高考文科数学公式汇总精简版
活着读后感-甘肃省高考招生办公室
高中数学公式汇总(文科)
一、复数
1、复数的除法运算
abi(abi)(cdi)(acbd)(bcad)i
. cdi(cdi)(cdi)
c
2
d
2
2、复数
zabi
的模
|z|
=
|abi|
=
a
2
b
2
.
二、三角函数、三角变换、解三角形、平面向量
3、同角三角函数的基本关系式
sin
2
cos
2
1
,
tan
=
sin
.
cos
4、正弦、余弦的诱导公式
k
<
br>的正弦、余弦,等于
的同名函数,前面加上把
看成锐角时该函数的
符号;
k
2
的正弦、余弦,
等于
的余名函数,前面加上把
看成锐角时该函数的符号。
5、和角与差角公式
sin(
)
sin
cos
cos
sin
;
cos(
)cos
cos
msin
sin
;
tan
t
an
tan(
)
.
1
m
tan
tan
6、二倍角公式
sin2
sin
cos
.
co
s2
cos
2
sin
2
2c
os
2
112sin
2
.
2tan
.
tan2
1tan
2
1cos2
2cos
2
1cos2
,cos
2
;
2
公式变形:
1
cos2
2sin
2
1cos2
,s
in
2
;
2
7、三角函数的周期
函数
ys
in(
x
)
,x∈R及函数
ycos(
x
)
,x∈R(A,ω,
为常数,且A≠0,ω>0
)的周期
T
2
;函数
ytan(
x
)
,
xk
2
,
kZ
(A,ω,
为常数,且A≠0,ω>0)的周期
T
.
8、 函数
ysin(
x
)<
br>的周期、最值、单调区间、图象变换
9、辅助角公式
yasinxbcosxa
2
b
2
sin(x
)
其中
tan
10、正弦定理
b
a
abc
2R
.
sinAsinBsinC
11、余弦定理
a
2
b
2
c
2
2bccosA
;
b
2
c
2
a
2
2cacosB
;
c
2
a
2
b
2
2abcosC
.
12、三角形面积公式
S
111
absinCbcsinAcasinB
.
222
13、三角形内角和定理
在△ABC中,有
ABC
C
(AB)
14、
a
与
b
的数量积(或内积)
ab|a||b|cos
15、平面向量的坐标运算
u
uuruuuruuur
(1)设A
(x
1
,y
1
)
,B
(x
2
,y
2
)
,则
ABOBOA(
x
2
x
1
,y
2
y
1
)
.
(2)设
a
=
(x
1
,y
1
)
,
b
=
(x
2
,y
2
)
,则
ab
=
x
1
x
2
y
1
y
2
.
(3)设
a
=
(x,y)
,则
ax
2
y
2
16、两向量的夹角公式
设
a
=<
br>(x
1
,y
1
)
,
b
=
(x
2
,y
2
)
,且
b0
,则
cos
ab
ab
x
1
x
2
y<
br>1
y
2
x
1
y
1
x
2
y
2
2222
17、向量的平行与垂直
ab
b
a
x
1
y2
x
2
y
1
0
.
ab(a0)
ab0
x
1
x
2
y
1
y
2
0
.
三、函数、导数
18、函数的单调性
(1)设
x
1
、x
2
[a,b],x
1
x
2
那么
f(x
1
)f(x
2
)0f(x)在[a,b]
上是增函数;
f
(x
1
)f(x
2
)0f(x)在[a,b]
上是减函数.
(2)设函数
yf(x)
在某个区间内可导,若
f
(x
)0
,则
f(x)
为增函数;若
f
(x)0
,则
f(x)
为减
函数.
19、函数的奇偶性
对于定
义域内任意的
x
,都有
f(x)f(x)
,则
f(x)
是偶函数;
对于定义域内任意的
x
,都有
f(x)f(x)
,则
f(x)
是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
20、函数
yf(x)
在点
x
0
处的导数的几何意义 <
br>函数
yf(x)
在点
x
0
处的导数是曲线
yf(
x)
在
P(x
0
,f(x
0
))
处的切线的斜率<
br>f
(x
0
)
,相应的切线方
程是
yy<
br>0
f
(x
0
)(xx
0
)
.
21、几种常见函数的导数
'
①
C
0
;②<
br>(x)nx
x'x
n'n1
;
③
(sinx)cosx
;④
(cosx)sinx
;
''
x'x
'
⑤
(a)alna
;⑥
(e)e
;
⑦
(log
a
x)
11
'
;⑧
(lnx)
xlnax
22、导数的运算法则
u
'
u
'
vuv
'
(v0)
.
(1)
(uv)uv
. (2)
(uv)uvuv
. (3)
()
2
vv
''''''
23、会用导数求单调区间、极值、最值
24、求函数
yf
x
的极值的方法是:解方程
f
x
0
.当
f
<
br>x
0
0
时:
(1) 如果在
x
0附近的左侧
f
x
0
,右侧
f
x
0
,那么
f
x0
是极大值;
(2) 如果在
x
0
附近的左侧f
x
0
,右侧
f
x
0
,那么
f
x
0
<
br>是极小值.
四、不等式
xy
xy
,当
xy
时等号成立。
2
(1)
若积
xy
是定值
p
,则当
xy
时和
xy
有最小值
2p
;
1
2
(2)若和
xy
是定值
s
,则当
xy
时积
xy
有最大值
s
.<
br>
4
五、数列
25、已知
x,y
都是正数,则有
26、数列的通项公式与前n项的和的关系
n1
s
1
,
a
n
( 数列
{a
n
}
的前n项的和为
s
n
a1
a
2
La
n
).
ss,n2
nn1
27、等差数列的通项公式
a
n
a
1
(n1)ddna
1
d(nN
*)
;
28、等差数列其前n项和公式为
s
n
n(
a
1
a
n
)
n(n1)d1
na
1
dn
2
(a
1
d)n
.
2222
a
1
n
q(nN
*
)
;
q
29、等比数列的通项公式
a
n
a
1
qn1
30、等比数列前n项的和公式为
a
1
(1q
n
)
a
1
a
n
q
,q1
,q1
s
n
1q
或
s
n
1q
.
<
br>na,q1
na,q1
1
1
六、解析几何
31、直线的五种方程
(1)点斜式
yy
1
k(xx
1
)
(直线
l
过
点
P
1
(x
1
,y
1
)
,且斜率为
k
).
(2)斜截式
ykxb
(b为直线
l
在y轴上的截距).
yy
1
xx
1
(
y
1
y
2
)(<
br>P
1
(x
1
,y
1
)
、
P
2
(x
2
,y
2
)
(
x
1
x
2
)).
y
2
y
1
x
2
x
1
xy
(4)截距式
1
(
a、b
分别为直线的横、纵截距,
a、b0
)
ab
(5)一般式
AxByC0
(其中A、B不同时为0).
(3)两点式
32、两条直线的平行和垂直
若
l
1
:
yk
1
xb
1
,
l
2
:yk
2xb
2
①
l
1
||l
2
k1
k
2
,b
1
b
2
;
②
l
1
l
2
k
1
k
2
1
.
33、平面两点间的距离公式
d
A,B
(x
2x
1
)
2
(y
2
y
1
)
2
(
A
(x
1
,y
1
)
,
B<
br>(x
2
,y
2
)
).
34、点到直线的距离
d
|Ax
0
By
0
C|
AB
22
(点
P(x
0
,y
0
)
,直线
l
:
AxByC0
).
222
35、 圆的三种方程
(1)圆的标准方程
(xa)(yb)r
.
22
(2)圆的一般方程
xyDxEyF0
(
DE4F
>0).
22
(3)圆的参数方程
xarcos
.
ybrsin
222
36、直线与圆的位置关系
直线
AxByC0
与圆
(xa)(yb)r
的位置关系有三种
:
dr相离0
;
dr相切0
;
dr相交0
. 弦长=
2r
2
d
2
AaBbC
其中
d
.
22
AB
37、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质
xacos
x
2
y
2
c
222<
br>椭圆:
2
2
1(ab0)
,
acb,离心率
e1
,参数方程是
.
ab
a
ybsin
x
2
y
2
cb
222
双曲线:
2
2
1
(a>0,b>
0),
cab
,离心率
e1
,渐近线方程是
yx
.
a
ab
a
pp
2
抛物线:
y2px
,焦点
(,0)
,准线
x
。抛物线上的点到焦点距离等于它到准线的距
离.
22
38、双曲线的方程与渐近线方程的关系
x
2
y
2
x
2
y
2
b
(1)若双曲线方程为
2
2
1
渐近线方程:
2
2
0<
br>yx
.
ab
ab
a
x
2
y
2
xy
b
(2)若渐近线方程为
yx
0
双曲线可设为
2
2
.
abab
a
x
2
y
2
x
2
y
2<
br> (3)若双曲线与
2
2
1
有公共渐近线,可设
为
2
2
(
0
,焦点在
x
轴上,
0
,
ab
ab
焦点在
y
轴上).
39、抛物线
y2px
的焦半径公式
2
p
.(抛物线上的点到焦点距离等于它到准线的距离。)
2
pp
40、过抛物线焦点的弦长
ABx
1
x
2
x1
x
2
p
.
22
七、参数方程、极坐标化成直角坐标
2
x
2
y
2
cos
x
41、
y
sin
y<
br>
tan
(x0)
x
八、立体几何
抛物线
y2px(p0)
焦半径
|PF|x
0
2
42、证明直线与直线平行的方法
(1)三角形中位线
(2)平行四边形(一组对边平行且相等)
43、证明直线与平面平行的方法
(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)
(2)先证面面平行
44、证明平面与平面平行的方法
平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行)
....
45、证明直线与直线垂直的方法
转化为证明直线与平面垂直
46、证明直线与平面垂直的方法
(1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直)
....
(2
)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)
47、证明平面与平面垂直的方法
平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)
48、柱体、椎体、球体的侧面积、表面积、体积计算公式
圆柱侧面积=
2
rl
,表面积=
2
rl2
r
<
br>圆椎侧面积=
rl
,表面积=
rl
r
2
2
1
V
柱体
Sh
(
S<
br>是柱体的底面积、
h
是柱体的高).
3
1
V
锥体
Sh
(
S
是锥体的底面积、
h
是锥体的高)
.
3
4
3
2
球的半径是
R
,则其体积
V
R
,其表面积
S4
R
.
3
49、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算
50、点到平面距离的计算(定义法、等体积法)
51、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。
正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。
九、概率统计
52、平均数、方差、标准差的计算
x
1
x
2
x
n
1
2222
方差:
s[(x
1
x)(x
2
x)(x
nx)]
n
n
1
[(x
1
x)
2
(x
2
x)
2
(x
n
x)
2<
br>]
标准差:
s
n
平均数:
x
53、回归直线方程
n
n
x
i
x
y
i
y<
br>
x
i
y
i
nxy
i1i1
b
nn
$$
2
.
yab
x
,其中
x
i
x
x
i
2<
br>nx
2
i1i1
aybx
n(acbd)
2
2
54、独立性检验
K
(ab)(cd)(ac)(bd)
55、古典概型的计算(
必须要用列举法、列表法、树状图的方法把所有基本事件表示出来,不重复、不遗
.........<
br>漏)