(完整版)3-1-3多次相遇和追及问题_题库教师版

温柔似野鬼°
932次浏览
2020年08月17日 04:17
最佳经验
本文由作者推荐

河北师大录取分数线-德州人事网



3-1-3多次相遇和追及问题



教学目标

1. 学会画图解行程题
2. 能够利用柳卡图解决多次相遇和追及问题
3. 能够利用比例解多人相遇和追及问题

知识精讲


板块一、由简单行程问题拓展出的多次相遇问题
所有行程问题都是围绕“
路程速度 时间
”这一条基本关系式展开的,多人相遇与追及问题虽然较复
杂,但只要抓住这个公式,逐 步表征题目中所涉及的数量,问题即可迎刃而解.

【例 1】 (难度等级 ※)甲、乙两 名同学在
周长为
300
米圆形跑道上从同一地点同时背向练习跑步,甲每
秒钟 跑
3.5
米,乙每秒钟跑
4
米,问:他们第十次相遇时,甲还需跑多少米才能 回到出发点?
【解析】
从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操 场周长的10倍,为
300103000
米,因为甲的速度为每秒钟跑
3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了
3.5
1400
,也就是甲最后一次离开出发点继续行了200米,可知甲还需行
3.54
30020 0100
米才能回到出发点.
3000

【巩固】 (难度等级 ※) 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是
每秒2米.如果他们同时分 别从直路两端出发,10分钟内共相遇几次?

【解析】 17


【巩固】 (难度等级 ※)甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第 五次
相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?
【解析】 176





1


二、运用倍比关系解多次相遇问题
【例 2】 (难度等级 ※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,
在离家 4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的
时候,离家恰好 是8千米,这时是几点几分?
【解析】 画一张简单的示意图:

图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4
+ 8= 12(千米).
这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷ 4=3(倍).按照这个倍数计算,小
明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸 爸少用了8分钟,骑行了4+12=16
(千米).
少骑行24-16=8(千米).摩托车 的速度是8÷8=1(千米分),爸爸骑行16千米需要16分钟.
8+8+16=32.所以这时是8点32分。

【例 3】 (难度等级 ※※) 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相
遇.相遇后继续前进到达目的 地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地
间的距离是多少千米?

【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):

可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个
A、B 两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它
们共行三个A 、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285
千米比一个 A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).

【巩固】 (难度级别 ※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第 一
次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千
米处第二次相遇,求两次相遇地点之间的距离.
【解析】 4×3=12千米,通过画图,我们发现甲 走了一个全程多了回来那一段,就是距B地的3千米,所
以全程是12-3=9千米,所以两次相遇点相 距9-(3+4)=2千米。

【巩固】 (难度等级 ※※)甲、乙二人以均匀的速度分别 从A、B两地同时出发,相向而行,他们第一
次相遇地点离A地7千米,相遇后二人继续前进,走到对方 出发点后立即返回,在距B地5千
米处第二次相遇,求两次相遇地点之间的距离.
【解析】 4千米


2


【巩固】 (难度等级 ※※) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一
次相遇地点离A地6千米,相 遇后二人继续前进,走到对方出发点后立即返回,在距B地4千
米处第二次相遇,求两人第5次相遇地点 距B 多远.
【解析】 12千米



【巩固】 (难度等级 ※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一
次相遇地点离A地7千 米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千
米处第二次相遇,求第三次相遇时 共走了多少千米.

【解析】 90千米


【巩固】 (难度等级 ※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一
次相遇地 点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千
米处第二次相遇,求 第2000次相遇地点与第2001次相遇地点之间的距离.

【解析】 4千米


【巩固】 (难度等级 ※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而 行,他们第一
次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地 13
千米处第二次相遇,求AB两地之间的距离.

【解析】 41千米


【例 4】 (难度等级 ※※※)如图,甲和乙两人分别从一圆形场地的直径两端点同时开 始以匀速按相反
的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前6 0米处又
第二次相遇.求此圆形场地的周长.


【解析】 注意观察图形 ,当甲、乙第一次相遇时,甲乙共走完
共走完1+
1
圈的路程,当甲、乙第二次相遇时 ,甲乙
2
13
=圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而 第二次相
22
遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300 米.有甲、乙第二次相
遇时,共行走(1圈-60)+300,为


3

3
圈,所以此圆形场地的周长为480米.
2


【巩固】 (难度等级 ※※※)如图,A、B是圆的直径的两端,小张在A 点,小王在B点同时出发反向
行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点 离B点6O米.求这
个圆的周长.
【解析】 360




【巩固】 A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第 一次相遇,
在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?
【解析】 340



三、多次相遇与全程的关系

1. 两地相向出发:第1次相遇,共走1个全程;
第2次相遇,共走3个全程;
第3次相遇,共走5个全程;
…………, ………………;
第N次相遇,共走2N-1个全程;
注意:除了第1次,剩下的次与次之间都是2个全程。即甲第1次如果走了N米,以后每次都走2N米。
2. 同地同向出发:第1次相遇,共走2个全程;
第2次相遇,共走4个全程;
第3次相遇,共走6个全程;
…………, ………………;
第N次相遇,共走2N个全程;
3、多人多次相遇追及的解题关键
多次相遇追及的解题关键 几个全程
多人相遇追及的解题关键 路程差

【例 5】 小明和小红两人在长 100米的直线跑道上来回跑步,做体能训练,小明的速度为6米秒,小红
的速度为4米秒.他们同时从 跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相
遇了多少次?
【解析】 第一 次相遇时,两人共跑完了一个全程,所用时间为:
100(64)10
(秒).此后,两 人每相遇
一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了< br>126010710
(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇 的总次数.列
式计算为:
100(64)10
(秒),
(1260 10)(102)35L10
,共相遇
35136
(次)。注:解
决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.


4


【例 6】
A

B
两地间有条公路,甲 从
A
地出发,步行到
B
地,乙骑摩托车从
B
地出发,不停地 往返于
A

B
两地之间,他们同时出发,80分钟后两人第一次相遇,100 分钟后乙第一次追上甲,问:
当甲到达
B
地时,乙追上甲几次?
【解析】

A
F
E
B

第一次相遇第一次追上
< br>由上图容易看出:在第一次相遇与第一次追上之间,乙在
1008020
(分钟)内 所走的路程恰等于
线段
FA
的长度再加上线段
AE
的长度,即等于甲 在(
80100
)分钟内所走的路程,因此,乙的速
度是甲的9倍(
18 020
),则
BF
的长为
AF
的9倍,所以,甲从
A
B
,共需走
80(19)800
(分
钟)乙第一次追上 甲时,所用的时间为100分钟,且与甲的路程差为一个
AB
全程.从第一次追上
甲时 开始,乙每次追上甲的路程差就是两个
AB
全程,因此,追及时间也变为200分钟(
1002
),
所以,在甲从
A

B
的800分钟内,乙 共有4次追上甲,即在第100分钟,300分钟,500分钟
和700分钟.


2
,二
3
人相遇后继续行进,甲到
B
地、乙到
A< br>地后立即返回.已知两人第二次相遇的地点距第三次相
遇的地点是100千米,那么,
A

B
两地相距 千米.
【解析】 由于甲、乙的速度比是< br>2:3
,所以在相同的时间内,两人所走的路程之比也是
2:3
.第一次相遇< br>时,两人共走了一个
AB
的长,所以可以把
AB
的长看作5份,甲、乙 分别走了2份和3份;第
二次相遇时,甲、乙共走了三个
AB
,乙走了
23 6
份;第三次相遇时,甲、乙共走了五个
AB

乙走了
251 0
份. 乙第二次和第三次相距10-6=4(份)所以一份距离为:100÷4=25(千米),那么
A

B
两地距离为:5×25=125(千米)


【巩固】 (难度等级 ※※※)小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙 地同时出发,
相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作 相遇),
则甲、乙两地的距离为 千米.
【解析】 由于两人同时出发相向而 行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以
两人第二次相遇可能为迎面相遇, 也可能为同向追及.
①如果第二次相遇为迎面相遇,如下图所示,两人第一次在
A
处 相遇,第二次在
B
处相遇.由于
第一次相遇时两人合走1个全程,小王走了3千米;从 第一次相遇到第二次相遇,两人合走2个
全程,所以这期间小王走了
326
千米, 由于
A

B
之间的距离也是3千米,所以
B
与乙地的
距离为
(63)21.5
千米,甲、乙两地的距离为
61.57.5千米;
【例 7】 (难度等级 ※※※)甲、乙两人分别从
A

B< br>两地同时出发相向而行,乙的速度是甲的


A
B


5




AB



②如果第二次相遇为同向追及,如上图,两人第一次在
A
处相遇,相遇后小王继续向前 走,小李
走到甲地后返回,在
B
处追上小王.在这个过程中,小王走了
63 3
千米,小李走了
639

米,两人的速度比为
3:91: 3
.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为
9312
千米.
所以甲、乙两地的距离为
7.5
千米或12千米.

【巩固】 (难度级别 ※※※)A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是
到达一 地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在
途中P地。那么到 两车第三次相遇为止,乙车共走了多少千米?

【解析】 第一次相遇,甲乙总共走了2个全 程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又
在P点,所以可以根据总结和画图推出:从 第一次相遇到第二次相遇,乙从第一个P点到第二个
P点,路程正好是第一次的路程。所以假设一个全程 为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。这 样根据总结:2个全程里乙走了(540÷3)
×4=180×4=720千米,乙总共走了720×3 =2160千米。

【例 8】 (难度级别 ※※※)小张与小王分别从甲、乙两村同时出 发,在两村之间往返行走(到达另一
村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙 村2千米处第二次相遇.问他们
两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?
【解析】 画示意图如下.





















第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了
3.5×3=10.5(千米).
从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是
10.5-2=8.5(千米).
每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路 程.第四次相遇时,两人已共同走了两村距
离(3+2+2)倍的行程.其中张走了
3.5×7=24.5(千米),
24.5=8.5+8.5+7.5(千米).
就知道第四次相遇处,离乙村
8.5-7.5=1(千米).
答:第四次相遇地点离乙村1千米.
四、解多次相遇问题的工具——柳卡

柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“ 由
相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多 少。
6


如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

【例 9】 (难度级别 ※※※)每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船 从纽
约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途
中)能遇上几艘从纽约开来的轮船?

【解析】 这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.
他先画了如下一幅图:

这是一张运行图.在平面上画两条平行线,以一条直线表 示哈佛,另一条直线表示纽约.那么,
从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图 中的每条线段分别表示每条船
的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交 点即为与对方开来轮
船相遇的情况.
从图中可以看出,某天中午从哈佛开出的一条轮船(图中 用实线表示)会与从纽约开出的15艘
轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1 艘是在出发时遇到(从纽约刚到
达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在 海上相遇;另外,还可从图
中看到,轮船相遇的时间是每天中午和子夜.
如果不仔细思考,可 能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了
已在海上的轮船.


【巩固】 (难度级别 ※※※)一条电车线路的起点站和终点站分别是甲站和乙站,每隔5 分钟有一辆电
车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站 .他
出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,< br>恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?

【解析】 先让学生用分析间隔的方式来解答:
骑车人一共看到12辆车,他出发时看到的是15分钟前发的车, 此时第4辆车正从甲发出.骑车
中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是
5840
(分钟).
再引导学生用柳卡的运行图的方式来分析:
第一 步:在平面上画两条平行线分别表示甲站与乙站.由于每隔5分钟有一辆电车从甲站出发,
所以把表示甲 站与乙站的直线等距离划分,每一小段表示5分钟.

第二步:因为电车走完全程要15分钟 ,所以连接图中的1号点与P点(注意:这两点在水平方
向上正好有3个间隔,这表示从甲站到乙站的电 车走完全程要15分钟),然后再分别过
等分点作一簇与它平行的平行线表示从甲站开往乙站的电车.
7



第三步:从图中可以看出,要想使乙站出发的骑车人 在途中遇到十辆迎面开来的电车,那么从P
点引出的粗线必须和10条平行线相交,这正好是图中从2号 点至12号点引出的平行线.

从图中可以看出,骑车人正好经历了从P点到Q点这段时间,因此自行车从乙站到甲站用了

5840
(分钟)
对比前一种解法可以看出,采用运行图来分析要直观得多!

【例 10】 (难度级别 ※※※)甲、乙两人在一条长为30米的直路上来回跑步,甲的 速度是每秒1米,
乙的速度是每秒
0.6
米.如果他们同时分别从直路的两端出发,当 他们跑了10分钟后,共相遇
几次?

【解析】 采用运行图来解决本题相当精彩!
首先,甲跑一个全程需
30130
(秒),乙跑一个全程需
300.6 50
(秒).与上题类似,画运
行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲 乙相遇的地点):
一个周期内共有5次
相遇,其中第1,2,
4,5次是迎面相遇,
而第3次是追及相
遇.
从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各 自到了不同两端又重新开始,这正
好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10 分钟,正好是四个周期,也
就相遇了
5420
(次)

【例 11】 (难度等级 ※※※) (2009年迎春杯复赛高年级组)A、B两地位于同一条河上,B地在A地下
游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A
地 后,都立即按原来路线返航.水速为2米秒,且两船在静水中的速度相同.如果两船两次相
遇的地点相距 20千米,那么两船在静水中的速度是 米秒.

【解析】 本题采用折线图来分析较为简便.
8


AD
E
N
M
BC
F

如图 ,箭头表示水流方向,
ACE
表示甲船的路线,
BDF
表示乙船的路 线,两个交

M

N
就是两次相遇的地点.
由于两船在静 水中的速度相同,所以两船的顺水速度和逆水速度都分别相同,那么两船顺水行船
和逆水行船所用的时间 都分别相同,表现在图中,就是
BC

DE
的长度相同,
AD

CF
的长度
相同.
那么根据对称性可以知道,
M
点距
BC
的距离与
N
点距
DE
的距离相等,也就是说两次相遇地 点

A

B
两地的距离是相等的.而这两次相遇的地点相距20千米 ,所以第一次相遇时,两船分
别走了

10020

240< br>千米和
1004060
千米,可得两船的顺水速度和逆水速度之比为
60: 403:2

而顺水速度与逆水速度的差为水速的2倍,即为4米秒,可得顺水速度为4

32

312

秒,那么两船在静水中的 速度为
12210
米秒.

【例 12】 (难度等级 ※※※)A、 B 两地相距1000 米,甲从 A地、乙从 B 地同时出发,在 A、 B 两
地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行 60米.在 30分钟内,甲、乙两人第
几次相遇时距 B 地最近(从后面追上也算作相遇)?最近距离是多少?



【解析】 甲、乙的运行图如上,图中实现表示甲,虚线表示乙,两条线的交点表示两人相遇.在 30 分钟
内,两人共行了 (150 60) 30 6300   米,相当于 6 个全程又 300 米,由图可知,第 3次相遇
时距离 A地最近,此时两人共走了 3 个全程,即1000 ×3 =3000千米,用时3000÷(150+60)
=1007分钟,甲行了60×1007=6 0007米,
相遇地点距离 B 地1000-60007 143米.


【巩固】 (难度等级 ※※※)A、 B 两地相距 950 米.甲、乙两人同时由 A地出发往返锻炼半小时.甲
步行,每分钟走 40 米;乙跑步,每分钟行 150 米.则甲、乙二人第几次迎面相遇时距 B 地
最近?
【解析】 半小时内,两人一共行走 (40+ 150)× 30 =5700 米,相当于 6 个全程,两人每合走 2 个全
9


程就会有一次相遇,所以两人共有 3 次相遇,而两人的速度比为 40 :150= 4 :15,所以相同时间
48
距离 B 地1119个全程;
2< br>,
15419
第二次相遇甲走了1619个全程,距离 B 地319个全程;第三次相遇甲走了2419个全程,距
离 B 地519个全程,所以甲、乙两人第二次迎面相遇时距离 B 地最近.
内两人的行程比为 4 :15,那么第一次相遇甲走了全程的


【巩固】 (2008年国际小学数学竞赛 )
A

B
两地相距
950m
,甲、乙两人同时从
A
地出发,往返
A

B

地跑步
90
分钟. 甲跑步的速度是每分钟
40m
;乙跑步的速度是每分钟
150m
.在这段时间 内他
们面对面相遇了数次,请问在第几次相遇时他们离
B
点的距离最近?
【解析】 .甲、乙两人合走一个全程需要
5
分钟,每合走
2
个全 程相遇一次,
950(15040)5
(分钟)
所以总共相遇
90( 52)9
次.而甲每
10
分钟走
4010400

m
)并且与乙相遇一次,因为
9503400750

m
) 也就是当甲、乙两人第
7
次相遇时甲离
B

50
m
为最小,在第
7
次相
遇时他们离
B
点距离最近.


【巩固】 (难度等级 ※※※)A、 B 两地相距 2400 米,甲从 A地、乙从 B 地同时出发,在 A、 B 两
地间往返锻炼.甲每分钟跑 300 米,乙每分钟跑 240 米,在 30 分钟后停止运动.甲、乙两
人第几次相遇时距 A地最近?最近距离是多少?

【解析】 第二次,800米

五、多次相遇问题——变道问题

【例 13】 (难度等级 ※※※※)(仁华入学试题)甲、乙两车同时从同一点
A
出发,沿周长6千米的圆形
跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米 .一旦两车迎面相
遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第 11次相
遇的地点距离
A
点有多少米?(每一次甲车追上乙车也看作一次相遇)
【解析】 第一次是一个相遇过程,相遇时间为:相遇地点距离
A
点:
6( 6555)0.05
小时,
550.052.75
千米.然后乙车调头,成为 追及过程,追及时间为:
6(6555)0.6
小时,乙车在此过程中走
的路程 为:
550.633
千米,即5圈又3千米,那么这时距离
A

32.750.25
千米.
此时甲车调头,又成为相遇过程,同样方法可计算出相遇地点 距离
A

0.252.753
千米,然后
乙车掉头,成为追及过 程,根据上面的计算,乙车又要走5圈又3千米,所以此时两车又重新回
到了
A
点,并 且行驶的方向与最开始相同.
所以,每4次相遇为一个周期,而
1142L3
, 所以第11次相遇的地点与第3次相遇的地点是
相同的,与
A
点的距离是3000米.


【例 14】 (难度等级 ※※※※)下图是一个边长90米的正方形,甲、乙 两人同时从A点出发,甲逆时
针每分行75米,乙顺时针每分行45米.两人第一次在CD边(不包括C ,D两点)上相遇,
是出发以后的第几次相遇?

10



【解析】 两人第一次相遇需
360(7545)3
分,其间乙走了
453135
(米).由此知,乙每走135米
两人相遇一次,依 次可推出第7次在CD边相遇(如图,图中数字表示该点相遇的次数)

【例 15】 (难度等级 ※※※※)如图所示,甲、乙两人从长为
400
米的圆形跑道的
A
点背向出发跑步。
跑道右半部分(粗线部分)道路比较泥泞,所以两人的速度都将减慢,在正常的跑道 上甲、乙速
度均为每秒
8
米,而在泥泞道路上两人的速度均为每秒
4
米。两人一直跑下去,问:他们第99
次迎面相遇的地方距
A
点还有 米。
A

【解析】 本题中,由于甲、乙两人在正常道路和泥泞道路上的速度都相同 ,可以发现,如果甲、乙各自绕
着圆形跑道跑一圈,两人在正常道路和泥泞道路上所用的时间分别相同, 那么两人所用的总时间
也就相同,所以,两人同时出发,跑一圈后同时回到
A
点,即两 人在
A
点迎面相遇,然后再从
A
点出发背向而行,可以发现,两人的行程是周 期性的,且以一圈为周期.
在第一个周期内,两人同时出发背行而行,所以在回到出发点前肯定有一次 迎面相遇,这是两人
第一次迎面相遇,然后回到出发点是第二次迎面相遇;然后再出发,又在同一个相遇 点第三次相
遇,再回到出发点是第四次相遇……可见奇数次相遇点都是途中相遇的地点,偶数次相遇点都 是
本题要求的是第99次迎面相遇的地点与
A
点的距离,实际上要求的是第一次相遇点 与
A

A
点.
的距离.
对于第一次相遇点的位置,需要分 段进行考虑:由于在正常道路上的速度较快,所以甲从出发到
跑完正常道路时,乙才跑了
200 84100
米,此时两人相距100米,且之间全是泥泞道路,此
时两人速度相同,所以 再各跑50米可以相遇.所以第一次相遇时乙跑了
10050150
米,这就
是第 一次相遇点与
A
点的距离,也是第99次迎面相遇的地点与
A
点的距离.

【例 16】 (难度等级 ※※※※)如图,学校操场的400米跑道中套着300米小跑 道,大跑道与小跑道有200
米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的 速度沿小跑道顺时针
方向跑,两人同时从两跑道的交点
A
处出发,当他们第二次在跑道 上相遇时,甲共跑了多少米?
甲乙
A



B

甲乙
A

【解析】 根据题意可知,甲、乙只可能在
AB
右侧的半跑道上相遇.
易知小跑道上
A B
左侧的路程为100米,右侧的路程为200米,大跑道上
AB
的左、右两侧的路程 均
是200米.
我们将甲、乙的行程状况分析清楚.
当甲第一次到达
B< br>点时,乙还没有到达
B
点,所以第一次相遇一定在逆时针的
BA
某处.
而当乙第一次到达
B
点时,所需时间为
200450
秒,此时甲 跑了
650300
米,在离
B

300200100
米处.
乙跑出小跑道到达
A
点需要
100425
秒,则甲又 跑了
625150
米,在
A
点左边
11


(100150)20050
米处.
所以当甲再次到达
B
处时,乙还未到
B
处,那么甲必定能在
B
点右边某处与乙第二次 相遇.
从乙再次到达
A
处开始计算,还需
(40050)(64) 35
秒,甲、乙第二次相遇,此时甲共跑了
502535110
秒.
所以,从开始到甲、乙第二次相遇甲共跑了
6110660
米.


【例 17】 (难度等级 ※※※※※)下图中有两个圆只有一个公共点A,大圆直径48 厘米,小圆直径30
厘米。两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。 问:当小
圆上甲虫爬了几圈时,两只甲虫首次相距最远?


【解析】 我们知道,大小圆只有一个公共点(内切),而在圆上最远的两点为直径两端,所以当一只甲虫在
A点, 另一只在过A的直径另一直径端点B,

所以在小圆甲虫跑了n圈,在大圆甲虫跑了m+于是小圆甲虫跑了30n,大圆甲虫跑了48(m+
1
圈;
2
1
)=48m+24
2
因为速度相同,所以相同时内路程相同,起点相同,
所以30n=48m+24;
即5n=8m+4,有不定方程知识,解出有n=4,m=2,
所以小甲虫跑了2圈后,大小甲虫相距最远。


【例 18】 (难度等级 ※※※※※)如图所示,甲沿长为
400
米大圆的跑道顺时针跑步,乙则沿两个小 圆
八字形跑步(图中给出跑动路线的次序:
12341LL
)。如果甲、乙 两人同时从
A
点出
发,且甲、乙二人的速度分别是每秒3米和5米,问两人第三次相遇 的时间是出发后 秒。
12


A
14
3
B
2

【解析】 从图中 可以看出,甲、乙两人只有可能在
A

B
两点处相遇(本题中,虽然在
B
处时两人都是顺
时针,但是由于两人的跑道不同,因此在此处的相遇不能看作是追及).

A

B
,在大圆周上是半个圆周,即200米;在小圆周上是整个 小圆圆周,也是200米.两人
的速度之比为
3:5
,那么两人跑200米所用的时间 之比为
5:3
.设甲跑200米所用的时间为5个
时间单位,则乙跑200米所用的时 间为3个时间单位.根据题意可知,1个时间单位为
40
秒.
3
可以看出, 只有甲跑的时间是5个时间单位的整数倍时,甲才可能在
A
点或
B
点,而且是 奇数倍
时在
B
点,是偶数倍时在
A
点;乙跑的时间是3个时间单位的 整数倍时,乙才可能在
A
点或
B
点,
同样地,是奇数倍时在
B
点,是偶数倍时在
A
点.
要使甲、乙在
A

B
两点处相遇,两人所跑的时间应当是15个时间单位的整数倍(由于3和5
的奇偶性相同,所以 只要是15个时间单位的整数倍甲、乙两人就能相遇),可以是15个时间单
位、30个时间单位、45 个时间单位……所以两人第三次相遇是在过了45个时间单位后,也就是
20035
40
45600
秒两人第三次相遇.
3
也可以画表如下:

说,出发后

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

甲 0 5 10 15 20 25 30 35 40 45
乙 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

从中可以看出,经过15个时间单位后两人同 在
B
点,经过30个时间单位后两人同在
A
点,经过
45个时间单位 后两人同在
B
点,这是两人第三次相遇.

【例 19】 (难度等级 ※ ※※※)三个环行跑道如图排列,每个环行跑道周长为210厘米;甲、乙两只爬
虫分别从
A< br>、
B
两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字形循环运动,乙< br>爬虫绕3、2号环行跑道作“8”字形循环运动,已知甲、乙两只爬虫的速度分别为每分钟20厘米
和每分钟l5厘米,甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
A
1
23
B

【解析】 根据题意,甲爬虫爬完半圈需要< br>2102205.25
分钟,乙爬虫爬完半圈需要
2102157

钟.由于甲第一次爬到1、2之间要
5.25
分钟,第一次爬到2、3之间要
10.5
分钟,乙第一次爬到
2、3之间要7分钟,所以第一次相遇的地点在2号环形跑道的 上半圈处.
13


由于甲第一次爬到2、3之间要
10. 5
分钟,第二次爬到1、2之间要
15.75
分钟,乙第一次爬到1、
2之间 要14分钟,所以第二次相遇的地点在2号环形跑道的下半圈处.
当两只爬虫都爬了14分钟时,甲爬 虫共爬了
2014280
米,
210221028035
(米) ,所以
甲在距1、2交点35米处,乙在1、2交点上,还需要
35(2015)1(分钟)相遇,所以第二次相
遇时,两只爬虫爬了
14115
分钟.
所以甲、乙两爬虫第二次相遇时,甲爬虫爬了
2015300
厘米.


【例 20】 (难度等级 ※※※※※)从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,
是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后
就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口 刚刚关闭,而那两处交通灯
也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那 么在不违反交通
规则的情况下,他到达太阳城最快需要多少分钟?

【解析】 画出反映交通灯红绿情况的 s t 图,可得出小糊涂的行车图像不与实线相交情况下速度最大可
以是 0.5 千米/分钟,此时恰好经过第 6千米的红绿灯由红转绿的点,所以他到达太阳城最快
需要 24分钟.






14

北京外事-高中体育教学总结


大学生创业点子-公费出国留学


马尔克斯语录-企业年度总结范文


新贵妃醉酒串词-山东政法大学分数线


海外考试中心-关于法律的手抄报


中国传统文化手抄报-李开复名言


工作申请书范文-湖北财政厅


美国三一学院-中秋手抄报