人教版小学六年级数学下册第五单元《数学广角》教案 (教学设计)
郑大研究生院-合作意向书
课题
课型
知识
目标
能力
目标
情感
目标
重点
难点
教学过程
目标导学
新授课 备课人
抽屉原理(一)
执教时间
教
学
目
标
经历“抽屉原理”的探究过程,初步了解“抽屉原
理”,会用“抽屉原理”解
决简单的实际问题。
通过操作发展学生的类推能力,形成比较抽象的数学思维。
通过“抽屉原理”的灵活应用感受数学的魅力。
初步了解“抽屉原理”。
会用“抽屉原理”解决简单的实际问题。
教 学 预 设
复习激趣
目标导学
自主合作
汇报交流
变
式
训练
一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师
这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,
每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个
同学”这句话说得对吗?
二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放
进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情
况?(指名摆)根据学生摆的情况,师
出示各种情况。
个 性 修 改
创境激疑
合作探究
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
问题:4个人坐在3把椅子上,不管怎么坐,总有一
把椅子上至少坐两个同学。4支笔放进
3个盒子里呢?
第1页 共5页
引导学生得出:不管怎么放,总有一个盒子里至少有
2枝笔。
问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能
是2枝,也可能是多于2枝?)
教
师引导学生总结规律:我们把4枝笔放进3个盒子
里,不管怎么放,总有一个盒子里至少有2枝铅笔。这
是
我们通过实际操作现了这个结论。那么,你们能不能找到
一种更为直接的方法得到这个结论呢
?
学生思考并进行组内交流。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7
枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把
9枝笔放进8个盒子里呢?……你发现
什么?(笔的枝数
比盒子数多1,不管怎么放,总有一个盒子里至少有2枝
铅笔。)
总结:只要放的铅笔数盒数多1,总有一个盒里至少
放进2支。
教学过程 教 学 预 设
(二)教学例2
1.出示题目:把5本书放
进2个抽屉里,不管怎么放,
总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,
不管怎
么放,总有一个抽屉里至少有几本书?把9本书放
进2个抽屉里,不管怎么放,总有一个抽屉里至少有几
本
书?
个 性 修 改
合作探究
(留给学生思考的空间,师巡视了解各种情况)
2.学生汇报,教师给予表扬后并总结:
第2页 共5页
总结1:把5本书放进2个抽屉里,如果每个
抽屉里
先放2本,还剩1本,这本书不管放到哪个抽屉里,总有
一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商
+1”就可以得到。
如果
把5本书放进3个抽屉里,不管怎么放,总有一
个抽屉里至少有几本书?用“商+2”可以吗?(学生讨
论)
引导学生思考:到底是“商+1”还是“商+余数”呢?
谁的结论对呢?(学生小组
里进行研究、讨论。)
总结:用书的本数除以抽屉数,再用所得的商加1,
就会发现“总有一个抽屉里至少有商加1本书”了。
有关抽屉原理,你还有哪些疑问呢?
做一做
抽屉原理(一)
例1、有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,
怎么放?有几种不同的放法?
拓展应用
总 结
作业布置
板书设计
(4,0,0)(3,1,0)(2,2,0)(2,1,1)
课题
课型
教
学
目
标
知识
目标
能力
目标
新授课 备课人
抽屉原理(二)
XXX 执教时间
教学札记
进一步掌握抽屉原理,掌握抽屉原理的反向求法。
通过各种活动培养学生自己动手动脑去思考的习惯。
第3页 共5页
情感
目标
重点
难点
教学过程
目标导学
体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
进一步掌握抽屉原理,掌握抽屉原理的反向求法。
通过各种活动培养学生自己动手动脑去思考的习惯。
教 学 预 设
复习激
趣
目标导学
自主合作
汇报交流
变
式训练
一、创设情境、引入新课:
师:一天晚上,有一个小女孩正要从抽屉里拿袜
子。
抽屉里有黑白两种颜色的袜子各10双。突然停电了。小女
孩至少摸出多少只袜子,才能保
证拿出相同颜色的袜子?
学生思考、发言。
师:学习了这节课我们就能解决类似的问题了。
个 性 修 改
创境激疑
二、活动探究、深入了解:
(一)出示例3:盒子里有同样大小的红球和蓝球各4
个
。要想摸出的球一定有2个同色的,至少要摸出几个球?
1、学生提出猜想。
2、用预先准备的学具,小组合作交流。4、小组反馈,
师相机板书:
3、得出结论:把颜色看作抽屉。
合作探究
有两种颜色,只要摸出的球比他们的颜色至少多1,
就能保证有两个球同色。
(二)研究规律
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸
出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示做一做第2题,汇报后得出:问题结论只与球
的颜色种数也就是抽屉数有关。
有红色、白色、黑色的筷子各10根混放在一起,让你
闭上眼睛去摸。
(1)你至少要摸出几根才敢保证有两根筷子是同色
的?
(2)至少拿几根,才能保证有两双同色的筷子?为什
么?
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生
活中的例子吗?
75页4、5题
拓展应用
总 结
作业布置
第4页 共5页
抽屉原理(二)
例3:盒子里有同样大小的红球和蓝球各4个。要想
摸出的球一定有2个同色的,至少要摸出几个球?
板书设计
有两种颜色,只要摸出的球比他们的颜色至少多1,
就能保证有两个球同色。
教学札记
第5页 共5页