新冀教版小学数学六年级上册生公式大全

别妄想泡我
945次浏览
2020年08月18日 22:39
最佳经验
本文由作者推荐

没有任何借口-陕西省建设厅执业注册中心


小学生数学公式大全:基础运算公式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作
总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
热点问题运算公式
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数


和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:


株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数


(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题


溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2C=(a+b)×2
2、正方形的周长=边长×4C=4a


3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
10、圆的面积=圆周率×半径×半径

数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
单位换算


(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米
=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100
平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000
立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
重量换算:
1吨=1000 千克
1千克=1000克
1千克=1公斤
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:135781012月


小月(30天)的有:46911月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和 “相
离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。

行船问题公式
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;


(顺水速度+逆水速度)÷2=船速;
(顺水速度- 逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数- 每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔
数;
总头数- 兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数- 每只鸡脚数)=鸡
数;
总头数-鸡数=兔数。


例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可
用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔
数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚
数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用
公式。


(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚
数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数- 鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚
数)=鸡数;
总头数- 鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只
不合格品扣分 数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产
品数+实得总分数)÷(每只合格品 得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给 工资。每生产一个合格品
记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了10 00
只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)


=1000-18525÷19
=1000-975=25(个)(答略)
(“得 失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××
元,破损者不仅不给运费,还需要赔 成本××元……。它的解法显然可套用上述
公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问
题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每
只鸡兔脚数之差 )〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每< br>只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52
只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)



利率问题公式
利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)复利问题:
本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10 .2‰(即月利1分零2
毫),三年到期后,本利和共是多少元?”
解(1)用月利率求。
3年=12月×3=36个月


2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)

小学数学图形计算公式
1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a
×a
2 、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×
棱长×棱长V=a× a×a


3、长方形
C周长S面积a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4、长方体
V:体积s:面积a:长b:宽h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5三角形
s面积a底h高
面积=底×高÷2


s=ah÷2
三角形高=面积×2÷底
三角形底=面积×2÷高
6平行四边形
s面积a底h高
面积=底×高
s=ah
小学数学定义定理公式
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a×a
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh


长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=
πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch +2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=13底面×积高。公式:V=13Sh
分数的加、减法则:同分母的分数相加减,只 把分子相加减,分母不变。异
分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术定义定理公式
1.加法交换律:两数相加交换加数的位置,和不变。


2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,
再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相 乘,先把前两个数相乘,或先把后两个数相乘,
再和第三个数相乘,它们的积不变。
5. 乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数
相乘,再把两个积相加,结果不变 。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大( 或缩小)相同的倍数,
商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数 值与等号右边的数值相等的式子叫做等式。等式的
基本性质:等式两边同时乘以(或除以)一个相同的数 ,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫
做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫
做分数。


11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分 子大的大,分子小的小。异
分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数
大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),
分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

利润与折扣问题:


利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
列车过桥问题公式
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
工程问题公式
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。


(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为 2、3、4、5……。特
别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比
较简单的整数工程问题,计算将变得比较简便。)
求分率、百分率问题的公式
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
求比较数应用题公式
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;


标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。

方阵问题公式
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第
四层,每边人数是


10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84(人)

乘法分配律:
两个数相加(或相减)再乘另一个数,等于把这个数分别同两 个加数(减数)相
乘,再把两个积相加(相减),得数不变。
用字母表示:
(a+b)x c=axc+bxc
还有一种表示法:
ax(b+c)=ab+ac
和差问题的公式


(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
平均数问题公式
总数量÷总份数=平均数。
盈亏问题公式
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。


例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少
个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45 发,多680发;若每人背50发,
则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏- 小亏)÷(两次每人分配数的差)=人数。


例如,“将一批本子发给学生,每人发 10本,差90本;若每人发8本,则
仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)

同向行程问题公式
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;


(速度差)×追及(拉开)时间=追及(拉开)路程。


浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量

王金战-高考数学时间


我的幻想世界-快乐寒假手抄报


童谣大全自编-中国解放军信息工程大学


青岛中考-描写桥的作文


平安夜什么时候-秘书长职责


复旦大学研究生院-企业员工培训方案


湖北美院-卖炭翁翻译


情人节约会-厦门雅思