数学广角鸽巢问题教案新部编本
2020年放假-颁奖晚会主持词
精品教学教案设计 | Excellent teaching plan
教师学科教案
[ 20 – 20 学年度 第__学期 ]
任教学科:_____________
任教年级:_____________
任教老师:_____________
xx市实验学校
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
《鸽巢问题》教学设计
黄岭子镇中心校
赵春宇
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
数学广角——鸽巢问题
黄岭子中心校赵春宇
教学目标
1.经历“抽屉原理”(鸽巢原理)的探究
过程,初步了解“抽屉
原理”,理解“抽屉原理”,并对一些简单实际问题加以“模
型化”。
2.通过操作发展学生的归纳推理的能力,形成比较抽象的数
学思维。
3.会用“抽屉原理”解决简单的实际问题,感受数学的魅力。
重点难点
重点:经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽
屉原理”。
难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型
化”。
教学过程
第一学时
教学活动
活动1【导入】游戏导入
上课前,我们先来热身一下,做一个预测的游戏。
请各位同学在本子上任意写出三个自己喜爱
的老师的名字,
之后老师进行预测,如果预测准的话给老师五秒钟的掌声。
其实在这个预测的
游戏中还蕴含着一个有趣的数学原理,这
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
节课我们就一起来研究.
活动2【讲授】自主探究,初步感知
1、研究4枝笔放进3个笔筒。
(1)要把4枝笔放进3个笔筒
,有几种放法?请同学们小组内
摆一摆。
(2)反馈:四种放法(课件出示)
(3
)判断:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里
至少放进2支笔。这句话说的对吗?为什么
?
(4)“总有”什么意思?(一定有)
(5)“至少”有2枝什么意思?(不少于2枝)
(6)师:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至
少放进几支笔?你是怎么知道
的?(先找到每种摆法中笔数最
多的杯子,然后再找到这些最多的杯子中最少的笔数)
(7)师:实际就是多中找少
师:我们刚刚把所有摆放的方法都一一罗列出来,从而找到总有一个杯子里至少放进2支笔,这种方法叫枚举法。这种
方法好不好?(评价:随着数据的扩大,
摆放的方法一定会更
多,甚至不能一一罗列)那么我们能不能找到一种更为直接
的方法,也能得
到这个结论呢?请同学们在小组内讨论讨论,
怎么摆?
(每个杯子都先放进一枝,还剩一枝
不管放进哪个杯子,总会
有一个杯子至少有2枝笔)(你的方法果然简单)
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 |
Excellent teaching plan
(8)这种方法我们可以称之为假设法,假设先在
每个杯子里
放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的
1枝怎么处理?(放
入任意一个杯子,那么这个杯子就有2枝
铅笔了)
(9)谁能用算式来表示这位同学的想法?
(4÷3=1…1)商1表
示什么?余数1表示什么?怎么办?
2、类推:把5枝笔放进4个笔筒,会有什么结果,为什么?
把6枝笔放进5个笔筒呢?为什么?
把7枝笔放进6个笔筒呢?为什么?
把1000枝笔放进999个杯子呢?
把(n+1)枝笔放进n个杯子呢?
3、从
刚才我们的探究活动中,你有什么发现?(只要放的铅笔
比杯子的数量多1,总有一个杯子里至少放进2
枝铅笔。)
4、小结:从以上的学习中,你有什么发现?
师:这样的数学问题就叫做“鸽巢
问题”或“抽屉原理”(板
书课题)。一起看大屏幕(介绍鸽巢问题的相关知识)指名读。
师
:像刚才的问题中,并没有鸽巢、抽屉,其实鸽巢或抽屉就
是一个模型。把谁看作“抽屉”?把谁看作“
物体”?
生:笔筒相当于抽屉,铅笔相当于物体。(板书)
师:用公式怎样表示这个原理(物体数÷抽屉数=商…..余
数 至少数=商+1)
活动4【练习】运用模型,解决问题
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
1、预测游戏是抽屉原理吗?解释为什么总有至少两个人的性
别一样。
师:抽屉原理的应用是千变万化的,用它可以解决许多有趣
的问题
2:从大街上随意找13个人,至少有两人属相相同。
3:从全校老师中任意找13人,至少有两人在同一个月过生日。
活动5【活动】课堂小结
总结这节课,你有什么收获?
育人犹如春风化雨,授业不惜蜡炬成灰