行线交ad于点e.
(i)证明eaeb为定值,并写出点e的轨迹方程;
(ii)设点e的轨迹为曲线c1,
直线l交c1于m,n两点,过b且与
l垂直的直线与圆a交于p,q两点,求四边形mpnq面积的取
值范围.
(21)(本小题满分12分)
已知函数f(x)(x2)exa(x1)2有两个零点.
(i)求a的取值范围;
(ii)设x1,x2是的两个零点,证明:
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一
题计分,做答时请写清题号<
br>
(22)(本小题满分10分)选修4-1:几何证明选讲
(i)证明:直线ab与⊙o相切
(ii)点c,d在⊙o上,且a,b,c,d四点共圆,证明:ab∥cd
. x+x2.
121oa为半径作圆. 2
(23)(本小题满分10分)选修4—4:坐标系与参数方程
xacost在直线坐标系xoy中,曲线c1的参数方程为(t为参数,a
>0)
y1asint