土力学英语学习版课件Chapter2

绝世美人儿
507次浏览
2020年08月19日 05:00
最佳经验
本文由作者推荐

安平古堡-广西梧州学院


Chapter 2:Soil permeability and seepage(土的渗透性及渗流)
学习要求:

掌握土的渗透定律与渗透力计算方法,具备对地基渗透变形进行正确分析的能力。
1.掌握土的渗透定律、土中渗流量计算;
2. 了解二维渗流及流网绘制、掌握土中水的渗透力与地基渗透变形分析.
2.1 概述
土是一 种三相组成的多孔介质,其空隙在空间相互连通。在饱和土中,水充满整个孔隙,
当土中不同位置存在水 位差时,土中水就会在水位能量作用下,从水位高的位置向水位低的
位置流动。
Since soils consist of discrete particles, the pore spaces between particles are
interconnected,so that water will flow from the zones of higher head to lower through
soil。
液体从物质微孔中透过的现象称为渗透。
液体在土孔隙或其他透水性介质中的流动问题称为渗流。
The slow movement of liquid flow through porous material is referred to as seepage
or percolation
土体具有被液体透过的性质称为土的渗透性或透水性。
The property of soils can be permeated by water is referred to as permeability。

土的渗透性同土的强度,变形特性一起,是土力学中的几个主 要课题。强度,变形,渗流
是相互关联,相互影响的,土木工程领域内的许多工程实践都与土的渗透性密 切相关。
The permeability of soils is one important problem as the strength and
displacement。The strength,displacement and permeability are related and influenced
with each other。Most of the civil engineering practices are related to soil
permeability。
2.2 土的渗透性(本章重点, 通过图形讲解层流渗透定律,
课堂课后作业巩固)
2.2.1 土的层流渗透定律
装置中①是面积为
A
的直立圆筒,其侧壁装有两支相距为
L
的侧压 管。滤板②填放颗粒均匀的砂土。水由上端注入圆筒,
多余的水从溢水管③溢出,使筒内的水位维持恒定 。渗透过砂
层的水从短水管④流入量杯⑤中,并以此来计算渗流量
Q

Consider a equipment as shown in the figure,① is a
cylinder with cross section A and two tubes are set on
its side,②is porous stone。Water is put into the cylinder
and the overfull water can overflow through the tube ③,
so that the water level can be controlled。The water
through soil sample will flow into cup ⑤ through short
tube ④,the volume Q of water through soil can be calculated。

得出:流量
q
与过水面积
A
和水头(h
1
-h
2
)成正比与渗透路径
L
成反比,即达西定律:
Conclusion:The volume Q is proportional to the cross section A and the gradient
of the total head
q=kA (h
1
-h
2
)L= kiA
v=qA=ki
q: 单位渗水量(flow rate)
v:断面平均渗透速度(average velocity)
i:水力梯度(hydraulic gradient)
上式的平均渗透速度为针对垂 直于流动方向的断面的速度,而通过土的流动是发生在土内


部相互连接的孔隙间。通过孔 隙的速度被称为假想平均流速。假想平均流速与断面平均渗透
速度间有如下关系。
The average velocity v calculated from above equation is for the cross-section area
normal to the direction of flow。Flow through soils,however,occurs only through
the interconnected voids。The velocity through the void spaces is called seepage
velocity and is obtained by dividing the average velocity by the porosity of the
soil n。
v
r
=vn
达西定律的适用范围(Validity of Darcy‘s law)
达西定律是由砂质土体实验得到的,后来推广应用于其他土体如粘土和具有细裂隙的岩
石等。
Darcy‘s law is obtained from tests on sandy soils,and it is extended to clay
and rock with small cracks etc.。











(a)细粒土的
v-i
关系 (b)粗粒土的
v-i
关系
①砂土、一般粘土 ②颗粒极细的粘土

2.2.2 渗透试验与渗透系数(Permeability test and coefficient of Permeability)
渗透系数
k
是综合反 映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非
常重要的意义。影响渗透系数大小的因 素很多,主要取决于土体颗粒的形状、大小、不均匀
系数和水的粘滞性等,要建立计算渗透系数
k
的精确理论公式比较困难,通常可通过试验方
法(包括实验室测定法和现场测定法)或经验估 算法来确定
k
值。
Coefficient of Permeability is an important index on the soil permeability。
Coefficient of Permeability depend on the shape ,size,coefficient of uniformity
etc.。 It is difficult to build a theoretical equation to determine its value,
in general, it can be estimated from tests(laboratory test and filed test)
实验室测定法(laboratory test)



QL
K
H
aL

K2.3lg
AHt
AtH







a常水头试验装置; b.变水头试验装置。
a. Constant water head test b. Changed(falling) water head test
k >10
-3 为细砂到中等卵石;透水性较小 (10-7 < k<10-3
) 粘性土.
0
11



如上图a所示,由量筒和秒表所测的在时段t内经过细管的渗水量Q,可得单位渗水量
As shown in the above figure a,the time t and volume of water Q are measured by
the cylinder and the stopwatch,the flow rate is
q=Qt
and the coefficient of permeability ca be calculated as
k
QL
Aht


如上图b所示,在变水头试验中,时段dt内经过试料的流水量
As shown in the above figure b,in changed water level test,the volume of water
during time dt is
dQ=-adh (a:试管内断面积,cross section of tube)
由达西定律(from darcy‘s law)
dQk
h
L
Adt

由水量相等关系可知(The water is equal):

dt
aLdh
kAh

h
1
h
2
从而可得到土的渗透系数为(the coefficient of permeability is determined as):
k
aL
A

t
2
t
1

l n

采用常用对数表示为(when common logarithm is used)
k2.3
aL
A

t
2
t
1

lg
h
1
h
2


Example 2-1
A soil sample 10cm in diameter is placed in a tube 1m long, A constant supply of
water is allowed to flow into one end of the soil at A and outflow at B is collected
by a beaker. The average amount of water collected is 1cm
3
for every 10 seconds.
The tube is inclined as shown in the below figure. Determine the (a) hydraulic
gradient, (b) flow rate, (c) average velocity, (d) seepage velocity, if e=0.6, and
(e) coefficient of permeability.



1m

1m


A

B


1m
0.8m

Datum
Table



Solution
Step 1 Define the datum position. Select the top of the table as the datum
Step 2 Find the total heads at A (inflow) and B (outflow)
H
A


h
p



h
z

A
112m

H
B


hp



h
z

B
00.80 .8m

B
A
Step 3 Find the hydraulic gradient
HH
A
H
B
20.81.2m

l=1m
i
H
l
1.211.2

Step 4 Determine the flow rate
3
Volume of water collected, Q=1cm, t=10sec.
3
Q
v
=Qt=110=0.1 cm s
Step 5 Determine the average velocity
q
v
=Av
A


diam
4

2

< br>10
4
2
78.5cm

2
A78.5
Step 6 Determine the seepage velocity
e0.6
n0.38

1e10.6

v0.0013
v
r
0.0034cms

n0.38
Step 7 Determine the coefficient of permeability. From Darcy’s law
vki

v0.0013
4
10.810cms

k
i1.2

现场测定法(field test)
有野外注水试验( affusing test)和抽水试验(pumping test)等,是在 现场钻井孔或
挖试坑,在往地基中注水或抽水时,量测地基中的水头高度和渗流量,再根据相应的理论公
式求出渗透系数
k
值。
Field tests include the affusing test and pumping test etc.。The coefficient of
permeability of soil in the field is by pumping (or affusing) water at a constant
flow rate from (or in )a well and measuring the decrease(or increase)in groundwater
level at observation well。And then the coefficient of permeability can be calculated
by theoretical equation。

v
q
v

0.1
0.0013cms








(a)无压完整井抽水试验; (b)无压非完整井抽水试验


理论公式由以下假定导出
(1) 钻孔井水支持层并只在地下水以下的截面穿入。
(2) 土质为均质土,各方同性,无限大
(3) 遵守 Darcy’s定律
(4) 放射状向抽水井方向流动
(5) 在水支持层的任意点的水压梯度相等,并等于地下水表面的坡度。
The theoretical equation is derived by the following assumptions:
(1) The pumping well penetrates through the water-bearing stratum and is
perforated only at the section below the groundwater level。
(2) The soil mass is homogeneous,isotropic, and of infinite size。
(3) Darcy’s law is valid
(4) Flow is radial toward the well.
(5) The hydraulic gradient at any point in the water-bearing stratum is constant
and is equal to the slope of groundwater surface.

如图所示,在距离井中心r处,水面高度为h,通过水断面积为
As shown in the figure,the area of flow at a radial distance r with water head
h from the center of the pumping well is
A2

rh

由Darcy 定律(From Darcy’s law)
q2

rhk
dh
dr

对上式进行整理并积分(rearrange the above equation and integrate it)
q

r
2
dr
r
r
1
2

k

hdh

h
1
h
2
可得(so that)
k
q
ln

r
2
r
1


h
22
h
1
2


影响渗透系数的主要因素(factors of influence on the coefficient of permeability)
(1) 土的粒度成分
(2) 土的密实度
(3) 土的饱和度
(4) 土的结构
(5) 水的温度

(1) Soil particle (shape,size etc.)
(2) Density
(3) Degree of saturation
(4) Soil fabric or structural arrangement of the soil grains
(5) Temperature

成层土的等效渗透系数(the coefficient of permeability of soil layers)


k
1

H
1
H

H
2
k
2

k
3

H
3


与土层平行的渗流
Flow parallel to soil layers
假定为单位宽度的土层,通过整个土层的总单位渗流量为
Consider a unit width of flow,the total flow is equal to the sum of the flow through
each layer, we obtain
n
q
h
q
1h
q
2h
.....q
n h


q
1
ih

根据达西定律,总的渗流量及各层的渗流量分别为
Based on Darcy‘s law,the total flow and flow through each layer are,
q
h
k
h
iH

q
ihk
ih
iH
i

由此可得(so that)
n< br>k
h
iH

k
1
n
ih
iHi

等效透水系数为(the coefficient of permeability of soil layers is)
k
h

1
H

k
1
ih
H
i


与土层垂直的渗流
Flow normal(perpendicular) to soil layers
对于渗流垂直于土层时,在土体的全水头损失等于各层的水头损失之和,并且在各层的渗
透速度相等。
For flow normal to the soil layers,the head loss in the soil mass is the sum of
the head loss in each layer,and the velocity in each layer is same
q
v
q
1v
q
2v
... ......q
nv

q
v
k
v
k
v< br>h
H
n
h
H
Ak
iv
h
iH
i
A

k
iv
i
i
(a)
h

iH
i
i1
i
(b)
整理以上的两式,可得垂直于土层等等效透水系数为
Rearrange the two above equations,the coefficient of permeability when flow normal
to soil layers can be derived as the following equation
H
k
v


n

H
i





k

i1

iv

2.3 土中二维渗流及流网简介(难点,课堂讲解理论推道,布置作业巩固)
2.3.1 二维渗流方程
在实际工程中,经常遇到边界条件较为复杂的二维或三维问题,在 这类渗流问题中,渗流
场中各点的渗流速度
v
与水力梯度
i
等均是位 置坐标的二维或三维函数。对此必须首先建立
它们的渗流微分方程,然后结合渗流边界条件与初始条件求 解。
在实际工程中,渗流问题的边界条件往往比较复杂,其严密的解析解一般都很难求得。因
此对渗流问题的求解除采用解析解法外,还有数值解法、图解法和模型试验法等,其中最常
用的是图解法 即流网解法。



v
z

v
z
dz
z
z


v
x

v
x

dz
v
x
dx

x

v
z


dx


x

单位时间内流入单元体内的水量为(inflow)
dq
e
v
x
dz1v
z
dx

单位时间内流出单元体内的水量为(outflow)
v
x
v
z



dq
0


v
xdx

dz1

v
z


dx 1

xz


假定水体不可压缩,根据水流连续原理,流 入流出水量相等,即(consider water can not
be compressed )
dq
e
dq
o

则得
v
x
v
z
0

xz

根据达西定理,对于各向异性土,(from Darcy‘s law)
v
xk
x
i
x
k
x
h
x

v
z
k
z
i
z
k
z
22h
z


则由以上各式可得
k
xh
2
xz
此公式既为著名的Laplace方程,也是平面稳定的基本方程 ,通过求解一定边界的方程,
即可得该条件下的渗流场。此方程需近似解法,如有限元法,有限差分法, 边界元法。
This is the famous Laplace ’s equation for 2D flow of water through soils. It is
also the governing equation for plane steady. The solution of any differential
equation requires knowledge of the boundary conditions. The boundary conditions for
most ‘real’ structure are complex, so the analytical solution can’t be obtained
for these structures. In general, we resort to approximate solutions which we can
obtain using numerical methods such as finite difference, finite element, and
boundary element.
2.3.2 流网特征与绘制(Flow net)
自学部分(study by self)
2.4渗透破坏与控制
2.4.1 渗流力
k
z
h
2
0
渗透力的大小与计算点的位置有关。根据对渗流网中的孔隙水压力和土粒间作用力的分
析,得出单位 体积内土粒受到的单位渗透力为:
The seepage force is influenced by its position。The seepage force per unit volume
can be calculated as the follow equation

J

w
i


式中 i 为水力梯度;γ
w
—水的容重。
当水力梯 度超过一定界限值后,土中的渗流水流会把部分土体或土颗粒冲出、带走,导致
局部土体发生位移,位移 达到一定程度,土体将发生失稳破坏,这种现象称为渗透变形。

问题:
1. 达西渗透定律的应用条件是什么?
2. 渗透变形中那种变形容易发生?
3. 确定渗透系数的方法有哪几种?它们的适用条件是什么?

教科书习题(p.59)2.1,2.2,2.4,2.6,2.7, 2.8 2.9 2.10

西南政法大学研究生部-高考菜谱


保证合同-优质护理服务


中学生学习方法-工作证明范本下载


古典文学名著-文员实习报告范文


以感动为主题的作文-大学生贫困证明


学游泳作文-迎新晚会主持词


乱世佳人影评-解放思想演讲稿


宜昌市一中网站-奖学金获奖感言