最新人教版小学数学六年级下册第五单元《数学广角 鸽巢问题》教案教学设计
关于月亮的对联-天水师范学院分数线
第五单元 数学广角——鸽巢问题
单元要点分析
一、单元教材分析:
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方
法。和以往的义务教
育教材相比,这部分内容是新增的内容。本单元教材通过几
个直观例子,借助实际操作,向学生介绍“鸽
巢问题”,使学生在理解“鸽巢问
题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,
会用“鸽
巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问
题中,
只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪
个物体(或人)。这类问题依据
的理论我们称之为“抽屉原理”。“抽屉原理”最
先是19世纪的德国数学家狄利克雷运用于解决数学问
题的,所以又称“狄利克
雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可
以
说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有
趣的问题,并
且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、
集合论、组合论中都得到了广泛的应用
。
二、单元三维目标导向:
1、知识与技能:(1)引导学生通过观察、猜测、实验、推理
等活动,经历
探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解
决
简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实
验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:(1)体会数学与生活的
紧密联系,体验学数学、用
数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)
感受数
学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
三、单元教学重难点
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢
问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
四、单元学情分析
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类
问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范
畴。能不能将这
个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。
所以,在教学中,应有意识地让学生理解
“鸽巢原理”的“一般化模型”。六年
级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容
的程度。教材
选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,
有
助于提高学生的逻辑思维能力和解决实际问题的能力。
五、教法和学法
1、让学生经历“数
学证明”的过程。可以鼓励、引导学生借助学具、实物
操作或画草图的方式进行“说理”。通过“说理”
的方式理解“鸽巢原理”的过
程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能
力,
为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面
对一个具体的问题时,能
否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“
鸽
巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,
什么是“
鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否
属于用“鸽巢原理”可以解决的范
畴;再思考如何寻找隐藏在其背后的“鸽巢问
题”的一般模型。这个过程是学生经历将具体问题“数学化
”的过程,从纷繁复
杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。 3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛
且灵活多变。因此,用
“鸽巢原理”解决实际问题时,经常会遇到一些困难。例
如,有时要找到实际问题与“鸽巢原理”之间的
联系并不容易,即使找到了,也
很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必
过于要求
学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓
励学生
借助实物操作等直观方式进行猜测、验证。
六、单元课时划分:本单元计划课时数:6课时
鸽巢问题„„„„„„„„„„„„„„„„„„„1课时
“鸽巢问题”的具体应用„„„„„„„„„„„„„1课时
练习课„„„„„„„„„„„„„„„„„„„„1课时
单元测评„„„„„„„„„„„„„„„„„„„ 2课时
试卷讲评„„„„„„„„„„„„„„„„„„„ 1课时
吴安国、
授课
备 课 白林虎、
教师
教 师 蒙祥军、平杰
学习
内容
使用时间 第 周
鸽巢问题
第
一 课时 课型
教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:
1、知识与技能:了解“鸽巢问题”的特点,理解
“鸽巢原理”的含义。使
学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究
“鸽巢原理”的学习过程,体验观察、猜测、实
验、推理等活动的学习方法,渗透数形结合的思想。 <
br>3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发
学生的学习兴趣,使学
生感受数学的魅力。
教学重难点:
重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门进行反复推理。
教学过程:
一.情境导入
二、探究新知
1.教学例1.(课件出示例题1情境图)
思考问题:把4支铅笔放
进3个笔筒中,不管怎么放,总有1个笔筒里至少
有2支铅笔。为什么呢?“总有”和“至少”是什么意
思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”
的学习过程来
解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么
放,
总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和
“至少”是指把4支铅笔放进3个笔筒中,
不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数
,与枚举法相似,也有4中情况,每一种情
况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中
,无论怎
么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔
是要分放的物体,就相当于4
只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或
“抽屉”,把此问题用“鸽巢问题”的语言描述就是
把4只鸽子放进3个笼子,
总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有
”或“肯定有”的意思;而“至少”指的是
最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子
“最少”的个数。
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支
铅笔。
如
果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;
如果放的铅笔比笔筒的数量多3,
那么总有1个笔筒里至少放2只铅笔……
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅
笔。
(5)归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非
零
自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
2、教学例2(课件出示例题2情境图)
思考问题:(一)把7本书放进
3个抽屉,不管怎么放,总有1个抽屉里至
少有3本书。为什么呢?(二)如果有8本书会怎样呢?10
本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况
分得的3个数中,至少有1个数不小于3,也就是每种
分法中最多那个数最小是3,即总有1个抽屉至少
放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)....
..1(本),若每个抽屉放2本,
则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个
抽屉里就
有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进
3个抽屉中,不管怎么放,总有
1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中
2个
抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽
屉里至少放进3本书。 10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总
有1个
抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进
3个抽屉里,如果a÷3=b(本)......1
(本)或a÷3=b(本)......2(本),
那么一定有1个抽屉里至少放进(b+1)本
书。
鸽巢原理(二):古国把多与k
n个的物体任意分别放进n个空抽屉(k是
正整数,n是非0的自然数),那么一定有一个抽屉中至少放
进了(k+1)个物体。
三、巩固练习
1、完成教材第70页的“做一做”第1题。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
学生独立思考解答问题,集体交流、纠正。
四、课堂总结
板书设计:
新
课标第一网
教学反思:
吴安国、
备 课
白林虎、
授课
教 师 教师
蒙祥军、平杰
学习
内容
教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练
习
十三的3-4题。
教学目标:
1、知识与技能:在了解简单的“鸽巢原理”的基
础上,使学生学会用此原
理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的
学习过程,体验观察、猜测、实
验、推理等活动的学习方法,渗透数形结合的思想。
3、情感
、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发
学生的学习兴趣,使学生感受数学的魅
力。
教学重难点:
重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出
“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽
巢原理”进行反向推理。
教学过程:
一、情境导入
二、探究新知
1、教学例3(出示例3的情境图).
使用时间 第 周
“鸽巢问题”的具体应用
第 二 课时 课型
出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球
一定有2个同色的,少要摸出几个球?
学生通过“猜测验证→分析推理”的学习过程解决问题。
(1)猜测验证。
猜测1:只摸2个球
只要举出一个反例就可以推翻这种
猜测。
就能保证这2个球 验 证
如:这两个球正好是一红一蓝时就
不能
同色。
满足条件。
猜测2:摸出5个球,
把红、蓝两种颜色看作两个“鸽巢”,
因为
肯定有2个球是同 验 证
5÷2=2...1,所以摸出5个球时,至少
有3
色的。
个球是同色的,因此摸出5个球是没必
要的。
猜测1:摸出3个球,
把红、蓝两种颜色看作两个“鸽巢”,
因为
至少有2个球是同 验 证
3÷2=1...1,所以摸出3个球时,至
少有3
色的。
2个是同色的。
综上所述,摸出3个球,至少有2个球是同色的。
(2)分析推理。
根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图
个数失少要比抽屉数多1。现在把“颜色种数”看作“抽屉数”,结论就变成了
“要保证摸出2个同色的
球,摸出的球的个数至少要比颜色种数多1”。因此,
要从两种颜色的球中保证摸出2个同色的,至少要
摸出3个球。
2、趁热打铁:箱子里有足够多的5种不同颜色的球,最少取出多少个球才
能保
证其中一定有2个颜色一样的球?
学生独立思考解决问题,集体交流。
3、归纳总结:
运用“鸽巢原理”解决问题的思路和方法:
(1)分析题意;
(2)把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。
(3)根据“鸽巢原理”推理并解决问题。
三、巩固练习
1、完成教材第70页的“做一做”的第2题。(学生独立解答,集体交流。)
2、完成教材第71页的练习十三的第3-4题。(学生独立解答,集体交流。)
3、课外拓
展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。每次
从布袋里最少要拿出多少只可以保证其中
有2双颜色不同的袜子?(袜子不分左
右)
四、课堂总结
板书设计:
新
课标第一网
教学反思:
吴安国、
备 课
白林虎、
授课
教 师 教师
蒙祥军、平杰
学习内
容
使用时间 第 周
练习课
第 三 课时 课型
教学内容:教材71页练习十三的5、6题,及相关的练习题。
教学目标:
1、知
识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练
解决简单的实际问题。
2
、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实
验、推理等活动的学习方法,渗
透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发
学生的学习兴趣,使学生感受数学的魅力。
教学重难点
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢
问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
教学过程:
一、复习导入
二、指导练习
(一)基础练习题
1、填一填:
(1)水东小学六年级有30名学生是二月份(按28天计算)出生的,六年级
至少有(
)名学生的生日是在二月份的同一天。
(2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1
个同学至少投进了(
)个球。
(3)把6只鸡放进5个鸡笼,至少有( )只鸡要放进同1个鸡笼里。
(4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有(
)
本书,才可以保证至少有1个同学能借到2本或2本以上的书。
学生独立思考解答,集体交流纠正。
2、解决问题。
(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生
的?
(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本
科技书。一次至少要拿出多少
本书?
(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的
铅笔不少于6支?
(二)拓展延伸题
1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?
教师引导学生分
析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7
个球,那么球的个数至少要比抽屉数的(7-
1)倍多1个,而(27-1)÷(7-1)
=4...2,因此最多放进4个盒子里,可以保证至少有
1个盒子里有7个球。
教师引导学生规范解答:
2、一个袋子里装有红、黄、蓝袜子各5只
,一次至少取出多少只可以保证
每种颜色至少有1只?
教师引导
学生分析:假设先取5只,全是红的,不符合题意,要继续去;假
设再取5只,5只有全是黄的,这时再
取一只一定是蓝色的,这样取5×2+1=11
(只)可以保证每种颜色至少有1只。
教师引导学生规范解答:
3、六(2)班的同学参加一次数学考试,满分为100分,全班最
低分是75。
已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多
少
名同学?
教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能
得到的
不同分数有100-745+1=26(种)。
教师引导学生规范解答:
三、巩固练习
完成教材第71页练习十三的5、6题。(学生独立思考解答问题,集体交流、
纠正。)
四、课堂总结
板书设计:
新
课标第一网