趣味数学高中数学 第10课时 立体几何趣题 正多面体拼接构成新多面体面数问题教学案 新人教版必修1
企盼世界和平的孩子-高中生自我鉴定
第10课时 立体几何趣题——
正多面体拼接构成新多面体面数问题
教学要求: 训练学生空间想象能力,动手动脑能力,提高学习数学兴趣
教学过程:
一、问题提出
在《数学(高二下册)》“立体几何多面体”一节的课堂
教学中,老师给出了一道例题:
“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,使
一个表面重合,所
得的新多面体有多少个面?”对于这个问题学生们表现出了极大的兴趣.他们通过直观
感知,
提出了自己的看法:正四面体和正八面体共12个面,两者各有一个面重叠,因此减少两个
面,所以重合之后的新多面体有10个面.
二、故事介绍
教师乘着学生浓厚
的兴趣讲了一个与这道例题有关的故事.多年前美国的一次数学竞赛
中有这样一道题:一个正三棱锥和一
个正四棱锥,所有棱长都相等,问重合一个面后还有几
个面?大学教授给这道竞赛题的参考答案是7个面
,他们认为正三棱锥和正四棱锥共9个面,
两者各有 一个面重叠,减少两个面,所以重合之后还有7
个面。但佛罗里达州的一名参赛
学生丹尼尔的答案是5个面,与参考答案不合而被判错误,对此丹尼尔一
直有所疑惑,于是
他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5个
面;
他将自己的结论和实物模型提交给竞赛组委会,教授们接受了他的想法并改正了这道题的答
案。
三、操作确认
故事讲完后学生立刻对丹尼尔的结论进行了激烈地讨论.于是
教师建议:请同学们拿出
课前分组做出上述两个问题的实物模型,通过自己的操作(模型组合)来确认自
己的结论.学
生展示大小不一的实物模型.教师让每个组的学生代表在讲台上演示实物模型的组合过程.通过观察、讨论,全班同学明白丹尼尔结论的原因所在.同时也观察到了正四面体和正
八面体重
合之后新多面体只有七个面,这与学生们在上一节课通过直观感知所得的结论是不
一致的。原因在于他们
发现在重合过程中正四面体和正八面体另有两个侧面分别拼接成一个
面了.
四、思辩论证
老师要求学生利用立体几何的相关知识,对操作实物模型得出的结论进行证明。学生
对照实物模
型提出了证明思路:将正八面体和正四面体拼接的两个侧面想象成两个半平面拼
接成一个平面即表示这两
个半平面所构成的二面角为
180
.证明如下:如图1,在正八面体
AC中,连结AC
交平面BE于点O.设正八面体的棱长
为1,BF的中点为D,连结AD、CD,易得∠ADC为二面角A―BF―C的平面角。
AD=DC=
31
3
2,<
br>由余弦定理得,AC=2AO=
2
44
2
1
COSADC
。
3
仿上可求得正四面体邻棱所成的二面角
的余
1
弦值为
1
。
3
由上可知<
br>
ADC180
,因此新多面体是七面体。
五、问题扩展
理论证明的给出进一步完善了学生对问题的全面理解,同时也激发了学生的多向思维.证明
结结
束后,立刻就有学生向老师提出了问题: 如果再拼一个同样的正四面体,又有多少个,
又有多少个面呢
?面对学生的问题,教师立刻利用学生的实物模型进行操作确认,从而发现
新多面体的面数并不确定,而
是依赖于拼接四面体在八面体上的位置.进一步,当拼接更多
的四面体时问题更复杂了,但却激发了学生
更大的兴趣.在激烈地争论中,师生的思考一度
陷入僵局.余是老师提出能否看看不同情况下新多面体可
能新多面体最少面数.这一问题得
到了学生的认可,新一轮实物模型的操作确认开始,很快学生得出了结
论:当两个正四面体
时,新多面体最少为6个面,构成一个六面体(如图2).
当拼接三个正四面体时,新多面体最少为5个面,构成一个棱台如图(3).
当拼接四个正四面体时,新多面体最少为4个面构成一个正四面体(如图4).
2
本节小结:学习数学不要只靠我们的直觉,而要有推理论证检验。
3