大学数学史题库及答案
点缀造句-年底总结范文
选择题(每题2分)
1.对古代埃及数学成就的了解主要来源于(
A )
A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻
2.对古代巴比伦数学成就的了解主要来源于( C )
A.纸草书
B.羊皮书 C.泥版 D.金字塔内的石刻
3.《九章算术》中的“阳马”是指一种特殊的( B )
A.棱柱
B.棱锥 C.棱台 D.楔形体
4.《九章算术》中的“壍堵”是指一种特殊的( A )
A.三棱柱
B.三棱锥 C.四棱台 D.楔形体
5.射影几何产生于文艺复兴时期的(
C )
A.音乐演奏 B.服装设计 C.绘画艺术 D.雕刻艺术
6.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( A )。
A.斐波那契 B.卡尔丹 C.塔塔利亚 D.费罗
7.被称作“第一位数学家和论证几何学的鼻祖”的数学家是( B )
A.欧几里得
B.泰勒斯 C.毕达哥拉斯 D.阿波罗尼奥斯
8.被称作“非欧几何之父”的数学家是( D )
A.波利亚 B.高斯
C.魏尔斯特拉斯 D.罗巴切夫斯基
9.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( C )
A.伽利略 B.哥白尼 C.开普勒 D.牛顿
10.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( C
A.不可公度数 B.化圆为方 C.倍立方体 D.三等分角
11.印度古代数学著作《计算方法纲要》的作者是( C )
A.阿耶波多
B.婆罗摩笈多 C.马哈维拉 D.婆什迦罗
12.最早证明了有理数集是可数集的数学家是( A )
A.康托尔
B.欧拉 C.魏尔斯特拉斯 D.柯西
13.下列哪一位数学家不属于“悉檀多”时期的印度数学家?( C )
A.阿耶波多
B.马哈维拉 C.奥马
.
海亚姆 D.婆罗摩笈多
14.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是( A )
- 1 -
)
A.希尔伯特 B.庞加莱
C.罗素 D.F·克莱因
15.与祖暅原理本质上一致的是( D )
A.德沙格原理 B.中值定理 C.泰勒定理 D.卡瓦列里原理
16.世界上第一个把π计算到3.1415926<π<3.1415927的数学家是( B
)
A.刘徽 B.祖冲之 C.阿基米德 D.卡瓦列里
17.我国元代数学著作《四元玉鉴》的作者是( C )
A.秦九韶
B.杨辉 C.朱世杰 D.贾宪
18.就微分学与积分学的起源而言( A )
A.积分学早于微分学
B.微分学早于积分学
C.积分学与微分学同期 D.不确定
19.在现存的中国古代数学著作中,最早的一部是( D )
A.《孙子算经》
B.《墨经》 C.《算数书》 D.《周髀算经》
20.发现著名公式e
iθ
=cosθ+isinθ的是( D )
A.笛卡尔 B.牛顿 C.莱布尼茨 D.欧拉
21.中国古典数学发展的顶峰时期是( D )
A.两汉时期
B.隋唐时期 C.魏晋南北朝时期 D.宋元时期
22.最早使用“函数”(function)这一术语的数学家是( A )
A.莱布尼茨 B.约翰·伯努利 C.雅各布·伯努利 D.欧拉
23.1834年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是(
(注意,书上给的例子是1861年魏尔斯特拉斯给出的,但不是历史上最早的)
A.高斯
B.波尔查诺 C.魏尔斯特拉斯 D.柯西
24.大数学家欧拉出生于(
A )
A.瑞士 B.奥地利 C.德国 D.法国
25.首先获得四次方程一般解法的数学家是( D )
A.塔塔利亚 B.卡当
C.费罗 D.费拉利
26.《九章算术》的“少广”章主要讨论( D )
A.比例术 B.面积术 C.体积术 D.开方术
27.最早采用位值制记数的国家或民族是( A )
A.美索不达米亚 B.埃及
C.阿拉伯 D.印度
28.数学的第一次危机的产生是由于( B )
-
2 -
B )
A.负数的发现 B.无理数的发现
C.虚数的发现 D.超越数的发现
29.给出“纯数学的对象是现实世界的空间形式与数量关
系”这个关于数学本质的论述的人是
( B )
A.笛卡尔
B.恩格斯 C.康托 D.罗素
30.提出“集合论悖论”的数学家是(
B )
A.康托尔 B.罗素 C.庞加莱
D.希尔伯特
填空题(每空2分)
1.古希腊著名的三大尺规作图问题分别是:
化圆为方、 倍立方体、 三等分角 .
2. 欧几里得
是古希腊论证数学的集大成者,他通过继承和发展前人的研究
成果,编撰出旷世巨著《原本》.
3.中国古代把直角三角形的两条直角边分别称为 勾 和 股 ,斜边称为 弦
.
4.“万物皆数”是 毕达哥拉斯 学派的基本信条.
5.毕达哥拉斯学派的基本信条是 万物皆数 .
6.1687年,牛顿的《 自然
哲学的数学原理》出版,它具有划时代的意义,是微积分创立
的重要标志之一,被爱因斯坦盛赞为“无比
辉煌的演绎成就”.
7.1637年,笛卡儿发表了他的哲学名著《
更好地指导推理和寻求科学真理的方法论》,
解析几何的发明包含在这本书的附录《 几何学 》中.
8.非欧几何的创立主要归功于数学家 高斯 、 波约、 罗巴切夫斯基 .
9.解析几何的发明归功于法国数学家 笛卡尔 和 费马 .
11.徽率、祖率(或密率)、约率分别是 、 和
.
12.《海岛算经》的作者是__刘徽__,《四元玉鉴》的作者是__朱世杰_____. 13.秦九韶的代表作是《_数书九章》,他的提出__正负开方术_是求高次代数方程的完整算
法
,他提出的__大衍总数术___是求解一次同余方程组的一般方法.
14.我国古代数学家刘徽用来
推算圆周率的方法叫___割圆术____术,用来计算面积和体积
的一条基本原理是___出入相补原
理_原理.
15.对数的发明者__纳皮尔_____是一位贵族数学家,_拉普拉斯_____曾赞
誉道:“对数的发
明以其节省劳力而延长了天文学家的寿命”.
16.历史上第一篇系统的微
积分文献《流数简论》的作者是__牛顿______,第一个公开发表
- 3 -
微积分论文的数学家是__莱布尼茨____.
17.古代美索不达米亚的数
学常常记载在___泥版_____上,在代数与几何这两个传统领域,
他们成就比较高的是__代数_
______领域.
18.阿拉伯数学家__花拉子米____的《还原与对消计算概要》第一次给出
了__一元二次____
方程的一般解法,并用几何方法对这一解法给出了证明.
19.“非
欧几何”理论的建立源于对欧几里得几何体系中__第五公设___的证明,最先建立“非
欧几何”理论
的数学家是___高斯___.
20.起源于“英国海岸线长度”问题的一个数学分支是__分形几何
____,它诞生于___20_世纪.
21.四色问题是英国青年大学生__古德里_____于___19_____世纪提出的.
22.在代数和几何这两大传统的数学领域,古代埃及的数学成就主要在___几何_____方面,
美索不达米亚的数学成就主要在__代数______方面.
23.用圆圈符号“O”表示零,可以说是__印度数学___的一大发明,有零号的数码
和十
进位值记数在公元8世纪传入阿拉伯国家,后又通过阿拉伯人传至___欧洲____.
24.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:__相容性___、
__
独立性____、__完备性____.
25.被称为“现代分析之父”的数学家是_魏斯特拉斯,被
称为“数学之王”的数学家是_
高斯__.
26.“数学无王者之道”,这里的“王”是指
捷径 .
27.被著名数学史家贝尔称为“最伟大的埃及金字塔”是指
莫斯科纸草书中的截棱锥体
28. 刘徽
是中算史上第一个建立可靠理论来推算圆周率的数学家.
判断题,请在括号内划∨或×(每题2分):
1.分别在直角三角形三边向外作正五边形,则
两直角边上的正五边形的面积之和等于斜边上
的正五边形的面积.
( 对 )
2.分别以直角三角形的三边为边向外作三个相似的多边形,则两直角边上的多边形的
面积之
和等于斜边上的多边形的面积.
( 错 )
3.《几何原本》传入中国,首先应归功于数学家李善兰.
( 错 )
4.《几何原本》传入中国,首先应归功于数学家徐光启和利玛窦. (
对 )
5.我国的古代数学是建立在算法基础之上的,这可以从中国古代数学家的著作中看出端倪,
-
4 -
其中最具代表性的就是《九章算术》.
( 对 )
6.牛顿创造了现在通用的微分和积分的符号.
( 错 )
7.莱布尼茨创造了现在通用的微分和积分的符号.
( 对 )
8.秦九韶的代表作是《九章算术》.
( 错 )
9.朱世杰的代表作是《四元玉鉴》和《算法统宗》.
( 错 )
10.数学符号系统化首先归功于数学家花拉子米.
( 错 )
11.毕达哥拉斯学派是一个带有浓厚宗教色彩的严密组织,属于唯心主义学派,在古
希腊有
很大的影响.
( 对 )
12.笛卡尔的《方法论》是一部伟大的数学著作.
( 错 )
13.欧几里得在公元前600年左右写了《几何原本》.
( 错 )
14.黎曼几何在二维的情形最初是高斯发展的.
( 对 )
15.黎曼所创立的几何把几何整体化,可以说是几何学的第四个发展. ( 错
)
16.牛顿是在其力学研究中得到微积分成果的,所以这些成果明显地带有力学的痕迹.
( 错 )
17.1908年,策梅罗提出公理化集合论,将原本直观的集合概念建立在
严格的公理基础之
上,解决了第二次数学危机.
( 错 )
18.球面三角形三内角之和小于180°.
( 错 )
10.请列举《九章算术》各章的名称和主要研究内容.
11.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。
答:莱布尼茨于
1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积
分;论述了积分与
微分的互逆关系;引入积分符号;首次引进
“函数”一词;发明了二进位制,
开始构造符号语言,在历史上最早提出了数理逻辑的思想。
12.花拉子米(什么时代、什么地方的数学家、代表著作和重要贡献)。
答:花拉子米是
九世纪阿拉伯数学家,代表著作有:《代数学》和《印度的计算术》;主要贡献有:
提出“还原”与“对
消”的解方程的基本变形法则;给出了一次和二次方程的一般解法,用几何方
法给出证明;给出了四则运
算的定义和法则。
13.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。
答:
一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全
- 5 -
部数学可以由逻辑推导出来。 二,形式主义学派,代表人物是希尔伯特,主要观点是:
将数学看
成是形式系统的科学,它处理的对象不必赋予具体意义的符号。 三,直觉主义学派,代表人物
是
布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。
14.朱世杰(什么朝代、什么地方的人、代表著作和数学创造)。
答:朱世杰是13
世纪至14 世纪元代数学家,燕山人。代表著作是《四元玉鉴》,其主要数学成就
是求解方程的四元术
、高阶等差数列研究及其在内插法上的应用。
15.秦九韶是什么时代、什么地方的数学家,简述他的代表著作和重要数学贡献.
秦九韶约公元12
02-1261年南宋安岳人,代表著作《数书九章》。重要数学贡献:“正负开方术”、“大
衍总数术
”
16.简述笛卡尔的生活年代、所在国家、代表著作以及在数学上的主要成就.
笛卡尔(
1596-1650)出生于法国的拉哈耶。主要著作有《方法论》其中包括:《折光学》、《大气现
象
》和《几何学》。主要成就有:开创性地用代数方法研究几何问题,把代数方程和曲线、曲面联
系起来;
引出了变量和函数的概念。
23.三次数学危机分别发生在何时?主要内容是什么?是如何解决的?
第一次数学危机: 公元前六世纪, 毕达哥拉斯悖论:无理数的发现。欧多克索斯的解决方式,是借<
br>助几何方法,避免直接出现无理数;无理数的使用在几何中是允许的,合法的,在代数中就是非法
的,不合逻辑的。
第二次数学危机:十七世纪,贝克莱悖论:“无穷小量究竟是否为0”的问题:无穷
小量在当时实
际应用而言,它必须既是0,又不是0。从形式逻辑而言,这无疑是一个矛盾。极限理论、
实数理
论和集合论三大理论的完善,微积分学坚实牢固基础的建立。
第三次数学危机:十九世
纪下半叶,罗素悖论:罗素构造了一个集合S:S由一切不是自身元素的
集合所组成,康托尔集合论是有
漏洞的。公理化集合系统的建立,成功排除了集合论中出现的悖论。
24.
牛顿、莱布尼兹微积分思想的异同有哪些?
牛顿发明微积分主要是依靠高度的归纳算法的能力,与牛顿
流数论的运动学背景不同,莱布尼茨创
立微积分首先出于几何问题的思考,尤其是特征三角形的研究。尽
管在背景方法、形式上存在差异、
各有特色,但二者的功绩是相当的,他们都使微积分成为能普遍适用的
算法,同时又都将面积、体
积及相当的问题归结为反切线(微分)运算
25.数系扩充的原则是什么?
a.从数系A扩充到数系B必须是A真包含于B,即A是B的真子集.
b.数系A中定义了
的基本运算能扩展为数系B的运算,且这些运算对于B中A的元来说与原来A
的元间的关系和运算相一致
.
c.A中不是永远可行的某种运算,在B中永远可行,例如,实数系扩充为复数系后,开方的运算
就永远可行.再如,自然数系扩充为整数系后,减法的运算就能施行等.
d. B是满足上
述条件的惟一的最小的扩充,例如,自然教系只能扩充为整数系,而不能一下子
扩展为实数系.数系A的
每一次扩充,都解决了原来数系中的某些矛盾,随之应用范围也扩大了.但
是,每一次扩充也失去原有数
系的某些性质,比如,实数系扩充到复数系后,实数系的顺序性质
就不复存在,即在复数系中不具有顺序
性.
26.《几何原本》中的5条公理和5条公设分别是什么
公理是:1.等于同量的量
彼此相等2.等量加等量,和相等3.等量减等量,差相等4.彼此重合的图
形是全等得5.整体大于部
分
公社是:1.假定从任意一点到任意一点可作一直线2.一条有限直线可不断延长3.以任意中心和
直
径可以画圆4.凡直角都彼此相等 5.若一直线落在两直线上所构成的同旁内角和小于两直角那么把
两直线无线延长,它们将在同旁内角和小于两直角的一侧相交
- 6 -
27.四元数系的发现者是谁?这一发现的意义是什么?
发现者:爱尔兰数学家哈密顿也是其中一员。
意义:四元数是历史上第一次构造的不满足乘法
交换律的数系。四元数本身虽然没有广泛的应用,
但它对于代数学的发展来说是革命性的。哈密顿的作法
启示了数学家们,他们从此可以更加自由地
构造新的数系,通过减弱、放弃或替换普通代数中的不同定律
和公理,就为众多代数系的研究开辟
了道路。
28.简述阿波罗尼奥斯的生活时代及主要数学成就?
亚历山大时期,约公元前262-前190.
主要成就:贡献涉及几何学和天文学,但最重要
的数学成就是在前人工作的基础上创立了相当完美
的圆锥曲线理论。《圆锥曲线论》就是这方面的系统总
结。这部以欧几里得严谨风格写成的巨著对
圆锥曲线研究所达到的高度,直至17世纪笛卡尔,帕斯卡出
场之前,始终无人能够超越。
30.试论述“论证几何学的鼻祖”的主要数学成就.
泰勒斯
,古希腊人。利用日影预测了日蚀、首先引入命题思想、证明了“圆的直径把圆分成相等的
两部分”“等
腰三角形两地角相等”“两相交直线形成的对顶角相等”“如果一个三角形有两角一边
分别与另一个三角
形对应角对应边相等,那么这两个三角形全等”、数学上的泰勒斯定理(半圆上
的圆周角为直角)。
论述题
1.论述数学史对数学教育的意义和作用.
数学史进入课程是数
学新课程改革的重要理念之一。在课程变革由结构——功能视角向文化——个
人视角转变的过程中,文化
融入是师生对课程改革适应性的一个重要因素。对数学学科而言,数学
史是数学文化生成的文库性资源,
是最具权威的课程资源,具有明理、哲思与求真三重教育价值。
(1)明理:数学知识从何而来?数学
史展示数学知识的起源、形成与发展过程,诠释数学知识的源与
流;
(2)哲思:数学是一门
什么样的科学?数学史明晰数学科学的思想脉络和发展趋势,让学生领悟数学
科学的本质,引发学生对数
学观问题自觉地进行哲学沉思,有利于学生追求真理和尊崇科学品德的
形成
(3)求真:数学
科学有什么用?数学史引证数学科学伟大的理性力量,让学生感悟概念思维创生的数
学模式对于解析客观
物质世界的真理性,提高学生对数学的科学价值、应用价值、文化价值的认识。
学习数学史可以帮助
人们—理解数学的本质、掌握数学的思想与方法、重走数学家数学发现的(思
维的)关键性步子。 因此,要重视数学史在数学教学中的意义和作用,通过数学教学展现数学知识的发现历程,让学生
了
解数学知识的来龙去脉,是数学教学的有效策略。展现数学知识的发现过程,不是简单叙述数学
史实,重
复数学家的“原发现过程”。而是需要教师开展教育取向的数学史研究,从中获得对数学
教学的启示,引
导学生重走数学发现之路。
2.论述东方古代数学和西方古代数学各自的主要特征、对现代数学的影响,及其对数学教育的启示.
古希腊数学的三个阶段:古典时期的希腊数学----
哲学盛行、学派林立、名家百出;亚历山大学派
时期----希腊数学顶峰时期,代表人物:欧几里得,
阿基米德,阿波罗尼奥斯;希腊数学的衰落----
罗马帝国的建立,唯理的希腊文明被务实的罗马文明
代替
a古希腊数学与哲学的交织 :古希腊早期的自然科学往往是与哲学交织在一起的,古希腊的自然
哲
学乃是古代自然科学的一种特殊形态,虽然有许多错误的东西,但也有不少合理的知识和包含着合理成分的猜测.恩格斯说:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚
胎
、萌芽.因此,如果理论自然科学想要追溯自己今天的一般原理发生和发展的历史,它就不得不
回到希腊
人那里去.”
- 7 -
b 与希腊数学相比,中世纪的东方数学表现出强
烈的算法精神,特别是中国与印度数学,着重算法
的概括,不讲究命题的数学推导。所谓“算法”,不只
是单纯的计算,而是为了解决一整类实际或
科学问题而概括出来的、带一般性的计算方法。c算法倾向本
来是古代河谷文明的传统,但在中世
纪却有了质的提高。这一时期中国与印度的数学家们创造的大量结构
复杂、应用广泛的算法,很难
再仅仅被看作是简单的经验法则,它们是一种归纳思维能力的产物。c这种
能力与欧几里得几何的
演绎风格迥然不同却又相辅相成。东方数学在文艺复兴以前通过阿拉伯人传播到欧
洲,与希腊式的
数学交汇结合,孕育了近代数学的诞生。 d就繁荣时期而言,中国数学在上述三个地区
是延续最长
的。从公元前后至公元14世纪,先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期以
及宋
元时期,其中宋元时期达到了中国古典数学的顶峰。
3.试论述三角学的发展历史及其对高中三角函数教学的启示
三角学这门学科是从确定平面三
角形和球面三角形的边和角的关系开始的,其最初的研究目的是为
了改变天文学中的计算。古代三角学的
萌芽可以说是源自于古希腊哲学家泰利斯的相似理论。古希
腊天文学家喜帕恰斯,曾著有三角学12卷,
可以认为是古代三角学的创始人。到15世纪,德国的
雷格蒙塔努斯的《论三角》一书的出版,才标志古
代三角学正式成为独立的学科。16世纪法国数学
家韦达则更进一步将三角学系统化,他已经对解直角三
角形,斜三角形等作出了阐述,并且还有正
切定理以及和差化积公式等。直到18世纪瑞士数学家欧拉才
研究了三角函数。这使三角学从原先
静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和
变化的一门具有现代数学特征
的学科。
启示:从只是发生发展的历史角度考察,在任意角三角
函数的教学中不宜过早的引入单位圆定义,
而是应该在学生掌握了任意角三角函数的终边定义之后,再借
助单位圆定义法帮助学生理解终边坐
标法。这样做,不仅符合数学知识的发生发展历程,而且更便于学生
理解三角函数的数学本质,2.
教师的教学要抓住概念的本质。要让学生从锐角三角形的复习中,联系高
中的函数概念,深刻认识
到锐角三角比试相似比,与点的选取无关,同时更要突出比值只与角α的大小有
关,想让学生理解
α确定时,比值唯一确定,明确这里与比值之间的映射关系。比值是角α的函数,认识
到三角函数
是角与比值之间的映射关系,并进一步体会弧度制的意义,3.要做好教学设计,教师要对从
旧知识
引出新知识做好设计,不能过分强化复习,旧知识,避免学生仿照定义锐角三角比得办法,试图任
然采用直角三角形的边之比来定义任意角的三角函数。
在研究方法上,要抓住时机恰
当引入平面坐标系这个研究工具,通过终边坐标法建立起任意三
角函数的定义。最后对单位圆定义法要慎
重处理,关于单位圆定义法与终边坐标法之比较。
4、集合论的发展经历了那几个阶段
第一
个阶段:朴素集合论。在分析的严格过程中,一些基本概念如极限、实数、级数等的研究都涉
及到无穷多
个元素组成的集合,这样就导致了集合论的建立,狄利克雷、黎曼等人都研究过这方面
的问题,但只有康
托尔在这一过程中系统的发展了一般集的理论,开拓了一个全新的数学领域。康
托尔于19世纪末创立的
集合论被称为朴素集合论。康托尔是奠定了无穷点集的初步基础,康托尔
关于实数不可数性的发现,是为
建立超穷集合论而迈出的真正有意义的一步集合论提出伊始,曾遭
到许多数学家的激烈反对。1902年
罗素得出的罗素悖论,证明朴素集合论是有漏洞的,造成了第三
次数学危机。
第二个阶段:公理化集合论。 1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合
论公理系统,简称ZF公理系统。原本直观的集合概念被建立在严格的公理基础之上,从而避免了
悖论的出现。这就是集合论发展的第二个阶段,公理化集合论。因而较圆满地解决了第三次数学危
机。
6.试论述探究勾股定理的证明在初中数学教学中的意义,并给出勾股定理的三个推广结论.
对勾股定理的证明在初中教学中能使学生清楚这个命题的证明过程及方法,使学生能够更加熟悉的
运用勾
股定理解决简单问题,使学生能够更家熟悉的运用勾股定理的逆定理判定直角三角形。有利
- 8 -
于培养学生学生自学、探索能力和发展思维,符合知识认知规律,且方法简单,易学易用
。
第一推广:(实数域)勾股数中各数相同的实数倍仍是勾股数;第二推广:(复数域)勾股数中各数
相同的复数倍仍是勾股数;第三推广:勾股数中各数相同的A倍仍是勾股数。(A为方阵)
7. 试论述数学如何促进社会进步.
数学在其发展的早期主要是作为一种实用的技术
或工具,广泛应用于处理人类生活及社会活动
中的各种实际问题。早期数学应用的重要方面有:食物、牲
畜、工具以及其他生活用品的分配与交
换,房屋、仓库等的建造,丈量土地,兴修水利,编制历法等。随
着数学的发展和人类文化的进步,
数学的应用逐渐扩展和深入到更一般的技术和科学领域。从古希腊开始
,数学就与哲学建立了密切
的联系,近代以来,数学又进入了人文社会科学领域,并在当代使人文社会科
学的数学化成为一种
强大的趋势。与此同时,数学在提高全民素质、培养适应现代化需要的各级人才方面
也显现出特殊
的教育功能。数学在当代社会中有许多出入意料的应用,在许多场合,它已经不再单纯是一
种辅助
性的工具,它已经成为解决许多重大问题的关键性的思想与方法,由此产生的许多成果,又早已悄
悄地遍布在我们身边,极大地改变了我们的生活方式。
A; 数学与当代科学技术:在科学发
展的进程中,数学的作用日见凸现。一方面,高新技术的基础
是应用科学,而应用科学的基础是数学;另
一方面,随着计算机科学的迅猛发展,数学兼有了科学
与技术的双重身份,现代科学技术越来越表现为一
种数学技术。当代科学技术的突出特点是定量化,
而定量化的标志就是运用数学思想和方法。精确定量思
维是对当代科技人员的共同要求。所谓定量
思维是指人们从实际中提炼数学问题,抽象为数学模型,用数
学计算求出此模型的解或近似解,然
后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制
解题的计算机软件,以便得到
更广泛和方便的应用。高技术的高精度、高速度、高自动、高质量、高效率
等特点,无一不是通过
数学模型和数学方法并借助计算机的控制来实现的。 电子计算机的发明与使用是
第二次世界大战
以来对人类文明影响最为深远的科技成就之一。电子计算机是数学与工程技术相结合的产
物,而在
其发展的每个历史关头,数学都起了关键的作用。天体物理中的数值模拟。
B 数
学与当代人文社会科学:简单数学方法解决社会科学难题如问卷调查;传统的社会科学领域
中经济学是运
用数学方法最成功数学化的学科,现代数理经济学研究数学概念和数学技巧是经济学
的基础;数学方法进
入历史科学领域,导致了计量史学的诞生;19 世纪中叶,许多数学家和语言
学家进行了用数学方法研
究语言学问题的实践,获得了许多重要结果;现代军事科学研究中广泛应
用了数学中的蒙特卡罗方法。用
蒙特卡罗方法可以建立战斗的概率模型,在实战前对作战双方的军
事实力、政治、经济、地理、气象等因
素进行模拟。
C:数学在艺术领域的应用:数理逻辑、绘画、音乐等领域之间深刻的共同规律,三维电
脑动画,其
理论基础就是数。
- 9 -