五年级上册小学教材全解
电气设备工程师-党章学习体会
苏教版五年级上册知识要点(扬州祝博士教育)
领域一数的世界
领域模块
负数的初
步认识
(第一单
元)
知识要点
正负数的认识
具体内容
定义:像+4,19,+8844这样大于0的数叫正数;
像-4,-11,-7,-155这样
小于0的数叫负数。
【0既不是正数,也不是负数】
注:正数前面的“+”可以省略,但负数前面的“-”不可以省略。
正负数是表示相反意义的数。0既不是正数也不是负数,正数都大于0,负数都小
于0。
0比任何的负数都大。
正负数的意义
正负数比较大
小
-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4
+5 +6
注:(1)数轴上,右边的数始终大于左边的数;
(2)可将数想象成温度计上的温度再比较冷暖,即小大。
小数的意
义和性质
(第三单
元)
小数的意义
小数和分数的关系:分母是10、100、1000„„的分数都可以用小数来表示;一
位小数表示十分
之几,两位小数表示百分之几,三位小数表示千分之几等等。例
365
0.30.65
10100
小数的数位名
称、顺序及计
数单位间的进
率
小数点右边第一位是十
分位,计数单位是十分之一(0.1);小数点右边第二位是
百分位,计数单位是百分之一(0.01)
;小数点右边第三位是千分位,计数单位是
千分之一(0.001)……;每相邻的两个计数单位之间的
进率都是10。
数
位
整数部分
„„
千
位
百
位
十
位
个
位
小数点
计
数
单
位
小数部分
十
分
位
百
分
位
百
分
之
一
千
分
位
千
分
之
一
„„
„„
„„
千 百
十 一
(个)
十
分
之
一
小数的性质
小数的化简
小数大小比较
求小数的近似
值
把较大的数改
写成用“万”
或“亿”作单
位的小数
小数的末尾添上0或者去掉0,小数的大小不变,这是小数的性质。
根据小数的性质,通常可
以去掉小数末尾的0把小数化简;在小数的末尾添加上
“0”,可以把小数改写成制定位数的小数,而小
数的大小不变。
先看整数部分,再看小数部分的十分位,百分位,依次下去比较。
(1)要看后一位数字的大小,例如精确到十分位则是看百分位上的数字。
(2)在近似时,小数末尾的“0”不可省略。
把一个数改写成用“万”作单位的数,只要在
这个数万位(从个位向左数第5位)
后右下角点上小数点,再在数的末尾添写“万”字。把一个数改写成
用“亿”作单位
的数,只要在这个数亿位(个位向左第9位)后右下角点上小数点,再在数的末
尾添写“亿”字。小数部分末尾的0一般省略不写。
小数的加小数加减法的
减法(第笔算方法
四单元)
小数加减混合
运算的顺序
小数加减法的
简便运算
小数的乘小数乘法的计
除法(第算方法
五单元)
求积的近似值
的方法
小数乘法的简
便运算
小数除法的计
算方法
求商的近似值
的方法
循环小数
小数点要对齐,也就是相同位数对齐,结果中小数的末尾有0,一般要把0去掉
相同数位对齐
;小数点对齐;和里的小数点要和加数里的小数点对齐;差里的小
数点要和被减数、减数的小数点对齐。
从最低位算起:各位满十要进一;不够减
时要向前一位退1作10再减。
小数加法的交换律和结合律
a +b =b + a a + b +
c = a + (b + c)
先按照整数乘法计算出积,再看乘数中有几位小数,就从积的右边起
数出几位数,
点上小数点,乘得的积的小数位数不够时,要在前面用0补足,再点上小数点。
积
的小时末尾有0时,先点上小数点,再化简。
求积的近似值时,首先明确要保留的小数位数,再看要保
留的小数位数下一位上
的数学,最后按照“四舍五入”法取积的近似值
和整数一样
被除数和除数的小数数位相同时,同时扩大相同倍数变成整数相除;
被除数的小数数位多于除数时,以除数为准,变成小数除以整数;
被除数的小数数位少于除数时,以除数为准,被除数后面补0.
用竖式计算商时,可以除到需
要保留的小数位数的下一位,然后按照“四舍五入”
法取商的近似值
一个小数部分的某一位起
,一个数字或者几个数字一次不断地重复出现,这样的
小数叫做循环小数。
注:无限小数不一定是循环小数,但循环小数一定是无限小数。
1、在一个算式里,如果有括号,要先算括号里面的,再算括号外面的;
2、在一个没有括号
的算式里,如果只含有同一级运算,要从左往右一次计算;如
果同时含有两级运算,要先算二级运算,再
计算第一级运算,即先算乘除,后算
加减。
1.长方形的长+宽=长方形周长的一半
2.当长方形的周长不变时,长与宽长度相差的越大,这个长方形的面积就越小;
反之,长与宽长度相
差的越小,这个长方形的面积就越大。
3.当长方形的面积不变时,长与宽长度相差的越大,这个长方
形的周长就越长;
反之,长与宽长度相差的越小,这个长方形的周长就越短。
1、用字母表示数的意义是简明易记、方便运用。
2、在数字和字母、以及字母和字母之间的
乘号可以写作·表示;也可以省略不写,
3、但是省略乘号时数字一定要写在字母的前面。例如5×a=
5·a=5a x×y×7=7xy
最需要注意的是用字母不仅能表示数还表示了两个数量之间的某种关系。
例1先写出公式,再把数值代入公式计算
一个平行四边形,底5cm,高2.4cm.求它的
面积s=ah÷2=5×2.4÷2=69(cm2)
例2.看书101页5题
小数四则混合
运算
解决问题
的策略
(第七单
元)
用一一列举和
图示法
用字母表用字母表示数
示数(第量关系
八单元)
求代数式的
值
领域二图形的王国
领域模块
多边行的
面积(第
二单元)
知识要点
平行四边形面积计算
公式
三角形
梯形
公顷和平方千米的意
义
公顷、平方千米、平方
米之间的进率
简单的换算
1、边长100米的正方形土地,面积是1公顷。
2、边长1000米的正方形土地,面积是1平方千米。
1、1平方千米=100公顷
2、1公顷=10000平方米
3、1平方千米=1000000平方米
把高级单位转化为低级单位要乘进率,把低级单位转化成高级单位要
除以进率
或者大单位换算成小单位用乘法,小单位换成大单位用除法
可利用割、补、移等方法,先把复杂的组合图形分解成已学过的简单
图形,再计算面积
先数整格的,再数不满整格的,不满整格的按半格计算
1、(上底+下底) ×高÷2
2、S=(a+b)h÷2
具体内容
1、底×高
2、字母表示S=ah
1、底×高÷2
2、S=ah÷2
组合图形的面积计算
用数方格的方法估算
不规则图形的面积
领域三统计天地
领域模块
统计表和
条形统计
图(二)
(第六单
元)
知识要点
复式统计表
复式条形统计图
具体内容
1、边长100米的正方形土地,面积是1公顷。
2、边长1000米的正方形土地,面积是1平方千米。
条形统计图能直接看出数量的多少