人教版三年级上学期数学教案示例
业主委员会成立条件-湖南高考作文
人教版三年级上学期数学教案示例
(*)
一、教学内容
人教版小学数学三年级上册第二单元《万以内的加法和减法(一)》第一
课时。
二、学情分析
《两位数加两位数口算》是学生学习了口算两位数加整十数、两位数加一
位数以及100以内笔算加法的基础上安排的。是前几册100以内口算的延续,
属于后续型学习内容
。掌握这部分口算,不仅在实际生活中有用,而且是以后
学习笔算的基础。
三、教材分析 <
br>教材第10页例1,教材呈现了同学们乘车去参观“世博会”的情境,例1教
学两位数加两位数的
算法问题,教材从解决问题入手鼓励学生通过讨论、交流
探索两位数加法的口算方法和算理,鼓励学生交
流不同的口算方法,体会算法
的多样化,找到适合自己的、合理而简便的计算方法。四、教学目标
1.掌握两位数加两位数的口算方法,理解算理,能正确进行口算。
2.经历探索两位数加两
位数口算方法的过程,渗透“转化”的数学思想,加深
对口算算理的发展,体会算法多样化。
3.感受数学与日常生活的密切联系,能运用口算知识解决生活中的问题。
教学重点:掌握两位数加两位数的口算方法。
教学难点:能正确口算出两位数加两位数的进位加法。
五、教学过程
(一)复习旧知
1 22
1.口算热身
64+5=6935+30=65
79+4=8348+30=78
66+8=7453+40=93
要求:“飘”算式,学生抢答,对于两位数加一位数进位加
法、两位数加整
十数各选取一题要求学生汇报口算思路,强调个位满十向前一位进一。
师:左边这组是两位数加一位数,右边这组是两位数加整十数。
左边这组两位数加一位数先加
哪个数位上的数,再加哪个数位上的数?追
问:右边这组两位数加整十数又是怎么算的?
归纳算法:两位数加一位数,先加个位上的数,再加十位上的数。
两位数加整十数,先加十位上的数,再加个位上的数。2.揭示课题
师:今天这节课我们将一
起来学习两位数加两位数的口算(板书课题:两
位数加两位数的口算)。
(二)探究新知
1、创设情境,提出问题。
师:春天到了,学校组织了春游活动。三年级的小朋友已经在操场
排好了
整齐的队伍。这时先来了一辆大巴车。
(1)请你仔细观察主题图,找到了哪些数学信息?
学生汇报:三(1)班有35人,三(2
)班有34人,三(3)班有39人,
大巴车限乘70人。
追问:限乘70人是什么意思?
强调:车上的人数要小于等于70人。
2 22
(2)那该怎么安排坐车呢?安排哪两个班级先上车呢?预设1:三(1)班
和三(2)班先上
车。
预设2:三(1)班和三(3)xx上车。
预设3:三(2)班和三(3)xx上车。
(老师适时板书:三(1)班和三(2)班,三(1)班和三(3)班,三
(2)班和三(3)
班。)
2、自主探究,掌握算法。
(1)教学例1
师:三(1)班和三(2)班
可以合乘一辆车吗?该怎么列式?学生汇报,
老师指名回答,并板书:35+34=69(人)
追问:35+34你是怎么口算出来的呢?
学生xx后,指名汇报。
预设1:30+30=60,5+4=9,60+9=69。
引导:把35拆成30和5,把
3拆分成30和4,先算30+30=60,再算
5+4=9,再算60+9=69。
评价:用到了“先算、再算”的词语,希望接下去的回答都能用到这两个词
语!
小棒直观图xx(课件演示)。
师:实际上,这样的计算过程可以用小棒来表示。35用3捆
小棒和5根小
棒来表示,34可以用3捆小棒和4根小棒来表示。3捆和3捆合起来是6捆,5
根和4根合起来是9根。两部分合起来是69根。
预设2:把35拆成30和5,把34拆成30和4
,先算5+4=9,再算
30+30=60,再算60+9=69。
3 22
师:这是先算个位上的数,再算十位上的数。在口算时,我们也可以先加十位上的数,再加个位上的数。
预设3:把34拆成30和4,先算35+30=65,再算65+4=69。
计数器拨数xx(课件演示)。
师:这样的计算过程也可以在计数器上拨一拨。35在计数器上怎么拨?加
34又是怎么拨的?
强调:先加30,再加4,跟刚才的计算过程一样。
预设4:把34拆成30和4,先算35+4=39,再算39+30=69。
预设5:把3
5拆成30和5,先算30+34=64,再算64+5=69。预设6:把35
拆成30和5,先算5
+34=39,再算30+39=69。
3.对比归纳,优化算法。
师:你们具有数学家的头脑,想出了这么多种计算方法。这几种计算方法
有什么相同点吗?
预设1:得数都一样。
预设2:都是分一分。
归纳:这些方法都采用了拆分的方法
,把两位数拆成整十数和一位数,先
加整十数,再加一位数,或者先加一位数,再加整十数,或者十位和
个位分别
加一加,再把两部分合起来,把这样的计算转化成我们以前学过的知识。
师:你更喜欢哪种算法?为什么?
小结:哪种计算方法能使你的计算变得既简洁又方便、正确率又高,你就
选择哪种算法。
4.比较人数,得出结论。
4 22
追
问:三(1)班和三(2)班可以合乘一辆车吗?为什么?全班齐答:三
(1)班和三(2)班可以合乘
一辆车。
(2)教学例2
师:那么三(1)班和三(3)班可以合乘一辆车吗,该怎么列式呢?
学生汇报,老师指名回答,并板书:35+39=74(人)
师:你是怎么口算出来的呢?像老师这样记录在纸上,写得又快又好!
学生xx。
学生汇报。
预设1:我把35分成30和5,39分成30和9,先算30+30=60,再
算
5+9=14,再算60+14=74.
预设2:我把35分成30和5,先算39+30
=69,再算69+5=74.预设3:我把
39分成30和9,先算35+9=44,再算35+44
=75.预设4:我把35拆成30和5,
先算30+39=69,再算69+5=74。
预设5:我把35拆成30和5,先算5+39=44,再算30+44=74。
追问:三(1)和三(3)可以合成一辆车吗?
指名学生回答,比大小得出结论。
5.对比分析,寻找异同
师:xx,这两个算式有什么相同点?
预设1:都是两位数加两位数。
预设2:其中一个加数相同。
预设3:都是三十几加三十几。
师:有什么不同点?
5 22
预设1:得数不同。
预设2:另一个加数不同。
师:都是35加三十几,怎么一个得数是六十多,一个得数七十多呢?
指名学生回答。
小结:左边的是两位数加两位数的不进位加法,右边是两位数加
两位数的进位加法,个位相加满十要向前一位进1.
6.经历计算,完整解题。
师
:那么三(2)班和三(3)班能合乘一辆车吗?请你按照第二题的格
式,写一写,算一算,再跟限乘7
0人比一比。
指明学生汇报,全班齐答。
(三)练习巩固
1.写出十位上的数。
过渡:春天也是百花盛开的季节,小蜜蜂也出动了,请你帮帮小蜜蜂采花
蜜。
师:请你想一想花朵下面是几?完成学习单的第一题。
指明学生汇报。
要求:左边一组和右边一组分别选择一题,请小朋友说一说思路。
强调:两位数加两位数,要
先看个位相加是否满十,再看十位上的数相加
的结果。两位数加两位数的不进位加,十位上的数加一加。
两位数加两位数的进位加,十位上的数相加还要再加上进位的一。
2.口算(练习二第2题)
6 22
过渡:春天也是放风筝的季节。老师带来
了几款风筝,你喜欢哪款,算出
它的结果,再来放飞它。
形式:学生抢答,说完整算式,算对了就能成功放飞风筝。
3.打地鼠。
师:地瓜
田里来了一群淘气的小地鼠,农民伯伯可愁死了,想请小朋友帮
他打打地鼠,找找地鼠的好朋友,这样就
能一次*两只地鼠
了。
形式:学生抢答,先说算式,再上台来“打”地鼠。
追问:请你找找63的好朋友,写出得数是63的两位数加两位数的加法算
式。
学生汇报,师分类板书:
预设1:两位数加两位数的不进位加法。
追问:个位相加
和十位相加只要怎么样,算式就能成立呢?预设2:两位数
加两位数的进位加法。
追问:你是怎么写出来的啊?
强调:两位数加两位数的不进位加,只要个位相加等于3,十位
相加等于
6。两位数加两位数的进位加,只要个位相加等于13,十位相加等于5,再加进
位的
1等于6.
(四)全课总结
师:通过这趟数学之旅,你有什么收获吗?
(*)
教学内容:
7 22
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》
的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知
集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解
决问题的过程中进一步体会集合
的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重
点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能
用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
8 22
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、
直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.*导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看
,
随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微
视频) 师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的
生活中,如果遇到需要帮助
的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一
方有难、八方
支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献
爱
心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信
息?
设计意图:
激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有
难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
捐款
xx
xx
李彤
张阳
9 22
任一
捐物
孟涛
李彤
任一
吴越
张恒
张旭
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?生:里面的同学
重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们
10 22
能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意
活动姓名的表格。请看
黑板:(揭示黑板上的活动表格)师:下面请同学们分
组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)方案一:
捐款
李彤
任一
黄娜
董泽
张阳
捐物
李彤
任一
孟涛
吴越
张恒
张旭
师:你觉得你们组这样摆有什么好处?
11 22
生:把重复的两个同学摆在前面,能引人注意。师:谁都赞同他们的摆
法?请把最热烈的掌声送
给这个积极探索的小组。你们组的摆法的确不错,可
老师还是觉得,有时还会将总人数看成11人,哪一
组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时
候
,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名
移到左边。)
方案二:
捐款
李彤任一
黄娜
董泽
张阳
捐物
孟涛
吴越
张恒
张旭
师:哇!你们的摆法很独
特,说说你们这样摆有什么好处?生:因为有两
个李彤和任一,我们取下来一个李彤和任一,将剩下的李
彤和任一放在中间,
既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生
生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
12 22
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能
力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当
你和爸爸、妈妈
上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那
么
,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什
么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪
些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用
了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(
课件出现韦恩图)设计意
图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4
)介绍韦恩图。师:在很久以前,就有人给它起了个名字,叫韦恩图。
(出现韦恩图三个字)你们知道为
什么把它称作韦恩图吗?因为这是英国的数
学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,
也叫集合图。今
天,我们就一起探究有关集合的知识《数学广角》——集合。
(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
13 22
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副
既科学合理又形象直
观的韦恩图,你们真的很了不起!师:请大家仔细观察大
屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并
且,
从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人
吗?请同学们
独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人
。(贴答数)讨论:为
什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。三、实践应用,巩固内化
师:同学们,通过刚才
的学习,我们学会了许多知识和本领,其实,利用
韦恩图可以帮我们解决生活中的许多问题,我们来看看
:
1.举一反三(4道抢答题)
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞
赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
14 22
<
br>设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢
答题强调重点,内化知识
;思维训练题求重叠部分,培养学生的逆向思维,培
养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评互评生评师师评生)
师:同学们,你们课堂上,善于观察、认
真思考、踊跃发言、敢于创新。
表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,
下
面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答
问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;
渗透养成良好学习习惯的思想
教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
15 22
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所
学到的
知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、
历练出一身
好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前
获得红花奖励和红星奖励的
学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合<
br>图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同
时,培养了学生的创造
能力。
六、板书设计,凸显重点(体现学生的主体地位)
(*)
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级上册p42-43页例1、
例2
二、教学准备
多媒体课件:姓名笔划数统计表每人一张
三、教学目标与策略选择
平均数作为统计知识中的一个重要内容,是常用的一种特征数,教材中所
介绍的是一堂求算术平
均数的课,从基础知识来看,一是理解平均数的意义;
二是掌握求平均数的方法。
前者属于数
学思想,后者属于数学方法,对于本课我从统计的角度出发,
在考虑这节课教什么的问题时,根据教材特
点把教学目标定位为:重点教学平
均数的意义。其次才是求平均数的方法。在考虑怎么教的问题时,首先
从学生
方面考虑,因为知识并不能简单地由教师传授给学生,只能由每个学生依据自
身已有的知
识和经验主动地加以建构,再根据教材特点创设一定的问题情境使
学生在解决问题中深刻感悟平均数的意
义从而更好地掌握求平均数的方法并能
灵活应用解决实际问题
具体如下:
16
22
教学目标:
1、让学生在具体的情境中经历探索
、思考、交流等数学过程理解平均数的
实际意义,掌握平均数的特征,并且会运用平均数解决一些实际问
题。2、让学
生探索平均数的求得方法的多样性,能根据具体情况灵活选用方法进行解答,
感受
计算方法与策略的巧妙,培养学生的数学兴趣,发展学生的数学思维。
3、培养学生发现问题、解决问题的能力和习惯,让学生体验数学与生活的
联系。
教学重点:理解平均数的意义和求平均数的方法
教学难点:理解平均数的意义
四、教学流程设计及意图
教学流程
设计意图
(一)创设情境,激发兴趣
师:同学们,今天这节课我们来研究我们的姓名,谁愿意把自己的姓名向
大家介绍介绍
(学生高声的介绍自己的姓名)
师:谁又能知道老师的姓名呢?
学生说一说后,出示自己的姓名
师:能完成这表格吗?(学生数一数
完成表格)
姓名肖宇涵笔画数23
师:能否把你自己的姓名与笔画数也制成这样的表格,比一比,看看谁
制
作的最漂亮(学生动手制作表格)
17 22
师巡视指导,搜集、选择教学信息,学生完成后作简单交流
(二)解决问题,探索新知
1、在解决问题中感知概念
师:请观察老师姓名的笔画数,你能提出什么数学问题?预设生(1)每个
字笔画数的多少?
(2)比多少?
(3)发现数字间的规律
(4)求总数?(师追问:你是怎样算出来的?)
师:知道了笔画数的总数,你现在又能解决什么问题?预设生:可以求出
平均每个字的笔画数
师:平均每个字的笔画数,你是怎么得来的?
预设生(1)通过计算(7+5+9)÷3=7
(2)通过移多补少得到
2、在对话交流中明晰概念
师:胡老师的姓名平均笔画数7画,这又表示什么?
预设生(1)表示胡必泛三个字笔画数的平均水平
(2)表示老师姓名笔画数的一般水平 <
br>师:那这7画与胡必泛这三个字的笔画数之间还有关系吗?(学生小组讨
论,教师巡视指导,讨论
完毕,开始全班汇报交流)预设生(1)有关系的是他
们的中间数
(2)平均笔画数比笔画最
多的少一些,比笔画最少的多一些(3)平均笔
画数在笔画最多的数字与笔画最少的数字之间(4)平均
笔画数就在这三个字笔
画数的中间位置
18 22
师:从同学们的发言中我发现,平均笔画数反映的既不是这三个字中笔画
最多的那个,也不是反
映这三个字中笔画最少的那个,而是处在最多和最少之
间的平均水平。我们把7叫做胡老师姓名笔画数的
--平均数(板书课题)
师:请同学们算出自己姓名的平均笔画数,(师巡视指导,选择、搜集有
价值的信息)
师生交流计算的方法与结果
3、在比较应用中深化概念
出示教师巡视时搜集的三个学生的姓名笔画数统计表
(一学生姓名两个字,一学生姓名三个字
,一学生姓名四个字)师:比较
他们姓名中每个字的笔画数,你有什么方法?预设生(1)比笔画数的总
数
(2)比平均笔画数
(让学生先在小组内讨论,然后组织全班汇报交流)
预设生(1)比总数好比能够很清楚明了的知道谁的姓名笔画数多,谁的姓
名笔画数少
(2)比平均数公平
因为他们三个人的姓名字数不一样多,分别是2个、3个和4个,比总数
的
话字数越多,笔画数相对就会多起来,这不公平。而平均数却能反映每个字笔
画数的总体情况
,与字数的多少无关,这就比较公平合理。
学生运用平均数进行比较,然后组织交流
师:比完后你有什么感想?(生回答略)
师:假如用这三个字姓名的笔画数与胡老师的姓名笔画数相比,那又可以
怎么比呢?
预设生:既可以用平均数来比,也可以用总数来比
19 22
师:同学们做得很好,
在比较时考虑到了字数的多少,公平与否
出示(1)文成县实验小学四年级平均每班有学生56人(2)四(3)班上
学期期末考试数学
平均分是81分
师:你猜这些数据是怎么得来的,是什么意思,有什么用处?(学生小组
讨论
,然后全班汇报交流)
预设生(1)56是三年级总人数除以班级数得来的,表示三年级每班人数的<
br>平均水平,不一定每班就是56人,但可以预测每班的大致人数。
(2)略
(三)尝试解题,自主归纳
师出示例题:
有一个篮球队的5个同学
身高
分别是148厘米、142厘米、139厘米、141厘米、140厘米他们的平
均身高是多少厘米?
师:谁来估计一下这个小组的平均身高大约是多少?并说说你的理由
预设生的估计数在139
--148之间,如果超出这个范围,则要组
织讨论所猜的数值为什么不可能,从而加深对平均数概念的理解。
学生列式计算,教师巡视指导
选一个学生板书列式
(148+142+139+141+140)÷5
师:你们知道这位同学是怎么想的吗?
预设生:我先求出这个小组5位同学的身高和,然后除以小组人数。
20 22
学生计算,注重计算方法的选择然后交流。
师:大家能不能总结一下求平均数的方法?个人先想一想,然后小组内交
流
(学生小组合作,交流看法教师参与讨论)
学生汇报后,教师简单小结求平均数的一般方法:
总数÷份数=平均数。同
时说明有时也可以运用移多补少的方法求平均数,对计算答案的过程对不同的<
br>学生有不同的要求,让学生选择自己喜欢的方法计算,在此暂时不作总结提
升,留待练习课中予以
落实。
人教版三年级下册《平均数》教学反思
《新课标》强调数学应用于现实生活,要使学
生体验到数学就在我们身
边,进一步感受到数学与生活的密切联系,这就向我们的教师提出了挑战:必<
br>须善于挖掘生活中的数学题材
本课教学中,我一上课就再现神六成功发射的辉煌场面,一下子拉
近了数
学与生活、学生与教师之间的距离,使学生对数学、对教师产生亲近感,而最
后的总结可
谓经典。将学生从课堂引向生活,
不留痕迹,这样与开头相互照应,真是从生活中来到生活中去。 <
br>突出主体地位,创造了自然和谐的环境。在课堂教学中,教师应该充分尊
重学生给他们以发现问题
、解决问题的机会,使教学活动真正面向全体学生,
使学生人人得到发展。本课中,在创设问题情景、呈
现例题的表格之后,我让
学生根据表格中的数据自己提出数学问题提问题的过程,就是培养学生的主动<
br>思考、主动发现,用数学的眼光看待周围的事物的过程。
同时,学生通过提出数学问题,也复习了简单的求平均数的有关问题。
在复习的过程中,由学
生自己提出今天研究的内容:两次平均每分钟拍摄
多少张?这样学生感到:今天学习的问题是由我提出来
的,心里充满了骄傲和
自豪,尊重个体差异,设计了满足不同需求的练习。家庭环境、特定的生活与社会文化氛围,形成了学生的差异。
21 22
教师在教学中应持一种客观的态度,使不同的学生得到不同发展,限度地
满足每一个学生的发展需求
,对有特殊数学才能和爱好的学生可以为他提供更
多的发展机会。
本课整个练习设计分为四个层次,既有巩固性的只列式不计算、列式计算
的例题原型的还原
又有较高层次的拓展练习,层层递进,满足了不同层次学生的学习需求。
在练习的方式上, <
br>既有笔算题、又有估算题。更符合《新课标》提出的培养学生估算能力这
一宗旨,可谓匠心独具,
令人流连。思维深度延伸,激活了
学生内在的发展潜能。在求平均数应用题中,学生常常将两个平均数
相加
除以2这是平均数应用题中极易出错的典型问题。一般情况下,学生能认识错
误,选择出正
确答案就行了,但我对题目进行了深度挖掘,引导讨论:
1.什么样的情况下
可以(142+140)÷2?
2.假如男生人数多一些
全班身高的平均数比141大还是小?为什么?
3.假如*人数多一些
全班身高的平均数比141大还是小?为什么?
4.再让学生比眼力
猜测五年级四个班哪个班学生的平均身高?
这样深入挖掘,有意识地对学生思维进行深度引领
,将一条简单的选择题
进行多次讨论,让学生享受到数学思维带来的乐趣。
网络搜集整理,仅供参考
22 22