小学数学教学模式
马耳他签证-青岛国税局税税通
“问题、探索、交流”小学数学教学模式初探
内容提要:
在数学课堂教学中
,学生是活动的主体,教师是活动的组织者、指导者、参与者、研究者,力求构建有利
于学生发展的自主
探索学习的空间。
“问题——探索——交流”教学模式是以数学知识为载体,创设问题情境,调动学生
情、知、意、能各种
感官,使学生敢于发现、提出问题,积极参与学习过程,研究探索、合作交流、寻求
解决问题的途径,感
悟知识,体验成功,实现其智力情感及其它方面全面发展。
“问题——探
索——交流”教学模式,强调以“人的发展”教育理念为指导,树立“生活——数学”、“数
学——生活
”观念,将学生置于广阔的社会生活中去体验数学、理解数学、认识数学、学习数学、运用数
学,充分发
挥学生学习的自主性、主动性和创造性,使学生运用数学知识解决数学问题的思想、方法和策
略得到最大
限度地发展。探寻培养学生的研究能力、合作能力、交往能力、学习能力和创造性解决数学问
题的教学规
律和教学策略。
正文:
在数学课堂教学中,学生是活动的主体,教师必须转变角色,变数学
知识的传授者为数学教学活动的组织
者,指导者,参与者,研究者,在课堂教学中构建有利于学生发展的
自主探索学习的空间。一年来,我校
在小学数学学科中,进行了“问题——探索——交流”教学模式的研
究与实践,已初步构建了自己的教学
模式,并立项为“十五”市级重点研究课题。
一、模式的概念
“问题——探索——交流”的教学模式是指在课堂教学中,以数学知识为载体
,创设问题产生情境,调动
学生情、知、意、能各种感官,使学生发现问题,提出问题,并在积极主动参
与学习的过程中,研究探索、
合作交流,寻求解决问题的途径,从中感悟知识,体验成功,获得创造性活
动的经验和方法,实现其智力
情感及其它方面的全面发展。
二、模式的教学过程
“
问题——探索——交流”教学过程一般包括三个阶段,即“准备阶段→探索阶段→组织交流”。“准备
阶
段”即学生探索活动前的准备,主要指教师对主体的激发,它包含了师生双方情感的调动,进入“教”
和
“学”的准备。“探索阶段”即根据学习目标,让学生自主探索,主要指在教师的巧妙引导下,学生主
动
探索,并通过合作互动来探索寻求解决数学问题的方法和策略。“组织交流”即主体的充分展现、思维
的
发展和知识的应用,指学生在自主探索的基础上,发表独立见解,展示个性思维方法和解决问题的策略。
在交流活动中让学生达成共识,形成数学问题结论。
教学过程的三个阶段包含五个基本教学环节。即:
1、创设情境,主体准备;2、目标导向,主体调动;3、
质疑问难,主体参与;4、引导探索,合作互
动;5、形成共识,主体发展。
这三个阶段与五个环节的联系,各环节有哪些要求,可列表反映如下。
“问题——探索——交流”教学过程
阶 教学基
段 本环节
准
1、创设情境
备 主体准备
阶段 2、目标导向
主体调动
探 3、质疑问难
主体参与
合作互动式教学过程
教师活动要求
⑴创设良好的学习氛围
⑵导入新课的情境氛围
⑴检测预习,培养习惯
⑵提出目标,有激励性、导
向性
⑴创设学生质疑情境
⑵激励学生质疑问难
学生活动要求
⑴做好学习数学思想、方法的准备
⑵做好研究材料准备
⑶萌动对新知识的向往
⑴明确认知目标,产生求知兴趣
⑵在新旧知识的转化上引发学习
动机
⑴主体参与,发现问题
⑵敢于提出问题,启发思考
⑶因学施教
索阶4、引导探究
段 合作互动
⑴巧妙引导,启发思维
⑵提供主体参与、实践、思维的
空间,促进合作互动,主动
探究,并注意分层指导
⑶合理运用现代化教学手段或
其他特殊方式,启发学生思
维,突破思维难点
组织5、形成共识
交流 主体发展
⑴启发联想、想象、猜想等进
行广泛的交流。
⑵指导学生学以致用,用学到
的知识解决实际问题
⑶注重学生思想品德的教育和
思维能力、实践能力、创造
能力的培养
三、模式的现实意义
⑶明确目标,并投入解疑实践
⑴小组合作,集体交流,多层次,
多角度,交互信息,启迪思维,
主动探究
⑵借助现代化的直观教学或实验
等,启迪思维,突破难点
⑶掌握学习的方法,内化知识
⑴充分展开联想、想象、猜想、
求异思维;创造性思维得到发
展
⑵学会运用知识和方法解决实际
问题,学会思考,学会学习
⑶充分感受成功喜悦,达到身心
陶冶
我们提出的“问题——探索——交流”教学模式,是以“人的发展”教育理念为指导,树立“生活——数
学”、“数学——生活”观念,将学生置于广阔的社会生活时空中去体验数学,理解数学,认识数学,学
习数学,运用数学,最大限度地发挥学生学习数学的自主性、主动性和创造性,尤其要使学生运用数学知
识解决数学问题的思想、方法和策略得到最大限度地发展。在“问题——探索——交流”教学模式下,探
寻培养学生的研究能力、合作能力、交往能力、学习能力和创造性解决数学问题的教学规律和教学策略。
四、模式的实施
1、准备阶段,即学生探索活动前的准备
⑴ 数学知识、数学思想
方法的准备。例如,探索梯形面积时,需要用到长方形、正方形、平行四边形和三
角形面积的知识,可以
让学生从生活中去收集这些几何形体,通过整理复习,掌握其形体的特征,做好准
备。同时用回忆或查书
的形式思考平行四边形和三角形面积公式是怎样推导出来的?做好数学思想方法的
准备。
⑵
研究材料的准备。例如,教学“梯形面积”时,可以让学生准备好一个上底、下底和高都是整厘米数的
梯
形学具,考虑学生探索梯形面积时,会用到拼、剪、割、补等方法,因此上课前要让学生准备好直尺、
剪
刀和纸张。
⑶ 情感情境的准备。在教学中,教师要找准所学知识与生活实际的切入点,创设蕴涵所学
的知识的情境,
激发学生的探索动机,使他们情趣盎然地投入到探索活动中去。例如,教学“百分数的意
义”时,运用多
媒体课件展示问题:⑴甲已两杯水都是100克,甲杯水放入21克糖,已杯水放入11
克糖,请你说说哪杯
水甜?为什么?⑵甲杯水20克,放入糖3克,已杯水25克,放入糖4克,现在哪
杯水更甜些?对于第⑴
题,学生很快得出结果,可对第⑵题,就不容易很快作出判断,从而产生一种急切
的探索动机,兴致勃勃
地开始了一节课的探索。
2、探索阶段,即根据学习目标,让学生自主探索
这一阶段,学生面对实际问题,首先利用已
有的知识、经验进行推理或猜想,得到一种解决问题的方法;
然后根据实际情况,或者从多种假设中选择
一种合理的,或者对假设进行验证(有时也可不进行验证),
最终使问题得到解决。
⑴ 在探
索过程中,溯本求源,让学生体验科学家的创新历程。例如,教学比例尺时,让学生按老师的要求
画物体
的长度(三人在黑板画,其他同学在本上画)
5厘米长的铁丝。(同学们都能画出)
50厘米长的铁丝。(在本上不能画出,但在黑板上可以画出)。
学校的塑胶跑道长110米,宽8米。(同学们都不能画出)。
怎么办呢?学
生已有的知识和方法与实际要求产生了激烈的碰撞。一下子就把学生的思维带入了积极的思
考状态。
⑵ 在探索过程中,引导运用“猜想——验证”的方法,去解决问题,培养学生创新的精神和严谨的科学
态
度。例如“求三个数的最小公倍数”作了如下设计:
①
复习用短除法求两个数最小公倍数的方法(用两个数公有质因数乘以短除式中剩下的因数)。
②教师问:“两个数的最小公倍数会求了,那三个数呢?”
③同学讨论出结果:“用三个数的公有质因数乘以短除式中剩下的因数”。
④通过验证,发现猜测错误。
⑤深入研究三个数最小公倍数与质因数的关系,得出第二次推测
。(用三个数的公有质因数乘以两个数的
公有质因数,再乘以剩下的因数)
⑥通过验证,证明第二次推测正确。
⑶ 在探索过程中,给学生自主的时空,让学生八仙过海
,各显神通。例如,教学“长方形、正方形的认识”
前,教师可以这样布置学习任务:下周我们学习长方
形和正方形的知识,老师不讲,看看谁能自己想办法
学会?到哪里去学有关长方形和正方形的知识呢?自
己动脑筋想一想。把学到的知识办成小报,我们举办
一次“自己也能学”的比赛活动。看看谁能自己学会
长方形和正方形的有关知识。
在学习成果展示课上,同学们展示了一张张图文并茂的小报,用自己做的
长方形、正方形演示了各种不同
的验证方法。演示过程中学生们自觉地折一折、量一量、数一数,来证明
自己的观点。有许多小报设计合
理,制作精美,属于艺术型;还有许多小报见解独到,属于创新型。同学
们主动地到生活中去寻找长方形、
正方形,能够找到长方形、正方形的异同(这是书上没有,必须自己思
考才能得到的),有的同学能把长
方体和正方体也画出来与长方形、正方形进行比较,有的同学还拿一个
小长方体给大家证明它是由六个面
围成的,还有一些同学把学习成果装在软盘里,通过电脑给大家演示。
自然,有些同学还像老师一样出些
题考考大家。
3、组织交流。
组织交流是学生探
索后的必然。在交流活动中让学生学会思考分析,学会讨论,学会评价,学会交往,学
会合作,尤其要学
会借鉴别人的学习经验。在交流过程中通过比较和筛选,对数学问题达成共识,形成数
学问题结论。坚决
摒弃把教师的认识或众多学生的认识强加给每一个学生。
例如,学习梯形面积时,学生探索出的方法多种多样:
方法一:S=ah÷2+bh÷2
方法二:S=(a+b)×h÷2
方法三:S=(a+b)×(h÷2)
方法四:S=(a+b)÷2×h
方法五:S=ah+(b-a)×h÷2
方法六:S=bh-(b-a)×h÷2
„„
在计算梯形面积时,可以充分尊重学
生的意愿,愿意怎么计算就怎么计算,只要会计算就行。然后,让学
生在多种方法中筛选出最优的方法。
方法五和方法六计算繁杂,自然首先被淘汰;学生根据已有的计算经
验能够把方法三和方法四统一到方法
二之中;方法二和方法一能否统一到一个计算公式中呢?随着学生年
龄的增长和认识水平的不断提高,学
生自然的就会知道方法一是方法二的变形,用方法二计算梯形面积比
较简单,并自觉地进行运用。 实施“问题——探索——交流”教学模式进行数学教学,既重视数学知识的教学,更重视数学思想和方法的培养。课堂上学生变“被动接受数学知识的过程”为“主动获取数学知识过程”,变“学会数学知识为主的过程”为“运用数学知识解决实际数学问题为主的过程”。学生学习主体地位得到充分尊重,实践能力和创新能力得到充分锻炼。教师致力于引导学生从不同角度去思考问题寻求解决问题的多种途径,点燃
p>
了学生的创新火种,激活了创造力和表现力。学生在学习数学中充分施展自己的聪明才智,体
验到了成功
的喜悦,体验到了创造的快乐。
小学数学常态课教学模式
课堂是我们教学的主阵地,是学生学习的主战场,我们
平常所经历的课堂基本上都是常态课堂。
因而重视并上好每
一节常态课,是实现有效教学的重要保证。小学数学常态课
可粗分为新授课,
实践活动课,复习课,练习课,下面我就
这四种类型课的教学模式作一探究:
一、新授课教学模式(基本结构可为四步):
1、创设情境、导入新课
创设情境,
激发学习动机,是引导学生主动参与学习过
程的前提。教学开始,在进行必要的基本训练的基础上,教<
br>师要结合学生的认知水平和生活实际,创设一定的情境,引
导学生观察并提出数学问题,使其处于
很想弄懂但又无法弄
懂,有所知但不全知的心理状态,从而产生认知冲突,激活
思维。教师顺势
利导,引入新课。这一环节要干净利落,不
能拖泥带水,时间控制在5分钟以内。
2、动手操作、自主探索
该环节旨在让学生经历数学知识的探索过程,在探索的
过程
中学会与人交流合作。这就要求教师应该在学生探索问
题的过程中,以平等的身份参与学生的探索和讨论
,并协助
解决探索过程中所出现的一些困难。当学生的探索取得一定
进展时,教
师应该及时加以肯定和表扬,不断增强学生克服
困难和解决问题的信心。引导学生理解领会知识,掌握解
决
问题的方法和技能。这个阶段是此教学模式的中心环节,教
师要精心组织、引导,要保证学生
做、说、讲的时间,不要
急于求成,更不要越疽代疱,教师不能直接说出结论或解决
问题的方法
,而要耐心引导,细心指导,逐步让学生在动手
操作、自主探索中去体会和体验,真正达到对数学知识的
深
刻领会和理解。这个环节大约需要15—20分钟的时间。
3、巩固深化,自主建构 它是进一步巩固知识、深化知识、由知识转化成能力、
学生建构知识、减轻学生课外作业负担的有效
环节。其基本
形式是练习。只有经过充分练习,才能形成熟练的技能技巧,
进一步发展能力、开
发智力。练习分为基本练习和拓展练习。
基本练习在先,拓展练习在后。基本练习具有例题特征,主要目的是巩固所学知识。拓展练习是体现知识的系统性,使
新知识纳入已有的认知结构,加深对新知
的理解,培养学生
的学习兴趣,发展学生的个性特长。本环节15分钟左右,
根据第二环节的时
间适当调整。
4、总结回顾,评价反思
作为一节课的终结部分,可以先让学生说一说这节课
学
到了哪些知识,有哪些收获,对自己进行一下评价,然后教
师对学生参与学习
的精神状态进行肯定,对学生进行积极评
价,使学生产生获取知识的喜悦,充满后继学习的信心。一般控制在3分钟以内。
二、实践活动课教学模式(基本结构可为五步):
数学实践活动
不同于数学课,它是围绕各个活动课题(或
活动主题)的主要任务而展开的,一般地说实践活动的基本课
堂模式是:
1.发现和提出问题
其实,我们小学所学的数学知识绝大部分都可以在
生活
中找到原型,我们在教学中一定要联系学生的生活实际,已有
的知识经验以及学生的年龄特
点设计一些喜闻乐见的教学
情境,激发他们勇于善于提出问题,并从中筛选出那些富有成
效的研
究活动的问题,明确探究方向,形成相关的假说或猜
测。在问题阶段:
(1)要注意问题的合适性,要与学生的发展水平相吻合,
也要与学科课程内容相联系;
(2)要提供探究的基本步骤和知识,便于学生利用它们
进行探究;
(3)要有一定的难度,既能引发学生探究,求知的欲望又
要让学生乐于尝到探究的成果.
2.设计实践方案
实践方案设计时要注意两点:
(1)把教学内容融于生活实际之中,让生活实际为教学
服务;
(2)设计的实践方案要符合学生的年龄特点,让学生乐
于进入实践活动
3.自主实践,解决问题
数学实践活动课应该以数学为内容,以实践为过程,在活
动
中学习.如观察,操作,游戏,解决问题等丰富的活动,这些活
动能把一些抽象的数学概念变为学生看得
见,摸得着,理解得
了的数学事实.能使他们在大量感性材料的基础上,对材料进
行整理,找出
有规律的,逐步抽象,概括,获得数学概念知识,使
抽象问题具体化.在活动过程中,教师一方面要保证
学生个体
有足够的时空,进行思维活动和实践操作活动,另一方面也要
当好主持人的角色,对学
生提出的解决问题的方案,策略及时
引导学生进行讨论,判断,强化正确,纠正偏差,找到解决问题的最佳途径,让学生及时获得成功后的满足感.
4.总结评价
通过这一阶段的教学活动
,可以加深学生对问题的理解
并获得解决问题的经验,反思探究、实践中的得失,如。“我
懂得
了什么”、“我掌握了什么方法”、“我在实践活动过
程中的得失”、“我打算如何改进”等。
5.拓展延伸
这一环节让学生学会运用本课知识向课外拓展,解决一
些生活中的实际问题,从小课堂拓展到社会的大课堂;也可以
让学生运用本课学到的数学思想和方法,去
解决新的数学问
题,向新的知识点拓展.使学生带着问题走进课堂,带着问题走
出课堂。还可以
培养学生通过数学日记,数学小论文等形式培
养学生积极的数学情感。
三、复习课教学模式(基本结构可为五步):
1、创设情景,引出课题
没有问题产
生条件下的学习只能是“接受式学习”,因
此数学教学首先应使学生产生问题,复习课教学同样不能例<
br>外。教师必须创设良好的“问题情境”。
(1).创设贴近学生生活实际及具有鲜明时代背景的
情境。通过阅读信息。一方面使学生感受到数学来源于生活,
又应用于生活,数学就自己身边。
并不陌生和抽象,另一方
面还能使学生感受数学能具体、鲜明地反映一些实际问题,
是人们日常
生活中交流信的手段和工具。
(2).创设“大空间”问题情境。所谓“大空间”问
题情境,
是指提供的材料中应能包括复习内容的全部信息,
而非部分信息。要使学生能通过材料的阅读,激活知识
沉淀
提出与课题相关的问题,自然地引出课题。
2、小组合作,看书整理
<
br>传统复习课,教师往往把目标定位在“查缺补漏”上,
因而呈现给学生的是支离破碎的题目。
要把复习课定位在“促进知识系统化”目标的实现上。
(1).通过回忆与看书,搜集与课题
有关的所有知识。
由于课题本身所容纳的知识点的不同,有些知识在学生头脑
中很快就会再现,
而有些知识可能被遗忘。因而要让学生通
过回忆再现,同时结合读书,搜集与课题有关的知识,清楚每一知识点的意义,这是梳理知识的重要基础。当学生不能
完全回忆时,可以结合教材去搜查,教师
及时板书,这样,
学生通过思维的再现、记忆的提炼,有了初步的记忆表象,
为课堂进一步系统
复习,打下坚实的基础。
(2).找准“探索点”——系统化整理。
当学生搜集与课题有关
的知识点,并明确了每个知识点
的意义以后,重要的首先不是通过练习去巩固,而是要让学
生把
这些知识进行分类,接着教师提出要求小组合作,根据
这些知识点之间的联系,用你喜欢和擅长的方式进
行整理。
(3).准备必要的材料。一是教材。由于课题所包含
的知识分散在几册教材中,学
生主要通过教材搜集不能回忆
的知识点,通过教材弄清各知识点的意义,更重要的是通过
寻找各
知识点的原始出处,能使学生回忆当初学习时所用的
数学思想方法,重温当初解决问题时那种由衷的喜悦
。二是
必要的学具材料,这是完成复习课教学任务的物质基础。
(4).要让
学生合作探索整理。复习课重在使“知识
系统化”,而这种目标的实现.要以学生自主探索为基础。学生在合作探索过程中,不只是获得一些知识性、肯定性的
结论,重要的是通过这些知识性、肯定性
结论的获得,感受
知识获得的曲折过程,揭示客观世界的复杂性。合作探索整
理也由于课题的不
同而采用不同的形式。
(5).教师要巡视指导,体现“组织者、指导者和参
与者”的作用。
教师在组织课堂教学、指导学生开展多种多
样活动的同时,还应成为数学学习过程的参与者,与学生共<
br>同探索数学和认识数学。
3、汇报交流,评价反思
在合作整理的基础上,要给学生充
分表现自己才能的机
会,让学生用自己的语言,结合一些外显的动作行为来阐述
自己的整理结果
和思维过程。
(1).充分估计思维水平不同层次的学生整理知识的
结果。如果教师对学生可
能出现的整理结果不能充分估计,
一旦出现预料不到的情况,教师就不知如何处理,交流活动
将
无法进行。
(2).有序展开汇报交流活动。所谓“有序”,是指
教师在充分了解学生探索情
况的前提下,按照从简单到复
杂、从特殊到一般、从现象到本质的顺序指导学生汇报交流。
(3).展示思维活动过程。这一过程,重要的不只是
让学生说出“是怎么做的”,而是“ 是怎样想到要这么做的”。
4、总结梳理,构建网络
(1).利用学生的整理结果进行知识 梳理。如果学生的
整理结果能揭示知识之间的联系,形成较为完整的知识系
统,完全可以用学生 的“作品”进行知识梳理。
(2).教师引导梳理。当学生的“作品”还不能满足
“形成知识 系统”这一目标时,教师应引导学生对各小组的
整理结果进行观察,不断补充与完善,形成稳定的知识系 统。
这就要求教师在备课时一定要“备知识系统”,做到心中有
数。
(3).进行方 法的总结。学生最终形成的知识系统,
是群体智慧的结晶,应进行简要的总结梳理。同时对表现突
出的小组或个体进行表扬鼓励。
5、类化练习,拓展创新
复习课的功能要着眼于“提高解 决问题能力”之上,包
括数学中的问题、生活中的问题等,因而,练习除有一定量
的要求之外, 更应突出练习的综合性、灵活性和发展性。
四、练习课教学模式(课堂三要素):
在探索小学数学练习课教学模式中,课堂教学模式是一
个动态结构,具有较大的灵活性: p>
1.要合理安排好练习时间与练习形式。为避免单调的
“练”,一是要集中与分散练
习交替进行;二要发挥学生多
种感管的功能,考虑看、读、说、想、做、变等多种形式。
2.
要正确处理教与学,知与情,面向全体,因材施教
的关系。教师在练习课中,要抓住知识点,突出重点,
分解
难点,做到每一个环节目标明确,让学生先做,或辨析或小
结,然后教师再指导性小结、评
价、强调,不断强化知识,
让学生牢固掌握知识;
3.要充分利用反馈在练习中的作用。在每
个环节练习
后,要进行及时反馈,及时矫正。以调动学生继续练习的积
极性,在练习中培养学生
敢于探索,勇于创新的精神,培养
学生的实践能力。
小学数学练习课,根据练习内容可以分为
单项练习课和
综合练习课两种。单项练习课较注重巩固性基础练习和专项
练习,而综合性练习课
则较注重深化练习和发展练习。
1、单项练习课:练习的要求比较单一,可以在新授课
之后,
针对教材的某一个重点或难点安排练习;也可以是针
对某一个容易混淆的概念安排练习,以提高学生辨别
的能
力;还可以在平时作业或试卷解答中,发现问题和错误,为
了及时纠正和补漏,一般采用针
对性练习。
2、综合练习课:综合练习课的目的是使学生更深刻地
理解和掌握知识间的内在联
系和本质规律,拓展学生的解题
思路,提高学生分析问题和解决问题的能力。综合练习课
安
排的习题必须由易到难、由简单到复杂,教师应根据学生实
际设计一些有一定难度,但通过学
生的努力又能做的出的练
习题。练习题的深度难度比单项练习课的要求要高。综合练
习课中的习
题设计,要利于知识归纳梳理和解题思路的拓
宽。练习题的安排层次要清楚,由浅入深、逐步提高。内容
间要衔接,达到知识的沟通。
当然,教学艺术没有止境,课堂教学也绝不是任何一种
单纯的模式就能达到尽善尽美的效果。这就需要我们在教学
的过程中根据实际情况去分析和选择,采用最
能达到目标的
教学模式,同时在一种模式中结合多种模式的有利因素,优
化组合使我们的课堂教
学达到最佳效
果。 2010.4.27