新版三年级数学上册第九单元数学广角——集合

别妄想泡我
710次浏览
2020年09月04日 22:07
最佳经验
本文由作者推荐

科罗拉多大学波尔得分校-过年作文300字


第九单元单元分析
教材分析

本课内容在义务教育课程标准实验教 科书三年级下册第108页例1。数学广角第
一课时是义务教育课程实验教科书人教版数学三年级下册开 始新增设的一个内
容,涉及的重叠问题是日常生活中应用比较广泛的数学知识。是属于集合思想一
个数学体系。学生从一开始学习数学,其实就已经在运用集合的思想方法了。如
学习数数时,把2个三 角形用一条封闭的曲线圈起来。而以后学习的平面图形之
间的关系都要用到集合的思想。教材例1编排的 意图是借助学生熟悉的题材,通
过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这 两个课
外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,
并利用直 观图的方式求出两个小组的总人数。

学情分析

集合思想是数学中最基 本的思想,集合理论可以说是数学的基础。从学生一开始
学习数学,就已经在运用集合的思想了。针对三 年级学生的认知水平,在这里只
是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打 下必要
的基础,学生只要能够用自己的方法解决问题就可以了。



第九单元数学广角——集合






















教学内容:
三年级数学下册第九单元《数学广角》
【课 型】:新授 【 课时】: 1节 【节次】:1节
学习目标:
1.知识与技能方面:使学生借助直观图,利用集合的思想方法解决简单的重叠问
题,并能用数 学语言表述。
2.过程与方法方面:使学生感知集合图的产生过程,初步培养学生的建模意识和
能力,渗透多种方法解决问题的意识。
3.情感态度价值观方面:培养学生初步养成善于观察、善于思考的学习习惯。
教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言
进行描述。
【教学重点】:利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
【教学难点】:初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
【教具学具】:实物投影、情境图。
教 学 设 计
教学流程:
一、激趣导入明确主题
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。
两个爸爸和两个儿子去动物园,可 是他们只买了三张票,便顺利地进了动物园,
这是为什么?【板书:爷爷、爸爸、儿子】
2、 两个爸爸【板书:2】,两个儿子【板书:2】,却只买了三张票【板书:3】。


这2+ 2怎么会等于3?这里谁的身份最特殊?为什么?【爸爸的身份最特殊,有
两个身份,既是爷爷的儿子又 是儿子的爸爸。板书:既……又……】【爸爸有两
个身份,重复算了一次,板书:2+2-1=3】 < br>3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街
跑,看你找不找 。这节课看谁找的窍门最多?谁表现得最好?
二、引导探究发现规律
1、 了解运动爱好
同学们平时喜欢体育运动吗?体育运动各种各样,你喜欢什么样的运动?
2、假如学校里要组织活动,一项跑步,一项跳绳,请你选择的话,你喜欢什么
运动?
我们举举手看,喜欢跑步的有哪些同学?喜欢跳绳的有哪些同学?都很多,有没
有两样都比较喜欢的?
3、老师想进一步了解你们,请允许我对你们其中的一个小组进行调查,好吗?
看看哪个小组今 天的精神面貌最好!
4、老师在讲台的两边分别画了两个圈:左边蓝色的圈表示喜欢跑步的,右边红< br>色的圈表示喜欢跳绳的。
5、【指定小组】现在请喜欢跑步的同学到左边蓝色的圈内集合【有6 人,板书:
6】;请喜欢跳绳的同学到右边红色的圈内集合【有4人,板书:4】。
6、为了 让大家看得更清楚,老师在黑板上画一个表格:“第?小组喜欢跑步、跳
绳学生名单”,请第?小组的同 学分别在“跑步”和“跳绳”后面签上名字,两者都喜
欢,两边都签。
第?小组喜欢跑步、跳绳学生名单


【故作惊讶】喜欢跑步的有6人,喜欢跳绳 的有4人,这个小组没有10人呀?
问题出在哪儿呢?
【有两个同学既喜欢跑步又喜欢跳绳】
小组讨论发现:统计过程中有同学既喜欢跑步又喜欢跳绳,是重复的,在计算人
数时只能计算一 次。
7、看来表格不方便我们统计总人数!
之前,在老师左边蓝色的圈表示的是什么?在老 师右边红色的圈表示的是什么?
现在,老师让第?小组的同学一起上来,我们看看他们怎么站。
请大家拿出纸和笔,在纸上写一写、画一画,看怎样能使别人一看就知道喜欢跑
步的有哪些同学,喜欢 跳绳的有哪些同学,两样都喜欢的有哪些同学?同时还方
便我们数人数?
8、谁愿意展示下你 的想法?根据老师所掌握的,在100多年前的英国,有一个
名叫韦恩的逻辑学家,用一个图很方便的解 决了我们今天遇到的这个问题。让老
师来展示给大家看。

蓝色的圈圈住的是什么 ?【喜欢跑步的同学】红色的圈圈住的是什么?【喜欢跳
绳的同学】中间两个圈相交的部分呢?【既喜欢 跑步又喜欢跳绳的同学】一共是
多少个同学?【8人】
因为是韦恩最早发明的,所以就以他的 名字命名这种图,叫韦恩图。老师发现不
少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是 用你的名字来命
名了。
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统 计总数。
接下来,假如要用算式表示喜欢跑步和跳远的一共有多少人,又该是怎样的呢?


①算法1:6+4-2=8人
你是怎么想的?【先把喜欢跑步的和喜欢跳绳的 分别加起来。算式是6+4=10,
然后再用10减去两个重复的,10-2=8】
②算法2:4+2+2=8人
请你解释一下。【4是只喜欢跑步的,2是只喜欢跳绳的,2是 既喜欢跑步又喜欢
跳绳的,即重复的】
③算法3:6+2=8人
【喜欢跑步的4人,加上只喜欢跳绳的2人】
④算法4:4+4=8人
【喜欢跳绳的4人,加上只喜欢跑步的4人】
10、刚才同学们想了很多算法,你觉得哪种比 较容易理解。吧你比较容易理解
的那种算法,说给你的同桌听一下,是什么意思?
三、回归生活,实际运用
1、现在就去大自然看看,它们是谁呀?在这些动物当中有会飞的, 会游泳的。
找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上
吗? 【练习二十四,第1题】
只会飞的有哪些?【②④⑦⑧⑩】
只会游泳的有哪些?【①⑤⑥⑨】
③天鹅放哪儿?【放中间】为什么放中间?【它既会飞又会游泳】同意吗?
如果又来了一只小狗,应该把它放在哪呢?
【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】


同学们真了不起,没有被这样的问题迷惑住!
2、看图,文具店昨天进了5种 货,今天进了5种货,两天一共进了多少种货?
【练习二十四,第2题】
四、拓展延伸,升华主题
1、三年级有20个同学参加兴趣小组,其中参加数学小组的有15 人,参加语文
小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?
(2)只参加数学小组的有几人?
(3)只参加语文小组的有几人?
2、水果店昨天进了4种水果,今天进了4种水果,两天可能一共进了几种水果?
五、总结归纳
通过这节课的学习,你有什么收获?
今天我们遇到的数学问题都有什 么共同特征?【有重复的】都通过了什么方法帮
助我们解决的?【画韦恩图、列算式计算时减去重复的一 次】


























第九单元教学反思

《重叠问题》是人教版教材三年级下册数学教科书第108页例 1。是三年级
下册开始新增设的一个内容,涉及的重复问题是日常生活中应用比较广泛的数学
知 识。教材编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文
小组和数学小组的学生名单 ,和实际参加这两个课外小组总人数不相符合引起学


生的认知冲突,渗透并初步体会集合 的有关思想,并利用直观图的方式求出两个
小组的总人数。集合是比较系统、抽象的数学思想方法,对于 三年的学生来说,
具有一定的挑战性。我对教材的理解是这样的:让学生通过生活中容易理解的题
材去初步体会集合思想,学生只要能够用自己的方法解决问题就可以了。本节课
设计时我立足于培养学 生良好的数学思维能力,从学生的生活经验和知识基础出
发,创设问题情境,让学生通过观察、操作、实 验、推理、交流等活动寻找解决问
题的方法,从不同的方法中选择最优方案,初步体会集合思想。 < br>设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重复问
题,使学生不是在模式 上会做,而是在理解上会做。如果学生头脑中没有经历建
模的过程,没有很好的直观依托,强塞给学生的 东西也就形同如空中楼阁了。
在课堂上我做到了以下几点:
一、激发学生兴趣。
在开课前围绕本课教学内容,让学生猜一个有重叠问题的脑筋急转弯为交流
内容,“两对父子一起到餐厅 吃饭,服务员只给了他们3个饭碗,为什么?”这样为
下面的教学打下了基础。
二、灵活处理教村。
根据学生的实际情况,将教学内容稍做改动,我选择更贴近学生生活实际 的
题材——现场调查学生喜欢音乐、美术的情况,这样处理使学生感受到数学问题
来源自己身边 ,而且让学生把自己的名字贴到黑板上应该说大大激发学生的学习
兴趣。
三、培养学生收集、整理信息的意识和能力。
我设计了一个“贴一贴”的游戏,如果你喜欢音 乐,就把名字卡片贴到喜欢音
乐的下面;喜欢美术的,就贴到美术的下面,如果两个都喜欢,那么你就各 贴一
张。再让学生发现问题,讨论交流,重新梳理重复名字的拿去过程,直观形象地
揭示人数多 出来的原因所在。巧妙地设置一个让学生一下就找出喜欢音乐的学
生,使画出集合图水到渠成 。让学生进一步感受体验到集合图的直观形象,简
洁明了的作用
四、在教学过程中注重学生思维的严谨性。
在交流集合图各部分的含义时,让学生充分理解“ 喜欢音乐的,只喜欢音乐
的,既喜欢音乐的,又喜欢美术的。”含义。注重培养学生思维的严谨性。在解 读
韦恩图的过程中,我很注重学生表述各部分的意思。红色圈是表示“喜欢音乐的
人数”,黄色 圈是表示“喜欢美术的人数”,中间的部分表示“既喜欢音乐的,又喜欢
美术的人数”,让学生明白这中 间是表示两样都喜欢的人数。而去掉两样都喜欢的
部分后就是“只喜欢音乐的”和“只喜欢美术的”。多 了一个“只”,虽然只有一字之差,


但是意思完全不一样。在探讨计算方法时 ,让学生比较三部分相加求出总人数,
和两部分相加再减去重叠部分求出总人数。两种方法各个数表示什 么。
五、培养学生根据实际情况解决问题的能力。
调查另外两组同学喜欢的情况。老师在地 上和黑板上分别画了一个集合图,
让学生喜欢什么就站在哪个圈里,再把自己的名字写在黑板上的圈里。 这样通过
站一站,自己画一画集合图,变式,再计算,进一步了解各部分意义,以及解题
方法的 优化。
六、分层练习,拓展延伸,形成能力。
先是出示孩子们熟悉的“排队问题”。再出示 有一个重叠问题列成算式是
“4+9-3=”,让学生找找生活中的事例来编题或画图来表示。这样既能 让学生进一
步感知重叠问题在生活中的现象,同时又使学生自主想象。
本节课存在的不足之处:
1.关于重叠问题数学模型的建立还不够。
2.是教师对学生的思维了解不够透彻,在巩固练习部分设计不够充分。
3.在板书算式时出现了不能用两个等号的错误。
任何一堂课在反思的时候,都有成功点也有 不足和遗憾。不足和遗憾并不可
怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做 的。

大溪中学-炒饭哥


上海出入境检验检疫局-世界卫生日是几月几日


已经造句-年度考核表范文


gre查分-二手房购房定金合同


广州大学松田学院官网-服装店创业计划书


风铃草的花语-中国注册会计师协会网站


长春人事考试网-麒麟论坛


大庆医学高等专科-工作汇报表