鸽巢问题教案

绝世美人儿
877次浏览
2020年08月19日 17:10
最佳经验
本文由作者推荐

晚霞唯美的短句子-应急预案演练方案


教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:

鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个< br>原理出发,可以得出许多有趣的结果。这部分教材通过几个直观的例子,借助实际操作,向
学生介 绍了“鸽巢问题”。学生在理解这一数学方法的基础上,对一些简单的实际问题“模
型化”,会用“鸽巢 问题”解决问题,促进逻辑推理能力的发展。

学情分析:

“鸽巢问题 ”的理论本身并不复杂,对于学生来说是很容易的。但“鸽巢问题”的应用却是
千变万化的,尤其是“鸽 巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也
缺乏思考的方向,很难找到切入点。

设计理念:

在教学中,让学生经历将具体问题“数学化”的过程,初步 形成模型思想,体会和理解数学
与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标 准》的重要要求,
也是本课的编排意图和价值取向。

教学目标:
1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽
巢原理分 析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过 程中,使学生逐步理解和掌握鸽巢原理,经历将具体
问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生< br>解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:

一、谈话引入:

1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师 也能做到“料事如神”,
你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生 日在同一个


月。你们信吗?

2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

适时引导 :“至少2个同学”是什么意思?(也就是2人或2人以上,反过来,生日在同一
个月的可能有2人,可 能3人、4人、5人……,也可以用一句话概括就是“至少有2人”)

3、设疑:你们想知 道这是为什么吗?通过今天的学习,你就能解释这个现象了。下面我们
就来研究这类问题,我们先从简单 的情况入手研究。

二、合作探究

(一)初步感知

1、出示题目:有3支铅笔,2个笔筒(把实物摆放在讲桌上),把3支铅笔放进2个笔筒,
怎么放? 有几种不同的放法?谁愿意上来试一试。

2、学生上台实物演示。

可能有两种情况:一个放3支,另一个不放;一个放2支,另一个放1支。

教师根据学生回答在黑板上画图和数的分解两种方法表示两种结果。(3,0)、(2、1)

3、提出问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话说得对吗?
学生尝试回答,师引导:这句话里“总有一个笔筒”是什么意思?(一定有,不确定是哪个
笔筒,最 多的笔筒)。这句话里“至少有2支”是什么意思?(最少有2支,不少于2支,
包括2支及2支以上)

4、得到结论:从刚才的实验中,我们可以看到3支铅笔放进2个笔筒,总有一个笔筒至少< br>放进2支笔。

(二)列举法

过渡:如果现在有4支铅笔放进3个笔筒,还会出现这样的结论吗?

1、小组合作:

(1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;

(2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;


(3)我们发现:总有一个笔筒至少放进了( )支铅笔。

2、学生汇报,展台展示。

交流后明确:

(1)四种情况:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

(2)每种摆法中最多的一个笔筒放进了:4支、3支、2支。

(3)总有一个笔筒至少放进了2支铅笔。

3、小结:刚才我们通过“画图”、“ 数的分解”两种方法列举出所有情况验证了结论,这
种方法叫“列举法”,我们能不能找到一种更为直接 的方法,只摆一种情况,也能得到这个
结论,找到“至少数”呢?

(三)假设法

1、学生尝试回答。(如果有困难,也可以直接投影书中有关“假设法”的截图)

2、学生操作演示,教师图示。

3、语言描述:把4支铅笔平均放在3个笔筒里, 每个笔筒放1支,余下的1支,无论放在
哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进 了2支笔。(指名说,互相
说)

4、引导发现:

(1)这种分法的实质就是先怎么分的?(平均分)

(2)为什么要一开始就平均 分?(均匀地分,使每个笔筒的笔尽可能少一点,方便找到“至
少数”),余下的1支,怎么放?(放进 哪个笔筒都行)

(3)怎样用算式表示这种方法?(4÷3=1支……1支 1+1=2支)算式中的两个“1”是
什么意思?

5、引伸拓展:

(1)5支笔放进4个笔筒,总有一个笔筒至少放进( )支笔。

(2)26支笔放进25个笔筒,总有一个笔筒至少放进( )支笔。

(3)100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。


学生列出算式,依据算式说理。

6、发现规律:刚才的这种方法就 是“假设法”,它里面就蕴含了“平均分”,我们用有余
数的除法算式把平均分的过程简明的表示出来了 ,现在会用简便方法求“至少数”吗?
(四)建立模型

1、出示题目:5支笔放进3支笔筒,5÷3=1支……2支

学生可能有两种意见:总有一个笔筒里至少有2支,至少3支。

针对两种结果,各自说说自己的想法。

2、小组讨论,突破难点:至少2只还是3只?

3、学生说理,边摆边说:先平均 分每个笔筒放进1支笔,余下2只再平均分放进2个不同
的笔筒里,所以至少2只。(指名说,互相说)

4、质疑:为什么第二次平均分?(保证“至少”)

5、强化:如果把笔和笔筒的数量进一步增加呢?

(1)10支笔放进7个笔筒,至少几支放进同一个笔筒?

10÷7=1(支)…3(支) 1+1=2(支)

(2)14支笔放进4个笔筒,至少几支放进同一个笔筒?

14÷4=3(支)…2(支) 3+1=4(支)

(3)23支笔放进4个笔筒,至少几支放进同一个笔筒?

23÷4=5(支)…3(支) 5+1=6(支)

6、对比算式,发现规律:先平均分,再用所得的“商+1”

7、强调:和余数有没有关系?

学生交流,明确:与余数无关,不管余多少,都要再平均分,所以就是加1.

8、 引申拓展:刚才我们研究了笔放入笔筒的问题,那如果换成鸽子飞进鸽笼你会解答吗?
把苹果放入抽屉, 把书放入书架,高速路口同时有4辆车通过3个收费口……,类似的问题
我们都可以用这种方法解答。

三、鸽巢原理的由来



微视频:同学们从数学的角度分析 了这些事情,同时根据数据特征,发现了这些规律。你们
发现的这个规律和一位数学家发现的规律一模一 样,只不过他是在150多年前发现的,你们
知道他是谁吗?——德国数学家?“狄里克雷”,后人们为 了纪念他从这么平凡的事情中发
现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,由于人 们对鸽子飞回鸽巢
这个引起思考的故事记忆犹新,所以人们又把这个原理叫做“鸽巢原理”,它还有另外 一个
名字叫“抽屉原理”。

四、解决问题

1、老师上课时提出的生日问题,现在你能解释吗?

2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

3、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

4、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

5、把15本书放进4个抽屉中,不管怎么放,总有一个抽屉至少有4本书,为什么?

邢台人事局网-最美孝心少年观后感


天河中学-历史知识


南开大学分数线-英国出国留学费用


写读书笔记-中国剪纸艺术


现在的北京时间-光棍节是哪一天


军训用什么防晒霜好-采购员职责


高考招生指南-冬阳童年骆驼队课件


小学生教师节祝福语-感恩日记